Skip to main content

Advertisement

Log in

Pancreatic Ductal Adenocarcinoma is Associated with a Distinct Urinary Metabolomic Signature

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

ABSTRACT

Background

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor prognosis in part due to the lack of early detection and screening methods. Metabolomics provides a means for noninvasive screening of tumor-associated perturbations in cellular metabolism.

Methods

Urine samples of PDAC patients (n = 32), healthy age and gender-matched controls (n = 32), and patients with benign pancreatic conditions (n = 25) were examined using 1H-NMR spectroscopy. Targeted profiling of spectra permitted quantification of 66 metabolites. Unsupervised (principal component analysis, PCA) and supervised (orthogonal partial-least squares discriminant analysis, OPLS-DA) multivariate pattern recognition techniques were applied to discriminate between sample spectra using SIMCA-P+ (version 12, Umetrics, Sweden).

Results

Clear distinction between PDAC and controls was noted when using OPLS-DA. Significant differences in metabolite concentrations between cancers and controls (p < 0.001) were noted. Model parameters for both goodness of fit, and predictive capability were high (R 2 = 0.85; Q 2 = 0.59, respectively). Internal validation methods were used to confirm model validity. Sensitivity and specificity of the multivariate OPLS-DA model were summarized using a receiver operating characteristics (ROC) curve, with an area under the curve (AUROC) = 0.988, indicating strong predictive power. Preliminary analysis revealed an AUROC = 0.958 for the model of benign pancreatic disease compared with PDAC, and suggest that the cancer-associated metabolomic signature dissipates following RO resection.

Conclusions

Urinary metabolomics detected distinct differences in the metabolic profiles of pancreatic cancer compared with healthy controls and benign pancreatic disease. These preliminary results suggest that metabolomic approaches may facilitate discovery of novel pancreatic cancer biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Bilimoria KY, Bentrem DJ, Ko CY, et al. Validation of the 6th edition AJCC Pancreatic Cancer Staging System: report from the National Cancer Database. Cancer. 2007;110:738–44.

    Article  PubMed  Google Scholar 

  2. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.

    Article  PubMed  CAS  Google Scholar 

  3. Bathe OF, Shaykhutdinov R, Kopciuk K et al. Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol Biomarkers Prev. 2011;20:140–7.

    Article  PubMed  CAS  Google Scholar 

  4. Klein AP, Hruban RH, Brune KA, et al. Familial pancreatic cancer. Cancer J. 2001;7:266–73.

    PubMed  CAS  Google Scholar 

  5. Greer JB, Lynch HT, Brand RE. Hereditary pancreatic cancer: a clinical perspective. Best Pract Res Clin Gastroenterol. 2009;23:159–70.

    Article  PubMed  CAS  Google Scholar 

  6. Lynch HT, Fitzsimmons ML, Smyrk TC, et al. Familial pancreatic cancer: clinicopathologic study of 18 nuclear families. Am J Gastroenterol. 1990;85:54–60.

    PubMed  CAS  Google Scholar 

  7. Brentnall TA. Management strategies for patients with hereditary pancreatic cancer. Curr Treat Options Oncol. 2005;6:437–45.

    Article  PubMed  Google Scholar 

  8. German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics. 2005;1:3–9.

    Article  PubMed  CAS  Google Scholar 

  9. Fang F, He X, Deng H, et al. Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis. Cancer Sci. 2007;98:1678–82.

    Article  PubMed  CAS  Google Scholar 

  10. Napoli C, Sperandio N, Lawlor RT, et al. Urine metabolic signature of pancreatic ductal adenocarcinoma by (1)h nuclear magnetic resonance: identification, mapping, and evolution. J Proteome Res. 2012;11:1274–83.

    Article  PubMed  CAS  Google Scholar 

  11. Nishijima T, Nishina M, Fujiwara K. Measurement of lactate levels in serum and bile using proton nuclear magnetic resonance in patients with hepatobiliary diseases: its utility in detection of malignancies. Jpn J Clin Oncol. 1997;27:13–7.

    Article  PubMed  CAS  Google Scholar 

  12. OuYang D, Xu J, Huang H, Chen Z. Metabolomic profiling of serum from human pancreatic cancer patients using 1H NMR spectroscopy and principal component analysis. Appl Biochem Biotechnol. 2011;165:148–54.

    Article  PubMed  Google Scholar 

  13. Sugimoto M, Wong DT, Hirayama A, et al. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6:78–95.

    Article  PubMed  CAS  Google Scholar 

  14. Urayama S, Zou W, Brooks K, Tolstikov V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Comm Mass Spectrom. 2010;24:613–20.

    Article  CAS  Google Scholar 

  15. Wen H, Yoo SS, Kang J, et al. A new NMR-based metabolomics approach for the diagnosis of biliary tract cancer. J Hepatol. 2010;52:228–33.

    Article  PubMed  CAS  Google Scholar 

  16. Slupsky CM, Rankin KN, Wagner J, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem. 2007;79:6995–7004.

    Article  PubMed  CAS  Google Scholar 

  17. Eisner R, Stretch C, Eastman T, et al. Learning to predict cancer-associated skeletal muscle wasting from H-NMR Profiles of urinary metabolomics. Metabolomics. 2011;7:9.

    Article  Google Scholar 

  18. McKay RT. Recent advances in solvent suppression for solution NMR: a practical reference. Ann Rep NMR Spectrosc. 2009;66:43.

    Google Scholar 

  19. Keifer PA. 90-Degree pulse width calibrations: how to read a pulse width array. Concepts Magn Reson. 1999;11:15.

    Google Scholar 

  20. Wu PS, Otting G. Rapid pulse length determination in high-resolution NMR. J Magn Reson. 2005;176:115–9.

    Article  PubMed  CAS  Google Scholar 

  21. Kumar A, Ernst RR, Wuthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton–proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Comm. 1980;95:1–6.

    Article  PubMed  CAS  Google Scholar 

  22. Wishart SD. Quantitative metabolomics using NMR. Trends Anal Chem. 2008;27:9.

    Google Scholar 

  23. Weljie AM, Newton J, Mercier P, et al. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem. 2006;78:4430–42.

    Article  PubMed  CAS  Google Scholar 

  24. Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J Proteome Res. 2007;6:469–79.

    Article  PubMed  CAS  Google Scholar 

  25. Bylesjo MR, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemometrics. 2006;20:10.

    Google Scholar 

  26. Eriksson L, Johansson E, Kettaneth-Wold N, Trygg J, Wilkstrom C, Wold S. Multivariate and megavariate data analysis advanced applications and extensions (part I and II). Umea: Umetrics, Inc.; 2006.

    Google Scholar 

  27. Pesarin F. Multivariate permutation tests: with applications in biostatistics. New York: Wiley; 2001.

    Google Scholar 

  28. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference and prediction: with 200 full-color illustrations. New York: Springer; 2001.

    Google Scholar 

  29. Lee MX, Saif MW. Screening for early pancreatic ductal adenocarcinoma: an urgent call! JOP. 2009;10:104–8.

    PubMed  Google Scholar 

  30. Fry LC, Monkemuller K, Malfertheiner P. Molecular markers of pancreatic cancer: development and clinical relevance. Langenbecks Arch Surg. 2008;393:883–90.

    Article  PubMed  Google Scholar 

  31. Markers EGoT. Tumor markers in gastrointestinal cancers—EGTM recommendations. Anticancer Res. 1999;19:2811–15.

    Google Scholar 

  32. Pleskow DK, Berger HJ, Gyves J. Evaluation of a serological marker, CA19-9, in the diagnosis of pancreatic cancer. Ann Intern Med. 1989;110:704–9.

    Article  PubMed  CAS  Google Scholar 

  33. Cwik G, Wallner G, Skoczylas T, et al. Cancer antigens 19-9 and 125 in the differential diagnosis of pancreatic mass lesions. Arch Surg. 2006;141:968–73.

    Article  PubMed  Google Scholar 

  34. van den Bosch RP, van Eijck CH, Mulder PG, Jeekel J. Serum CA19-9 determination in the management of pancreatic cancer. Hepato-gastroenterology. 1996;43:710–3.

    PubMed  Google Scholar 

  35. Karachristos A, Scarmeas N, Hoffman JP. CA 19-9 levels predict results of staging laparoscopy in pancreatic cancer. J Gastrointest Surg. 2005;9:1286–92.

    Article  PubMed  Google Scholar 

  36. Maisey NR, Norman AR, Hill A, et al. CA19-9 as a prognostic factor in inoperable pancreatic cancer: the implication for clinical trials. Br J Cancer. 2005;93:740–3.

    Article  PubMed  CAS  Google Scholar 

  37. Maithel SK, Maloney S, Winston C, et al. Preoperative CA 19-9 and the yield of staging laparoscopy in patients with radiographically resectable pancreatic adenocarcinoma. Ann Surg Oncol. 2008;15:3512–20.

    Article  PubMed  Google Scholar 

  38. Fujioka S, Misawa T, Okamoto T, et al. Preoperative serum carcinoembryonic antigen and carbohydrate antigen 19-9 levels for the evaluation of curability and resectability in patients with pancreatic adenocarcinoma. J Hepatobiliary Pancreat Surg. 2007;14:539–44.

    Article  PubMed  Google Scholar 

  39. Kilic M, Gocmen E, Tez M, et al. Value of preoperative serum CA 19-9 levels in predicting resectability for pancreatic cancer. Can J Surg. 2006;49:241–4.

    PubMed  Google Scholar 

  40. Abraham SC, Wilentz RE, Yeo CJ, et al. Pancreaticoduodenectomy (Whipple resections) in patients without malignancy: are they all ‘chronic pancreatitis’? Am J Surg Pathol. 2003;27:110–20.

    Article  PubMed  Google Scholar 

  41. Kennedy T, