Skip to main content

Advertisement

Log in

Experimental and Clinical Radiofrequency Ablation: Proposal for Standardized Description of Coagulation Size and Geometry

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Radiofrequency (RF) ablation is used to obtain local control of unresectable tumors in liver, kidney, prostate, and other organs. Accurate data on expected size and geometry of coagulation zones are essential for physicians to prevent collateral damage and local tumor recurrence. The aim of this study was to develop a standardized terminology to describe the size and geometry of these zones for experimental and clinical RF.

Methods

In a first step, the essential geometric parameters to accurately describe the coagulation zones and the spatial relationship between the coagulation zones and the electrodes were defined. In a second step, standard terms were assigned to each parameter.

Results

The proposed terms for single-electrode RF ablation include axial diameter, front margin, coagulation center, maximal and minimal radius, maximal and minimal transverse diameter, ellipticity index, and regularity index. In addition a subjective description of the general shape and regularity is recommended.

Conclusions

Adoption of the proposed standardized description method may help to fill in the many gaps in our current knowledge of the size and geometry of RF coagulation zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. Curley SA, Izzo F, Delrio P, et al. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies. Results in 123 patients. Ann Surg 1999; 230:1–8

    Article  PubMed  CAS  Google Scholar 

  2. Siperstein A, Garland A, Engle K, et al. Local recurrence after laparoscopic radiofrequency thermal ablation of hepatic tumors. Ann Surg Oncol 2000; 7:106–113

    Article  PubMed  CAS  Google Scholar 

  3. Bleicher RJ, Allegra DP, Nora DT, Wood TF, Foshag LJ, Bilchik AJ. Radiofrequency ablation in 447 complex unresectable liver tumors: lessons learned. Ann Surg Oncol 2003; 10:52–58

    Article  PubMed  Google Scholar 

  4. Pawlik TM, Izzo F, Cohen DS, Morris JS, Curley SA. Combined resection and radiofrequency ablation for advanced hepatic malignancies: results in 172 patients. Ann Surg Oncol 2003; 10:1059–1069

    Article  PubMed  Google Scholar 

  5. Elias D, Baton O, Sideris L, Matsuhisa T, Pocard M, Lasser P. Local recurrences after intraoperative radiofrequency ablation of liver metastases: a comparative study with anatomic and wedge resections. Ann Surg Oncol 2004; 11:500–505

    Article  PubMed  Google Scholar 

  6. Poon RT, Ng KK, Lam CM, Ai V, Yuen J, Fan ST. Radiofrequency ablation for subcapsular hepatocellular carcinoma. Ann Surg Oncol 2004; 11:281–289

    Article  PubMed  Google Scholar 

  7. Raut CP, Izzo F, Marra P, et al. Significant long-term survival after radiofrequency ablation of unresectable hepatocellular carcinoma in patients with cirrhosis. Ann Surg Oncol 2005; 12:616–628

    Article  PubMed  Google Scholar 

  8. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma. Part 1: Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. Am J Roentgenol 2005; 185:64–71

    Google Scholar 

  9. Shariat SF, Raptidis G, Masatoschi M, Bergamaschi F, Slawin KM. Pilot study of radiofrequency interstitial tumor ablation (RITA) for the treatment of radio-recurrent prostate cancer. Prostate 2005; 65:260–267

    Google Scholar 

  10. Cha CH, Lee FT, Gurney JM, et al. CT versus sonography for monitoring radiofrequency ablation in a porcine liver. AJR Am J Roentgenol 2000; 175:705–711

    PubMed  CAS  Google Scholar 

  11. Raman SS, Lu DSK, Vodopich DJ, Sayre J, Lassman C. Creation of radiofrequency lesions in a porcine model: correlation with sonography, CT and histopathology. Am J Roentgenol 2000; 175:1253–1258

    CAS  Google Scholar 

  12. Scott DJ, Fleming JB, Watumull LM, Lindberg G, Tesfay ST, Jones DB. The effect of hepatic inflow occlusion on laparoscopic radiofrequency ablation using simulated tumors. Surg Endosc 2002; 16:1286–1291

    Article  PubMed  CAS  Google Scholar 

  13. Leyendecker JR, Dodd GD 3rd, Halff GA, et al. Sonographically observed echogenic response during intraoperative radiofrequency ablation of cirrhotic livers: pathologic correlation. Am J Roentgenol 2002; 178:1147–1151

