Skip to main content

Advertisement

Log in

The Novel Tumor Microenvironment-Related Prognostic Gene AIF1 May Influence Immune Infiltrates and is Correlated with TIGIT in Esophageal Cancer

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Esophageal carcinoma (EC) is the sixth most common cause of cancer-related mortality worldwide. Studying the associations of the tumor microenvironment (TME) with pathology and prognosis would illustrate the underlying mechanism of prognostic prediction and provide novel targets for immunotherapy in the treatment of EC.

Methods

Transcriptomic profiles of 159 EC patients were obtained from The Cancer Genome Atlas (TCGA) database. Stromal and immune scores were calculated using the ESTIMATE algorithm. Differentially expressed genes (DEGs) were identified by the optimal score cutoff. Functional enrichments were analyzed by DAVID, while prognostic genes were explored using the Kaplan–Meier method. Validation analysis was performed using immunohistochemistry in tissue microarrays containing samples from 145 EC patients. Multiplex immunofluorescence staining was performed to detect a panel of 6 immune markers, including T-cell immunoreceptor with Ig and ITIM domains (TIGIT), in 90 EC patients.

Results

Immune scores significantly increased with increasing age, while stromal scores were dramatically elevated with increasing tumor stage. Fifteen TME-related DEGs including allograft inflammatory factor 1 (AIF1) were identified as prognostic factors of EC. Furthermore, the validation cohort indicated that AIF1 was negatively associated with the prognosis of esophageal squamous cell carcinoma patients. Subsequent analyses suggested that AIF1 may affect immune infiltrates, including T cells and natural-killer cells. Moreover, a correlation between AIF1 and TIGIT was identified.

Conclusions

These results indicate that the TME-related gene AIF1 is a promising predictor of prognosis and is related to immune infiltrates and TIGIT expression in EC. However, further mechanistic studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maghsudlu M, Farashahi Yazd E. Heat-induced inflammation and its role in esophageal cancer. J Digest Dis. 2017;18(8):431–44.

    Article  CAS  Google Scholar 

  2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.

    Article  PubMed  Google Scholar 

  3. Vellayappan BA, Soon YY, Ku GY, Leong CN, Lu JJ, Tey JC. Chemoradiotherapy versus chemoradiotherapy plus surgery for esophageal cancer. Cochrane Database Systematic Rev. 2017;8:CD010511.

  4. Kojima T, Doi T. Immunotherapy for esophageal squamous cell carcinoma. Curr. Oncol. Rep.. 2017;19(5):33.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65.

    Article  CAS  PubMed  Google Scholar 

  6. Anderegg MCJ, Ruurda JP, Gisbertz SS, et al. Feasibility of extended chemoradiotherapy plus surgery for patients with cT4b esophageal carcinoma. Eur J Surg Oncol. 2020;46(4 Pt A):626-31.

  7. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16(5):282–95.

    Article  PubMed  Google Scholar 

  8. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nature Rev Cancer. 2012;12(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Zeng Z, Jiang X, et al. Stromal microenvironment promoted infiltration in esophageal adenocarcinoma and squamous cell carcinoma: a multi-cohort gene-based analysis. Sci. Rep. 2020;10(1):18589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baba Y, Nomoto D, Okadome K, et al. Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci. 2020;111(9):3132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma X, Bi E, Lu Y, et al. Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment. Cell Metab. 2019;30(1):143-56e145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xi S, Zheng X, Li X, et al. Activated hepatic stellate cells induce infiltration and formation of CD163(+) macrophages via CCL2/CCR2 pathway. Front Med. 2021;8:627927.

    Article  Google Scholar 

  13. Kojima T, Shah MA, Muro K, et al. Randomized Phase III KEYNOTE-181 Study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol. 2020;38(35):4138–48.

    Article  CAS  PubMed  Google Scholar 

  14. Tu L, Guan R, Yang H, et al. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. Int J Cancer. 2020;147(2):423–39.

    Article  CAS  PubMed  Google Scholar 

  15. Nam SJ, Kim YH, Park JE, et al. Tumor-infiltrating immune cell subpopulations and programmed death ligand 1 (PD-L1) expression associated with clinicopathological and prognostic parameters in ependymoma. Cancer Immunol Immunother. 2019;68(2):305–18.

    Article  PubMed  Google Scholar 

  16. Kather JN, Horner C, Weis CA, et al. CD163+ immune cell infiltrates and presence of CD54+ microvessels are prognostic markers for patients with embryonal rhabdomyosarcoma. Sci Rep. 2019;9(1):9211.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maximov V, Chen Z, Wei Y, et al. Tumour-associated macrophages exhibit anti-tumoural properties in Sonic Hedgehog medulloblastoma. Nat Commun. 2019;10(1):2410.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li J, Chen Z, Tian L, et al. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut. 2014;63(11):1700–10.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  Google Scholar 

  21. Hothorn T, Zeileis A. Generalized maximally selected statistics. Biometrics. 2008;64(4):1263–9.

    Article  PubMed  Google Scholar 

  22. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.

    Article  CAS  PubMed  Google Scholar 

  24. Xu XL, Zheng WH, Fu ZX, et al. Topo2A as a prognostic biomarker for patients with resectable esophageal squamous cell carcinomas. Med Oncol. 2015;32(1):396.

    Article  PubMed  Google Scholar 

  25. Xu XL, Zheng WH, Zhu SM, Zhao A, Mao WM. The prognostic impact of lymph node involvement in large scale operable node-positive esophageal squamous cell carcinoma patients: a 10-year experience. PloS One. 2015;10(7):e0133076.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Zwieten A. Tissue microarray technology and findings for diagnostic immunohistochemistry. Pathology. 2013;45(1):71–9.

    Article  PubMed  Google Scholar 

  27. Sikora M, Kopec B, Piotrowska K, Pawlik A. Role of allograft inflammatory factor-1 in pathogenesis of diseases. Immunol Lett. 2020;218:1–4.

    Article  CAS  PubMed  Google Scholar 

  28. Ko HL, Wang YS, Fong WL, Chi MS, Chi KH, Kao SJ. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for lung cancer: a marker phase I trial. Thoracic cancer. 2014;5(6):500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Tong X, Zhang J, Ye X. The complement C1qA enhances retinoic acid-inducible gene-I-mediated immune signalling. Immunology. 2012;136(1):78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng D, Li M, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res. 2019;7(5):737–50.

    Article  CAS  PubMed  Google Scholar 

  31. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  32. Thompson ED, Zahurak M, Murphy A, et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut. 2017;66(5):794–801.

    Article  CAS  PubMed  Google Scholar 

  33. Jia D, Li S, Li D, Xue H, Yang D, Liu Y. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment. Aging. 2018;10(4):592–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang H, Wu X, Chen Y. Stromal-immune score-based gene signature: a prognosis stratification tool in gastric cancer. Front. Oncol.. 2019;9:1212.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cai H, Zhu XD, Ao JY, et al. Colony-stimulating factor-1-induced AIF1 expression in tumor-associated macrophages enhances the progression of hepatocellular carcinoma. Oncoimmunology. 2017;6(9):e1333213.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Song JY, Bae HS, Koo do H, et al. Candidates for tumor markers of cervical cancer discovered by proteomic analysis. J Korean Med Sci. 2012;27(12):1479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ye Y, Miao S, Lu R, et al. Allograft inflammatory factor-1 is an independent prognostic indicator that regulates beta-catenin in gastric cancer. Oncol Rep. 2014;31(2):828–34.

    Article  CAS  PubMed  Google Scholar 

  38. Ren H, Chen Z, Yang L, et al. Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer. Cancer Manag Res. 2019;11:4917–30.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yi J, Ren L, Wu J, et al. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for gastric cancer. Ann Trans Med. 2019;7(16):380.

    Article  CAS  Google Scholar 

  40. Bulla R, Tripodo C, Rami D, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Comm. 2016;7:10346.

    Article  CAS  Google Scholar 

  41. Mangogna A, Belmonte B, Agostinis C, et al. Prognostic implications of the complement protein C1q in gliomas. Front Immunol. 2019;10:2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mimura K, Yamada L, Ujiie D, et al. Immunotherapy for esophageal squamous cell carcinoma: a review. Fukushima J Med Sci. 2018;64(2):46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frankel T, Lanfranca MP, Zou W. The role of tumor microenvironment in cancer immunotherapy. Adv Exp Med Biol. 2017;1036:51–64.

    Article  CAS  PubMed  Google Scholar 

  44. Gajewski TF, Woo SR, Zha Y, et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol. 2013;25(2):268–76.

    Article  CAS  PubMed  Google Scholar 

  45. Zamarin D, Ricca JM, Sadekova S, et al. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J Clin Invest. 2018;128(11):5184.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Becht E, de Reynies A, Giraldo NA, et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res. 2016;22(16):4057–66.

    Article  CAS  PubMed  Google Scholar 

  47. Pantaleo MA, Tarantino G, Agostinelli C, et al. Immune microenvironment profiling of gastrointestinal stromal tumors (GIST) shows gene expression patterns associated to immune checkpoint inhibitors response. Oncoimmunology. 2019;8(9):e1617588.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ren Q, Zhu P, Zhang H, et al. Identification and validation of stromal-tumor microenvironment-based subtypes tightly associated with PD-1/PD-L1 immunotherapy and outcomes in patients with gastric cancer. Cancer Cell Int. 2020;20:92.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kelemen SE, Autieri MV. Expression of allograft inflammatory factor-1 in T lymphocytes: a role in T-lymphocyte activation and proliferative arteriopathies. Am J Pathol. 2005;167(2):619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu G, Ma H, Jiang L, Zhao Y. Allograft inflammatory factor-1 and its immune regulation. Autoimmunity. 2007;40(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  51. Harjunpaa H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol.. 2020;200(2):108–19.

    Article  CAS  PubMed  Google Scholar 

  52. Guillerey C, Harjunpaa H, Carrie N, et al. TIGIT immune checkpoint blockade restores CD8(+) T-cell immunity against multiple myeloma. Blood. 2018;132(16):1689–94.

    Article  CAS  PubMed  Google Scholar 

  53. Liu Z, Zhou Q, Wang Z, et al. Intratumoral TIGIT(+) CD8(+) T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer. J Immunother Cancer. 2020;8(2).

  54. Solomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother. 2018;67(11):1659–67.

    Article  CAS  PubMed  Google Scholar 

  55. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Molec Cancer. 2019;18(1):155.

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China [81802995], Zhejiang Province Public Welfare Funds [LGF19H280004].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Y.F. and G.C. Methodology: X.X. and D.W. Investigation: X.X. and N.L. Bioinformatics analysis: X.X. and J.S. Writing, original draft: X.X. and M.X. Writing, review and editing: Z.Z. Funding acquisition: X.X. Supervision: Y.F. and G.C. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yun Fan MD.

Ethics declarations

Disclosure

The authors declare that this research was performed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, D., Li, N. et al. The Novel Tumor Microenvironment-Related Prognostic Gene AIF1 May Influence Immune Infiltrates and is Correlated with TIGIT in Esophageal Cancer. Ann Surg Oncol 29, 2930–2940 (2022). https://doi.org/10.1245/s10434-021-10928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-021-10928-9

Navigation