Skip to main content

Advertisement

Log in

Near-Infrared Fluorescence Imaging of Both Colorectal Cancer and Ureters Using a Low-Dose Integrin Targeted Probe

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Irradical tumor resections and iatrogenic ureteral injury remain a significant problem during lower abdominal surgery. The aim of the current study was to intraoperatively identify both colorectal tumors and ureters in subcutaneous and orthotopic animal models using cRGD-ZW800-1 and near-infrared (NIR) fluorescence.

Methods

The zwitterionic fluorophore ZW800-1 was conjugated to the tumor specific peptide cRGD (targeting integrins) and to the a-specific peptide cRAD. One nmol cRGD-ZW800-1, cRAD-ZW800-1, or ZW800-1 alone was injected in mice bearing subcutaneous HT-29 human colorectal tumors. Subsequently, cRGD-ZW800-1 was injected at dosages of 0.25 and 1 nmol in mice bearing orthotopic HT-29 tumors transfected with luciferase2. In vivo biodistribution and ureteral visualization were investigated in rats. Fluorescence was measured intraoperatively at several time points after probe administration using the FLARE imaging system.

Results

Both subcutaneous and orthotopic tumors could be clearly identified using cRGD-ZW800-1. A significantly higher signal-to-background ratio was observed in mice injected with cRGD-ZW800-1 (2.42 ± 0.77) compared with mice injected with cRAD-ZW800-1 or ZW800-1 alone (1.21 ± 0.19 and 1.34 ± 0.19, respectively) when measured at 24 h after probe administration. The clearance of cRGD-ZW800-1 permitted visualization of the ureters and also generated minimal background fluorescence in the gastrointestinal tract.

Conclusions

This study appears to be the first to demonstrate both clear tumor demarcation and ureteral visualization after a single intravenous injection of a targeted NIR fluorophore. As a low dose of cRGD-ZW800-1 provided clear tumor identification, clinical translation of these results should be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vahrmeijer AL, Frangioni JV. Seeing the invisible during surgery. Br J Surg. 2011;98:749–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Selzman AA, Spirnak JP. Iatrogenic ureteral injuries: a 20-year experience in treating 165 injuries. J Urol. 1996;155:878–81.

    Article  CAS  PubMed  Google Scholar 

  3. Delacroix SE, Jr., Winters JC. Urinary tract injuries: recognition and management. Clin Colon Rectal Surg. 2010;23:221.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Preston JM. Iatrogenic ureteric injury: common medicolegal pitfalls. BJU Int. 2000;86:313–7.

    Article  CAS  PubMed  Google Scholar 

  5. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7:626–34.

    Article  CAS  PubMed  Google Scholar 

  6. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pleijhuis RG, Graafland M, deVJ, Bart J, deJong JS, vanDam GM. (2009) Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol. 16:2717–30.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Oliveira S, van Dongen GA, Stigter-van WM, Roovers RC, Stam JC, Mali W, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 2012;11:33–46.

    CAS  PubMed  Google Scholar 

  9. Themelis G, Harlaar NJ, Kelder W, Bart J, Sarantopoulos A, van Dam GM, et al. Enhancing surgical vision by using real-time imaging of alphavbeta3-integrin targeted near-infrared fluorescent agent. Ann Surg Oncol. 2011;18:3506–13.

    Article  PubMed  Google Scholar 

  10. Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL. Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol. 2012;19:3879–87.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Metildi CA, Tang CM, Kaushal S, Leonard SY, Magistri P, Tran Cao HS, et al. (2013) In vivo fluorescence imaging of gastrointestinal stromal tumors using fluorophore-conjugated anti-KIT antibody. Ann Surg Oncol. 20:693–700.

    Article  PubMed Central  PubMed  Google Scholar 

  12. van der Vorst JR, Hutteman M, Mieog JS, de Rooij KE, Kaijzel EL, Löwik CW, et al. Near-infrared fluorescence imaging of liver metastases in rats using indocyanine green. J Surg Res. 2011;174:266–71.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Keereweer S, Mol IM, Vahrmeijer AL, VanDriel PB, BaatenburgdeJong RJ, Kerrebijn JD, et al. (2012) Dual wavelength tumor targeting for detection of hypopharyngeal cancer using near-infrared optical imaging in an animal model. Int J Cancer. 131:1633–40.

    Article  CAS  PubMed  Google Scholar 

  14. Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol. 2006;8:226–36.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol. 2013;31:148–53.

    Article  CAS  PubMed  Google Scholar 

  16. Metildi CA, Kaushal S, Luiken GA, Talamini MA, Hoffman RM, Bouvet M. (2013) Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model. J Surg Oncol. doi:10.1002/jso.23507.

    PubMed  Google Scholar 

  17. Bunschoten A, Buckle T, Visser N, Kuil J, Yuan H, Josephson L, et al. Multimodal interventional molecular imaging of tumor margins and distant metastases using the integrin avB3 expression. ChemBioChem. 2012;13:1039–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tucker GC. Integrins: molecular targets in cancer therapy. Curr Oncol Rep. 2006;8:96–103.

    Article  CAS  PubMed  Google Scholar 

  19. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715.

    Article  CAS  PubMed  Google Scholar 

  21. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91–100.

    Article  PubMed  Google Scholar 

  22. Vonlaufen A, Wiedle G, Borisch B, Birrer S, Luder P, Imhof BA. Integrin alpha(v)beta(3) expression in colon carcinoma correlates with survival. Mod Pathol. 2001;14:1126–32.

    Article  CAS  PubMed  Google Scholar 

  23. Vonlaufen A, Wiedle G, Borisch B, Birrer S, Luder P, Imhof BA. Integrin alpha(v)beta(3) expression in colon carcinoma correlates with survival. Mod Pathol. 2001;14:1126–32.

    Article  CAS  PubMed  Google Scholar 

  24. Max R, Gerritsen RR, Nooijen PT, Goodman SL, Sutter A, Keilholz U, et al. Immunohistochemical analysis of integrin alpha vbeta3 expression on tumor-associated vessels of human carcinomas. Int J Cancer. 1997;71:320–4.

    Article  CAS  PubMed  Google Scholar 

  25. Axelsson R, Bach-Gansmo T, Castell-Conesa J, McParland BJ. An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha(v)beta(3)-selective angiogenesis imaging agent (99m)Tc-NC100692. Acta Radiol. 2010;51:40–6.

    Article  PubMed  Google Scholar 

  26. Huang R, Vider J, Kovar JL, Olive DM, Mellinghoff IK, Mayer-Kuckuk P, et al. Integrin αvbeta3-targeted IRDye 800CW near-infrared imaging of glioblastoma. Clin Cancer Res. 2012;18:5731–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Edwards WB, Akers WJ, Ye Y, Cheney PP, Bloch S, Xu B, et al. Multimodal imaging of integrin receptor-positive tumors by bioluminescence, fluorescence, gamma scintigraphy, and single-photon emission computed tomography using a cyclic RGD peptide labeled with a near-infrared fluorescent dye and a radionuclide. Mol Imaging. 2009;8:101–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Beer AJ, Kessler H, Wester HJ, Schwaiger M. PET imaging of integrin alphaVbeta3 expression. Theranostics. 2011;1:48–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Harlaar NJ, Kelder W, Sarantopoulos A, Bart J, Themelis G, van Dam GM, et al. Real-time near infrared fluorescence (NIRF) intra-operative imaging in ovarian cancer using an alpha(v)beta(3-)integrin targeted agent. Gynecol Oncol. 2013;128:590–5.

    Article  CAS  PubMed  Google Scholar 

  30. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res. 2006;12:3942–9.

    Article  CAS  PubMed  Google Scholar 

  31. Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nährig J, Watzlowik P, et al. Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-galacto-RGD PET. J Nucl Med. 2008;49:255–9.

    Article  PubMed  Google Scholar 

  32. Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, et al. Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] galacto-RGD positron emission tomography. Neuro Oncol. 2009;11:861–70.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Choi HS, Nasr K, Alyabyev S, Feith D, Lee JH, Kim SH, et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew Chem Int Ed Engl. 2011;50:6258–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pohle K, Notni J, Bussemer J, Kessler H, Schwaiger M, Beer AJ. 68 Ga-NODAGA-RGD is a suitable substitute for (18F)-galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl Med Biol. 2012;39:777–84.

    Article  CAS  PubMed  Google Scholar 

  35. Tseng W, Leong X, Engleman E. Orthotopic mouse model of colorectal cancer. J Vis Exp. 2007;(10):484.

    PubMed  Google Scholar 

  36. Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol. 2009;16:2943–52.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Intes X, Ripoll J, Chen Y, Nioka S, Yodh AG, Chance B. In vivo continuous-wave optical breast imaging enhanced with indocyanine green. Med Phys. 2003;30:1039–47.

    Article  PubMed  Google Scholar 

  38. Keereweer S, Mol IM, Kerrebijn JD, VanDriel PB, Xie B, BaatenburgdeJong RJ, et al. (2012) Targeting integrins and enhanced permeability and retention (EPR) effect for optical imaging of oral cancer. J Surg Oncol. 105:714–8.

    Article  CAS  PubMed  Google Scholar 

  39. Arias JL. Drug targeting strategies in cancer treatment: an overview. Mini Rev Med Chem. 2011;11:1–17.

    Article  CAS  PubMed  Google Scholar 

  40. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  41. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63:136–51.

    Article  CAS  PubMed  Google Scholar 

  42. Verbeek FP, van der Vorst JR, Schaafsma BE, Swijnenburg RJ, Gaarenstroom KN, Elzevier HW, et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J Urol. 2013;190:574–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sherwinter DA. Identification of anomolous biliary anatomy using near-infrared cholangiography. J Gastrointest Surg. 2012;16:1814–5.

    Article  PubMed  Google Scholar 

  44. Verbeek FP, Schaafsma BE, Tummers QR, van der Vorst JR, van der Made WJ, Baeten CI, et al. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg Endosc. 2013 (in press).

  45. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med. 2005;46:1333–41.

    CAS  PubMed  Google Scholar 

  46. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001;61:1781–5.

    CAS  PubMed  Google Scholar 

  47. US Department of Health and Human Services, Center for Drug Evaluation and Research. Guidance for industry, investigators, and reviewers exploratory IND studies. Rockville, MD: US Department of Health and Human Services; 2006.

  48. Scheuer W, van Dam GM, Dobosz M, Schwaiger M, Ntziachristos V. Drug-based optical agents: infiltrating clinics at lower risk. Sci Transl Med. 2012; 4: 134ps11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Hendrica A. J. M. Prevoo for her contribution the histological analysis and David J. Burrington, Jr. for editing. This work was supported in part by the National Institutes of Health Grant R01-CA-115296, R01-EB-011523, and R01-EB-010022, Dutch Cancer Society Grant UL2010-4732, and the “drie lichten” foundation; the content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This study was performed within the framework of the Center of Translational Molecular Medicine (project MUSIS, Grant 03O-202-04 and DeCoDe project, Grant 03O-101). Joost van der Vorst is an MD-medical research trainee funded by The Netherlands Organisation for Health Research and Development (Grant 92003593).

Disclosures

Floris P. R. Verbeek, MSc, Joost R. van der Vorst, MD, Quirijn R. J. G. Tummers, MD, Martin C. Boonstra, BSc, Karien E. de Rooij, PhD, Clemens W. G. M. Löwik, PhD, A. Rob P. M. Valentijn, PhD, Cornelis J. H. van de Velde, MD, PhD, Hak Soo Choi, PhD, Alexander L. Vahrmeijer, MD, PhD have nothing to disclose and John V. Frangioni, MD, PhD FLARE™ technology is owned by Beth Israel Deaconess Medical Center, a teaching hospital of Harvard Medical School. Dr. Frangioni has started three for-profit companies, Curadel, Curadel ResVet Imaging, and Curadel Surgical Innovations, which has optioned FLARE™ technology for potential licensing from Beth Israel Deaconess Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Vahrmeijer MD, PhD.

Additional information

Floris P. R. Verbeek and Joost R. van der Vorst contributed equally to this work and share first-authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbeek, F.P.R., van der Vorst, J.R., Tummers, Q.R.J.G. et al. Near-Infrared Fluorescence Imaging of Both Colorectal Cancer and Ureters Using a Low-Dose Integrin Targeted Probe. Ann Surg Oncol 21 (Suppl 4), 528–537 (2014). https://doi.org/10.1245/s10434-014-3524-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3524-x

Keywords

Navigation