    Google Scholar 

  14. Kuvshinoff BW, Ota DM. Radiofrequency ablation of liver tumors: influence of technique and tumor size. Surgery 2002; 132:605–611

    Article  PubMed  Google Scholar 

  15. Mulier S, Ni T, Jamart J, Ruers T, Marchal G, Michel L. Local recurrence after hepatic radiofrequency coagulation–multivariate meta-analysis and review of contributing factors. Ann Surg 2005; 242:158–171

    Article  PubMed  Google Scholar 

  16. Wood TF, Rose DM, Chung M, Allegra DP, Foshag LJ, Bilchik AJ. Radiofrequency ablation of 231 unresectable hepatic tumors: indications, limitations, and complications. Ann Surg Oncol 2000; 7:593–600

    PubMed  CAS  Google Scholar 

  17. Mulier S, Mulier P, Ni Y, et al. Complications of radiofrequency coagulation of liver tumours. Br J Surg 2002; 89:1206–1222

    Article  PubMed  CAS  Google Scholar 

  18. Johnson DB, Solomon SB, Su LM, et al. Defining the complications of cryoablation and radiofrequency ablation of small renal tumors: a multi-institutional review. J Urol 2004; 172:874–877

    Article  PubMed  Google Scholar 

  19. Mulier S, Ni Y, Miao Y, et al. Size and geometry of hepatic radiofrequency lesions. Eur J Surg Oncol 2003; 29:867–878

    Article  PubMed  CAS  Google Scholar 

  20. Mulier S, Miao Y, Mulier P, et al. Electrodes and multiple electrode systems for radiofrequency ablation: a proposal for updated terminology. Eur Radiol 2005; 15:798–808

    Article  PubMed  Google Scholar 

  21. de Baere T, Denys A, Johns Wood B, et al. Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. Am J Roentgenol 2001; 176:187–192

    Google Scholar 

  22. Ng KK, Lam CM, Poon RT, et al. Porcine liver: morphologic characteristics and cell viability at experimental radiofrequency ablation with internally cooled electrodes. Radiology 2005; 235:478–486

    PubMed  Google Scholar 

  23. Rossi S, Fornari F, Pathies C, Buscarini L. Thermal lesions induced by 480 kHz localized current field in guinea pig and pig liver. Tumori 1990; 76:54–57

    PubMed  CAS  Google Scholar 

  24. Goldberg SN, Gazelle GS, Dawson SL, Rittman WJ, Mueller PR, Rosenthal DI. Tissue ablation with radiofrequency: effect of probe size, gauge, duration, and temperature on lesion volume. Acad Radiol 1995; 2:399–404

    Article  PubMed  CAS  Google Scholar 

  25. Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol 1996; 3:212–218

    Article  PubMed  CAS  Google Scholar 

  26. Lorentzen T, Christensen NEH, Nolsøe CP, Torp Pedersen ST. Radiofrequency tissue ablation with a cooled needle in vitro: ultrasonography, dose response, and lesion temperature. Acad Radiol 1997; 4:292–297

    Article  PubMed  CAS  Google Scholar 

  27. Patterson EJ, Scudamore CH, Owen DA, Nagy AG, Buczkowski AK. Radiofrequency ablation of porcine liver in vivo. Effects of blood flow and treatment time on lesion size. Ann Surg 1998; 227:559–565

    Article  PubMed  CAS  Google Scholar 

  28. Hänsler J, Becker D, Muller W, Neureiter D, Hahn EG. Ultraschallgesteuerte Hochfrequenz Thermotherapie (HFTT). In vitro Untersuchung an der Rinderleber. Ultraschall Med 1998; 19:59–63

    PubMed  Google Scholar 

  29. Goldberg SN, Hahn PF, Tanabe KK, et al. Percutaneous radiofrequency tissue ablation: does perfusion mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol 1998; 9:101–111

    PubMed  CAS  Google Scholar 

  30. Scott DJ, Young WN, Watumull LM, et al. Accuracy and effectiveness of laparoscopic vs open hepatic radiofrequency ablation. Surg Endosc 2001; 15:135–140

    Article  PubMed  CAS  Google Scholar 

  31. Chang CK, Hendy MP, Smith JM, Recht MH, Welling RE. Radiofrequency ablation of the porcine liver with complete hepatic vascular occlusion. Ann Surg Oncol 2002; 9:594–598

    Article  PubMed  CAS  Google Scholar 

  32. Hänsler J, Neureiter D, Strobel D, et al. Cellular and vascular reactions in the liver to radio-frequency thermo-ablation with wet needle applicators: study on juvenile domestic pigs. Eur Surg Res 2002; 34:357–363

    PubMed  Google Scholar 

  33. Schmidt D, Trubenbach J, Brieger J, et al. Automated saline-enhanced radiofrequency thermal ablation: initial results in ex vivo bovine livers. Am J Roentgenol 2003; 180:163–165

    Google Scholar 

  34. Denys AL, De Baere T, Kuoch V, et al. Radio-frequency tissue ablation of the liver: in vivo and ex vivo experiments with four different systems. Eur Radiol 2003; 13:2346–2352

    Article  PubMed  Google Scholar 

  35. Pereira PL, Trubenbach J, Schenk M, et al. Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology 2004; 232:482–490

    PubMed  Google Scholar 

  36. Watanabe S, Kurokohchi K, Masaki T, et al. Enlargement of thermal ablation zone by the combination of ethanol injection and radiofrequency ablation in excised bovine liver. Int J Oncol 2004; 24:279–284

    PubMed  Google Scholar 

  37. Lee JM, Lee YH, Kim YK, Kim SW, Kim CS. Combined therapy of radiofrequency ablation and ethanol injection of rabbit liver: an in vivo feasibility study. Cardiovasc Intervent Radiol 2004; 27:151–157

    PubMed  Google Scholar 

  38. Lee JM, Kim YK, Kim SW, Han JK, Kim SH, Choi BI. Combined radiofrequency ablation and acetic acid hypertonic saline solution instillation: an in vivo study of rabbit liver. Korean J Radiol 2004; 5:31–38

    PubMed  Google Scholar 

  39. Kim SK, Lim HK, Ryu JA, et al. Radiofrequency ablation of rabbit liver in vivo: effect of the pringle maneuver on pathologic changes in liver surrounding the ablation zone. Korean J Radiol 2004; 5:240–249

    PubMed  Google Scholar 

  40. Lee JM, Han JK, Kim SH, et al. Optimization of wet radiofrequency ablation using a perfused-cooled electrode: a comparative study in ex vivo bovine livers. Korean J Radiol 2004; 5:250–257

    PubMed  Google Scholar 

  41. Lee JM, Han JK, Kim SH, et al. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver. Korean J Radiol 2004; 5:258–265

    PubMed  Google Scholar 

  42. Lobik L, Leveillee RJ, Hoey MF. Geometry and temperature distribution during radiofrequency tissue ablation: an experimental ex vivo model. J Endourol 2005; 19:242–247

    Article  PubMed  Google Scholar 

  43. Steiner P, Botnar R, Goldberg SN, Gazelle GS, Debatin JF. Monitoring of radiofrequency tissue ablation in an interventional magnetic resonance environment. Preliminary ex vivo and in vivo results. Invest Radiol 1997; 32:671–678

    Article  PubMed  CAS  Google Scholar 

  44. Steiner P, Botnar R, Dubno B, Zimmermann GG, Gazelle GS, Debatin JF. Radiofrequency induced thermoablation: monitoring with T1 weighted and proton frequency shift MR imaging in an interventional 0.5 T environment. Radiology 1998; 206:803–810

    PubMed  CAS  Google Scholar 

  45. Tungjitkusolmun S, Staelin ST, Haemmerich D, et al. Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans Biomed Eng 2002; 49:3–9

    Article  PubMed  Google Scholar 

  46. Varghese T, Techavipoo U, Liu W, et al. Elastographic measurement of the area and volume of thermal lesions resulting from radiofrequency ablation: pathologic correlation. AJR Am J Roentgenol 2003; 181:701–707

    PubMed  Google Scholar 

  47. Lorentzen T. A cooled needle electrode for radiofrequency tissue ablation: thermodynamic aspects of improved performance compared with conventional needle design. Acad Radiol 1996; 3:556–563

    Article  PubMed  CAS  Google Scholar 

  48. Goldberg SN, Stein MC, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME. Percutaneous radiofrequency tissue ablation: optimization of pulsed radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol 1999; 10:907–916

    Article  PubMed  CAS  Google Scholar 

  49. Denys AL, de Baere T, Mahe C, et al. Radiofrequency tissue ablation of the liver: effects of vascular occlusion on lesion diameter and biliary and portal damages in a pig model. Eur Radiol 2001; 11:2102–2108

    Article  PubMed  CAS  Google Scholar 

  50. Goldberg SN, Ahmed M, Gazelle GS, et al. Radio-frequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation phantom and porcine liver study. Radiology 2001; 219:157–165

    PubMed  CAS  Google Scholar 

  51. Haemmerich D, Chachati L, Wright AS, Mahvi DM, Lee FT Jr, Webster JG. Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Trans Biomed Eng 2003; 50:493–500

    Article  PubMed  Google Scholar 

  52. Horkan C, Ahmed M, Liu Z, et al. Radiofrequency ablation: effect of pharmacologic modulation of hepatic and renal blood flow on coagulation diameter in a VX2 tumor model. J Vasc Interv Radiol 2004; 15:269–274

    PubMed  Google Scholar 

  53. Miao Y, Ni Y, Mulier S, et al. Ex vivo experiment on radiofrequency liver ablation with saline infusion through a screw tip cannulated electrode. J Surg Res 1997; 71:19–24

    Article  PubMed  CAS  Google Scholar 

  54. Ni Y, Miao Y, Mulier S, Yu J, Baert AL, Marchal G. A novel “cooled-wet” electrode for radiofrequency ablation. Eur Radiol 2000; 10:852–854

    Article  PubMed  CAS  Google Scholar 

  55. Miao Y, Ni Y, Yu J, Marchal G. A comparative study on validation of a novel cooled-wet electrode for radiofrequency ablation. Invest Radiol 2000; 35:438–444

    Article  PubMed  CAS  Google Scholar 

  56. Chung YC, Duerk JL, Lewin JS. Generation and observation of radiofrequency thermal lesion ablation for interventional magnetic resonance imaging. Invest Radiol 1997; 32:466–474

    Article  PubMed  CAS  Google Scholar 

  57. Pereira PL, Clasen S, Boss A, et al. Radiofrequency ablation of liver metastases. Radiologe 2004; 44:347–357

    Article  PubMed  CAS  Google Scholar 

  58. Lee JM, Han JK, Kim SH, et al. A comparative experimental study of the in-vitro efficiency of hypertonic saline-enhanced hepatic bipolar and monopolar radiofrequency ablation. Korean J Radiol 2003; 4:163–169

    PubMed  Google Scholar 

  59. Lee JM, Han JK, Kim SH, et al. Saline-enhanced hepatic radiofrequency ablation using a perfused-cooled electrode: comparison of dual probe bipolar mode with monopolar and single probe bipolar modes. Korean J Radiol 2004; 5:121–127

    PubMed  Google Scholar 

  60. Lee JM, Rhim H, Han JK, Youn BJ, Kim SH, Choi BI. Dual-probe radiofrequency ablation: an in vitro experimental study in bovine liver. Invest Radiol 2004; 39:89–96

    Article  PubMed  Google Scholar 

  61. Lee JM, Han JK, Kim SH, Sohn KL, Choi SH, Choi BI. Bipolar radiofrequency ablation in ex vivo bovine liver with the open-perfused system versus the cooled-wet system. Eur Radiol 2005; 15:759–764

    Article  PubMed  Google Scholar 

  62. Lee JM, Han JK, Kim SH, et al. Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver. AJR Am J Roentgenol 2005; 184:391–397

    PubMed  Google Scholar 

  63. Burdio F, Guemes A, Burdio JM, et al. Bipolar saline-enhanced electrode for radiofrequency ablation: results of experimental study of in vivo porcine liver. Radiology 2003; 229:447–456

    PubMed  Google Scholar 

  64. Burdio F, Guemes A, Burdio JM, et al. Large hepatic ablation with bipolar saline-enhanced radiofrequency: an experimental study in in vivo porcine liver with a novel approach. J Surg Res 2003; 110:193–201

    Article  PubMed  Google Scholar 

  65. Lee JM, Han JK, Kim SH, Lee JY, Choi SH, Choi BI. Hepatic bipolar radiofrequency ablation using perfused-cooled electrodes: a comparative study in the ex vivo bovine liver. Br J Radiol 2004; 77:944–949

    Article  PubMed  CAS  Google Scholar 

  66. Bahn AK. Basic Medical Statistics. New York: Grune and Stratton, 1972:105

    Google Scholar 

  67. Frich L, Mala T, Gladhaug IP. Hepatic radiofrequency ablation using perfusion electrodes in a pig model: effect of the Pringle manoeuvre. Eur J Surg Oncol 2006

  68. Sanchez R, Van Sonnenberg E, D’Agostino H, Goodacre B, Esch O. Percutaneous tissue ablation by radiofrequency thermal energy as a prelim to tumour ablation. Minim Invasive Ther 1993; 2:299–305

