Skip to main content

Advertisement

Log in

Epithelial to Mesenchymal Transition is Associated with Shorter Disease-Free Survival in Hepatocellular Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Epithelial to mesenchymal transition (EMT) is involved in cancer cell invasion and metastasis as well as chemoresistance. Elucidation of EMT in hepatocellular carcinoma (HCC) might contribute to deeper understanding of its biology.

Methods

Overall, 100 patients with HCC, who underwent resection, were analyzed. The messenger RNA (mRNA) expression of the epithelial marker E-cadherin and the mesenchymal marker Vimentin were measured, and the EMT status of each patient was determined as follows: Vimentin/E-cadherin <2 = Epithelial (E), Vimentin/E-cadherin ≥2 = Mesenchymal (M). The correlation between these values and clinicopathological factors and prognosis were analyzed statistically. Moreover, the expression of transcription factors involved in EMT (Twist-1, Snail, Slug, Zeb-1, and Zeb-2) were measured and the role of interleukin (IL)-6 in inducing EMT and chemoresistance was examined.

Results

Patients with a mesenchymal tumor were more prone to have an earlier recurrence than those with an epithelial tumor. EMT-inducing transcription factors were more highly expressed in mesenchymal tumors than in epithelial tumors, and Twist-1 and Zeb-2 were significantly overexpressed. α-Fetoprotein (AFP) values were significantly higher in patients with epithelial tumors, and AFP-expressing HCC cell lines were more responsive to sorafenib. IL-6 expression was significantly higher in mesenchymal tumors, and knockdown of IL-6 in mesenchymal HCC cell lines increased E-cadherin expression and sensitivity to sorafenib.

Conclusions

Analysis of surgically resected tumors suggests that EMT is involved in early disease recurrence in HCC. Twist-1 and Zeb-2 might be important for inducing EMT, and IL-6 might be a potential therapeutic target for alleviating the chemoresistance of mesenchymal HCC tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    Article  PubMed  CAS  Google Scholar 

  3. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67(5):1979–87.

    Article  PubMed  CAS  Google Scholar 

  6. Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68(7):2391–9.

    Article  PubMed  CAS  Google Scholar 

  7. Arumugam T, Ramachandran V, Fournier KF, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69(14):5820–8.

    Article  PubMed  CAS  Google Scholar 

  8. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83.

    Article  PubMed  CAS  Google Scholar 

  9. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.

    Article  PubMed  CAS  Google Scholar 

  10. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39.

    Article  PubMed  CAS  Google Scholar 

  11. Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004;40(6):1275–84.

    Article  PubMed  CAS  Google Scholar 

  12. Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42–52.

    Article  PubMed  CAS  Google Scholar 

  13. Hoshida Y, Nijman SM, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Lee TK, Poon RT, Yuen AP, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res. 2006;12(18):5369–76.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao H, Desai V, Wang J, Epstein DM, Miglarese M, Buck E. Epithelial-mesenchymal transition predicts sensitivity to the dual IGF-1R/IR inhibitor OSI-906 in hepatocellular carcinoma cell lines. Mol Cancer Ther. 2012;11(2):503–13.

    Article  PubMed  CAS  Google Scholar 

  16. Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S. Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology. 2005;129(5):1375–83.

    Article  PubMed  CAS  Google Scholar 

  17. Lee TK, Man K, Poon RT, et al. Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial-mesenchymal transition. Cancer Res. 2006;66(20):9948–56.

    Article  PubMed  CAS  Google Scholar 

  18. Yau T, Yao TJ, Chan P, et al. The significance of early alpha-fetoprotein level changes in predicting clinical and survival benefits in advanced hepatocellular carcinoma patients receiving sorafenib. Oncologist. 2011;16(9):1270–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Shao YY, Lin ZZ, Hsu C, Shen YC, Hsu CH, Cheng AL. Early alpha-fetoprotein response predicts treatment efficacy of antiangiogenic systemic therapy in patients with advanced hepatocellular carcinoma. Cancer. 2010;116(19):4590–6.

