Cell Structure and Function
Online ISSN : 1347-3700
Print ISSN : 0386-7196
ISSN-L : 0386-7196
Hierarchical Development of Motile Polarity in Durotactic Cells Just Crossing an Elasticity Boundary
Thasaneeya KubokiHiroyuki EbataTomoki MatsudaYoshiyuki AraiTakeharu NagaiSatoru Kidoaki
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2020 Volume 45 Issue 1 Pages 33-43

Details
Abstract

Cellular durotaxis has been extensively studied in the field of mechanobiology. In principle, asymmetric mechanical field of a stiffness gradient generates motile polarity in a cell, which is a driving factor of durotaxis. However, the actual process by which the motile polarity in durotaxis develops is still unclear. In this study, to clarify the details of the kinetics of the development of durotactic polarity, we investigated the dynamics of both cell-shaping and the microscopic turnover of focal adhesions (FAs) for Venus-paxillin-expressing fibroblasts just crossing an elasticity boundary prepared on microelastically patterned gels. The Fourier mode analysis of cell-shaping based on a persistent random deformation model revealed that motile polarity at a cell-body scale was established within the first few hours after the leading edges of a moving cell passed through the boundary from the soft to the stiff regions. A fluorescence recovery after photobleaching (FRAP) analysis showed that the mobile fractions of paxillin at FAs in the anterior part of the cells exhibited an asymmetric increase within several tens of minutes after cells entered the stiff region. The results demonstrated that motile polarity in durotactic cells is established through the hierarchical step-wise development of different types of asymmetricity in the kinetics of FAs activity and cell-shaping with a several-hour time lag.

Key words: Microelasticity patterned gel, durotaxis, cell polarity, focal adhesions, paxillin

Content from these authors
© 2020 The Author(s) CC-BY 4.0 (Submission before October 2016: Copyright © Japan Society for Cell Biology)

Copyright: ©2020 The Author(s). This is an open access article distributed under the terms of the Creative Commons BY (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/legalcode
Previous article Next article
feedback
Top