Skip to main content
Log in

Somatic Mutations and Genetic Heterogeneity at the CDKN1B Locus in Small Intestinal Neuroendocrine Tumors

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Until recently, the genetic landscape of small intestinal neuroendocrine tumors (SI-NETs) was limited to recurrent copy number alterations, most commonly a loss on chromosome 18. Intertumor heterogeneity with nonconcordant genotype in paired primary and metastatic lesions also is described, further contributing to the difficulty of unraveling the genetic enigma of SI-NETs. A recent study analyzing 55 SI-NET exomes nominated CDKN1B (p27) as a haploinsufficient tumor suppressor gene.

Methods

This study aimed to determine the frequency of CDKN1B inactivation and to investigate genotype–phenotype correlations. It investigated 362 tumors from 200 patients. All samples were resequenced for mutations in CDKN1B using automated Sanger sequencing. The expression of p27 was investigated in 12 CDKN1B mutant and nine wild type tumors.

Results

Some 8.5 % (17/200) of patients had tumors with pathogenic mutations in CDKN1B including 13 insertion deletions, four nonsense variants, and one stop-loss variant. All variants with available nontumoral DNA were classified as somatic. Inter- and intratumor heterogeneity at the CDKN1B locus was detected respectively in six of ten and two of ten patients. Patients with CDKN1B mutated tumors had both heterogeneous disease presentation and diverse prognosis. Expression of the p27 protein did not correlate with CDKN1B mutation status, and no differences in the clinical characteristics between CDKN1B mutated and CDKN1B wild type tumor carriers were found.

Conclusion

This study corroborates the finding of CDKN1B as a potential haplo-insufficient tumor suppressor gene characterized by inter- and intratumor heterogeneity in SI-NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.

    Article  PubMed  Google Scholar 

  2. Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.

    Article  PubMed  CAS  Google Scholar 

  3. Vilar E, Salazar R, Perez-Garcia J, Cortes J, Oberg K, Tabernero J. Chemotherapy and role of the proliferation marker Ki-67 in digestive neuroendocrine tumors. Endocr Relat Cancer. 2007;14:221–32.

    Article  PubMed  CAS  Google Scholar 

  4. Norlen O, Stalberg P, Oberg K, et al. Long-term results of surgery for small intestinal neuroendocrine tumors at a tertiary referral center. World J Surg. 2012;36:1419–31.

    Article  PubMed  Google Scholar 

  5. McEntee GP, Nagorney DM, Kvols LK, Moertel CG, Grant CS. Cytoreductive hepatic surgery for neuroendocrine tumors. Surgery. 1990;108:1091–6.

    PubMed  CAS  Google Scholar 

  6. Rinke A, Muller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656–63.

    Article  PubMed  CAS  Google Scholar 

  7. Kvols LK, Oberg KE, O’Dorisio TM, et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study. Endocr Relat Cancer. 2012;19:657–66.

    Article  PubMed  CAS  Google Scholar 

  8. Cunningham JL, Diaz de Stahl T, Sjoblom T, Westin G, Dumanski JP, Janson ET. Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors. Genes Chromosomes Cancer. 2011;50:82–94.

    Article  PubMed  CAS  Google Scholar 

  9. Kulke MH, Freed E, Chiang DY, et al. High-resolution analysis of genetic alterations in small bowel carcinoid tumors reveals areas of recurrent amplification and loss. Genes Chromosomes Cancer. 2008;47:591–603.

    Article  PubMed  CAS  Google Scholar 

  10. Francis JM, Kiezun A, Ramos AH, et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet. 2013;45:1483–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Cuesta R, Martinez-Sanchez A, Gebauer F. miR-181a regulates cap-dependent translation of p27(kip1) mRNA in myeloid cells. Mol Cell Biol. 2009;29:2841–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Rindi G, Kloppel G, Couvelard A, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Archiv. 2007;451:757–62.

    Article  PubMed  CAS  Google Scholar 

  13. Pape UF, Perren A, Niederle B, et al. ENETS Consensus Guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas. Neuroendocrinology. 2012;95:135–56.

    Article  PubMed  CAS  Google Scholar 

  14. Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39 (database issue):D945–950.

  15. Stenson PD, Ball EV, Mort M, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003;21:577–81.

    Article  PubMed  CAS  Google Scholar 

  16. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81. Epub 2009 June 1025.

    Article  PubMed  CAS  Google Scholar 

  17. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Banck MS, Kanwar R, Kulkarni AA, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest. 2013;123:2502–8.

  20. Gerlinger M, Horswell S, Larkin J, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46:225–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Hessman O, Skogseid B, Westin G, Akerstrom G. Multiple allelic deletions and intratumoral genetic heterogeneity in men1 pancreatic tumors. J Clin Endocrinol Metab. 2001;86:1355–61.

    PubMed  CAS  Google Scholar 

  22. Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Pellegata NS, Quintanilla-Martinez L, Siggelkow H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA. 2006;103:15558–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol. 2014;386:2–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Costa-Guda J, Marinoni I, Molatore S, Pellegata NS, Arnold A. Somatic mutation and germline sequence abnormalities in CDKN1B, encoding p27Kip1, in sporadic parathyroid adenomas. J Clin Endocrinol Metab. 2011;96:E701–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Lindberg D, Akerstrom G, Westin G. Mutational analysis of p27 (CDKN1B) and p18 (CDKN2C) in sporadic pancreatic endocrine tumors argues against tumor-suppressor function. Neoplasia New York NY. 2007;9:533–5.

    Article  CAS  Google Scholar 

  27. Lee HS, Chen M, Kim JH, et al. Analysis of 320 gastroenteropancreatic neuroendocrine tumors identifies TS expression as independent biomarker for survival. Int J Cancer. 2014;135:128–37.

    Article  PubMed  CAS  Google Scholar 

  28. Kim HS, Lee HS, Nam KH, Choi J, Kim WH. p27 Loss is associated with poor prognosis in gastroenteropancreatic neuroendocrine tumors. Cancer Res Treat. 2014;46:383–92.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grabowski P, Schrader J, Wagner J, et al. Loss of nuclear p27 expression and its prognostic role in relation to cyclin E and p53 mutation in gastroenteropancreatic neuroendocrine tumors. Clin Cancer Res. 2008;14:7378–84.

    Article  PubMed  CAS  Google Scholar 

  30. Crona J, Nordling M, Maharjan R, et al. Integrative genetic characterization and phenotype correlations in pheochromocytoma and paraganglioma tumours. PloS One. 2014;9:e86756.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marinoni I, Kurrer AS, Vassella E, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology. 2014;146:453–60.e455.

    Google Scholar 

Download references

Acknowledgment

The authors thank Mrs. Birgitta Bondesson for excellent technical assistance and logistical support. This study was supported by Grants from the Swedish Cancer Society, the Selander Foundation, and the Lions club of Uppsala. Peyman Björklund is a Swedish Cancer Society Investigator.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joakim Crona MD, PhD.

Additional information

Joakim Crona and Tobias Gustavsson have contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crona, J., Gustavsson, T., Norlén, O. et al. Somatic Mutations and Genetic Heterogeneity at the CDKN1B Locus in Small Intestinal Neuroendocrine Tumors. Ann Surg Oncol 22 (Suppl 3), 1428–1435 (2015). https://doi.org/10.1245/s10434-014-4351-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-4351-9

Keywords

Navigation