    Article  PubMed  CAS  Google Scholar 

  20. Deshmukh M, Hoshida Y. Genomic profiling of cell lines for personalized targeted therapy for hepatocellular carcinoma. Hepatology. 2013;58(6):2207.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Puisieux A, Valsesia-Wittmann S, Ansieau S. A twist for survival and cancer progression. Br J Cancer. 2006;94(1):13–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Shen CH, Wu JD, Jou YC, et al. The correlation between TWIST, E-cadherin, and beta-catenin in human bladder cancer. J BUON. 2011;16(4):733–7.

    PubMed  Google Scholar 

  23. Sasaki K, Natsugoe S, Ishigami S, et al. Significance of Twist expression and its association with E-cadherin in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2009;28:158.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu AN, Zhu ZH, Chang SJ, Hang XS. Twist expression associated with the epithelial-mesenchymal transition in gastric cancer. Mol Cell Biochem. 2012;367(1–2):195–203.

    Article  PubMed  CAS  Google Scholar 

  25. Matsuo N, Shiraha H, Fujikawa T, et al. Twist expression promotes migration and invasion in hepatocellular carcinoma. BMC Cancer. 2009;9:240.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang MH, Chen CL, Chau GY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464–74.

    Article  PubMed  CAS  Google Scholar 

  27. ElMoneim HM, Zaghloul NM. Expression of E-cadherin, N-cadherin and snail and their correlation with clinicopathological variants: an immunohistochemical study of 132 invasive ductal breast carcinomas in Egypt. Clinics. 2011;66(10):1765–71.

    PubMed  PubMed Central  Google Scholar 

  28. Smith BN, Odero-Marah VA. The role of Snail in prostate cancer. Cell Adh Migr. 2012;6(5):433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kurrey NK, K A, Bapat SA. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol. 2005;97(1):155–65.

    Article  PubMed  CAS  Google Scholar 

  30. Nishioka R, Itoh S, Gui T, et al. SNAIL induces epithelial-to-mesenchymal transition in a human pancreatic cancer cell line (BxPC3) and promotes distant metastasis and invasiveness in vivo. Exp Mol Pathol. 2010;89(2):149–57.

    Article  PubMed  CAS  Google Scholar 

  31. Porta C, De Amici M, Quaglini S, et al. Circulating interleukin-6 as a tumor marker for hepatocellular carcinoma. Ann Oncol. 2008;19(2):353–8.

    Article  PubMed  CAS  Google Scholar 

  32. Shackel NA, McCaughan GW, Warner FJ. Hepatocellular carcinoma development requires hepatic stem cells with altered transforming growth factor and interleukin-6 signaling. Hepatology. 2008;47(6):2134–6.

    Article  PubMed  Google Scholar 

  33. Wong VW, Yu J, Cheng AS, et al. High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int J Cancer. 2009;124(12):2766–70.

    Article  PubMed  CAS  Google Scholar 

  34. Sansone P, Storci G, Tavolari S, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 2007;117(12):3988–4002.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM. Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J. 2007;21(13):3763–70.

    Article  PubMed  CAS  Google Scholar 

  36. Studebaker AW, Storci G, Werbeck JL, et al. Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res. 2008;68(21):9087–95.

    Article  PubMed  CAS  Google Scholar 

  37. Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121–4.

    Article  PubMed  CAS  Google Scholar 

  38. He G, Dhar D, Nakagawa H, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155(2):384–96.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Sullivan NJ, Sasser AK, Axel AE, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28(33):2940–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suguru Yamada MD, PhD, FACS.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 276 kb)

Supplementary material 2 (PPTX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, S., Okumura, N., Wei, L. et al. Epithelial to Mesenchymal Transition is Associated with Shorter Disease-Free Survival in Hepatocellular Carcinoma . Ann Surg Oncol 21, 3882–3890 (2014). https://doi.org/10.1245/s10434-014-3779-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3779-2

Keywords

Navigation