    Article  Google Scholar 

  69. Nativ O, Moskovitz B, Sabo E, et al. Percutaneous ablation of malignant liver tumor in rabbits using low radiofrequency energy. J Exp Ther Oncol 1996; 1:312–316

    PubMed  CAS  Google Scholar 

  70. Trübenbach J, Huppert PE, Pereira PL, Ruck P, Claussen CD. Radiofrequency ablation of the liver in vitro: increasing the efficacy by perfusion probes. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1997; 167:633–637

    PubMed  Google Scholar 

  71. Hansen PD, Rogers S, Corless CL, Swanstrom LL, Siperstein AE. Radiofrequency ablation lesions in a pig liver model. J Surg Res 1999; 87:114–121

    Article  PubMed  CAS  Google Scholar 

  72. Rossi S, Garbagnati F, De Francesco I, et al. Relationship between the shape and size of radiofrequency induced thermal lesions and hepatic vascularization. Tumori 1999; 85:137–141

    Google Scholar 

  73. Shibata T, Niinobu T, Ogata N. Comparison of the effects of in vivo thermal ablation of pig liver by microwave and radiofrequency coagulation. J Hepatobiliary Pancreat Surg 2000; 7:592–598

    Article  PubMed  CAS  Google Scholar 

  74. Horigome H, Nomura T, Saso K, et al. Percutaneous radiofrequency ablation therapy using a clustered electrode in the animal liver. Hepatogastroenterology 2001; 48:163–165

    PubMed  CAS  Google Scholar 

  75. Chinn SB, Lee FT Jr, Kennedy GD, et al. Effect of vascular occlusion on radiofrequency ablation of the liver: results in a porcine model. AJR Am J Roentgenol 2001; 176:789–795

    PubMed  CAS  Google Scholar 

  76. Aschoff AJ, Merkle EM, Wong V, et al. How does alteration of hepatic blood flow affect liver perfusion and radiofrequency induced thermal lesion size in rabbit liver? J Magn Reson Imaging 2001; 13:57–63

    Article  PubMed  CAS  Google Scholar 

  77. Miao Y, Ni Y, Yu J, Zhang H, Baert A, Marchal G. An ex vivo study on radiofrequency tissue ablation: increased lesion size by using an “expandable-wet” electrode. Eur Radiol 2001; 11:1841–1847

    Article  PubMed  CAS  Google Scholar 

  78. Sugimori K, Morimoto M, Shirato K, et al. Radiofrequency ablation in a pig liver model: effect of transcatheter arterial embolization on coagulation diameter and histologic characteristics. Hepatol Res 2002; 24:164–173

    Article  PubMed  Google Scholar 

  79. Lee JM, Kim YK, Lee YH, Kim SW, Li CA, Kim CS. Percutaneous radiofrequency thermal ablation with hypertonic saline injection: in vivo study in a rabbit liver model. Korean J Radiol 2003; 4:27–34

    Article  PubMed  Google Scholar 

  80. Kim YK, Lee JM, Kim SW, Kim CS. Combined radiofrequency ablation and hot saline injection in rabbit liver. Invest Radiol 2003; 38:725–732

    PubMed  Google Scholar 

  81. Wiersinga WJ, Jansen MC, Straatsburg IH, et al. Lesion progression with time and the effect of vascular occlusion following radiofrequency ablation of the liver. Br J Surg 2003; 90:306–312

    Article  PubMed  CAS  Google Scholar 

  82. Shen P, Fleming S, Westcott C, Challa V. Laparoscopic radiofrequency ablation of the liver in proximity to major vasculature: effect of the Pringle maneuver. J Surg Oncol 2003; 83:36–41

    Article  PubMed  Google Scholar 

  83. Lee JM, Lee YH, Kim YK, et al. Combined treatment of radiofrequency ablation and acetic acid injection: an in vivo feasibility study in rabbit liver. Eur Radiol 2004; 14:1303–1310

    PubMed  Google Scholar 

  84. Schmidt D, Trubenbach J, Konig CW, et al. Radiofrequenzablation ex-vivo: Vergleich der Effektivität von impedance control mode versus manual control mode unter Verwendung einer geschlossen perfundierten Cluster-Ablationssonde. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2003; 175:967–972

    Article  PubMed  CAS  Google Scholar 

  85. Tamaki K, Shimizu I, Oshio A, et al. Influence of large intrahepatic blood vessels on the gross and histological characteristics of lesions produced by radiofrequency ablation in a pig liver model. Liver Int 2004; 24:696–701

    Article  PubMed  Google Scholar 

  86. Smith MK, Mutter D, Forbes LE, Mulier S, Marescaux J. The physiologic effect of the pneumoperitoneum on radiofrequency ablation. Surg Endosc 2004; 18:35–38

    Article  PubMed  CAS  Google Scholar 

  87. McGahan JP, Gu WZ, Brock JM, Tesluk H, Jones CD. Hepatic ablation using bipolar radiofrequency electrocautery. Preliminary investigation. Acad Radiol 1996; 3:418–422

    Article  PubMed  CAS  Google Scholar 

  88. Burdio F, Guemes A, Burdio JM, et al. Hepatic lesion ablation with bipolar saline-enhanced radiofrequency in the audible spectrum. Acad Radiol 1999; 6:680–686

    Article  PubMed  CAS  Google Scholar 

  89. Curley SA, Izzo F. Laparoscopic radiofrequency. Ann Surg Oncol 2000; 7:789–795

    Article  PubMed  CAS  Google Scholar 

  90. Frich L. Non-invasive thermometry for monitoring hepatic radiofrequency ablation. Minim Invasive Ther All Technol 2006; 15:18–25

    Article  Google Scholar 

  91. Vigen KK, Jarrard J, Rieke V, Frisoli J, Daniel BL, Pauly KB. In vivo porcine liver radiofrequency ablation with simultaneous MR temperature imaging. J Magn Reson Imaging 2006; 23:578–584

    Article  PubMed  Google Scholar 

  92. Varghese T, Daniels MJ. Real-time calibration of temperature estimates during radiofrequency ablation. Ultrason Imaging 2004; 26:185–200

    PubMed  CAS  Google Scholar 

  93. Poon RT, Ng KK, Lam CM, Ai V, Yuen J, Fan ST, Wong J. Learning curve for radiofrequency ablation of liver tumors: prospective analysis of initial 100 patients in a tertiary institution. Ann Surg 2004; 239:441–449

    Article  PubMed  Google Scholar 

  94. Stippel DL, Brochhagen HG, Arenja M, Hunkemoller J, Holscher AH, Beckurts KT. Variability of size and shape of necrosis induced by radiofrequency ablation in human livers: a volumetric evaluation. Ann Surg Oncol 2004; 11:420–425

    Article  PubMed  Google Scholar 

  95. Goldberg SN, Grassi CJ, Cardella JF, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 2005; 235:728–739

    PubMed  Google Scholar 

  96. Omary RA, Bettmann MA, Cardella JF, et al. Quality improvement guidelines for the reporting and archiving of interventional radiology procedures. J Vasc Interv Radiol 2003; 14:S293–295

    PubMed  Google Scholar 

  97. Montgomery RS, Rahal A, Dodd GD 3rd, Leyendecker JR, Hubbard LG. Radiofrequency ablation of hepatic tumors: variability of lesion size using a single ablation device. AJR Am J Roentgenol 2004; 182:657–661

    PubMed  Google Scholar 

  98. Leveillee RJ, Hoey MF. Radiofrequency interstitial tissue ablation: wet electrode. J Endourol 2003; 17:563–577

    Article  PubMed  Google Scholar 

  99. Berber E, Flesher NL, Siperstein AE. Initial clinical evaluation of the RITA 5-centimeter radiofrequency thermal ablation catheter in the treatment of liver tumors. Cancer J 2000; 6(suppl 4):S319–295

    Google Scholar 

  100. Ni Y, Mulier S, Miao Y, Michel L, Marchal G. A review of the general aspects of radiofrequency ablation. Abdom Imaging 2005; 30:381–400

    Article  PubMed  CAS  Google Scholar 

  101. Haemmerich D, Lee FT Jr, Schutt DJ, et al. Large-volume radiofrequency ablation of ex vivo bovine liver with multiple cooled cluster electrodes. Radiology 2005; 234:563–568

    PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Marie-Bernadette Jacqmain and Christian Deneffe for the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Michel MD, FACS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulier, S., Ni, Y., Frich, L. et al. Experimental and Clinical Radiofrequency Ablation: Proposal for Standardized Description of Coagulation Size and Geometry. Ann Surg Oncol 14, 1381–1396 (2007). https://doi.org/10.1245/s10434-006-9033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9033-9

Keywords

Navigation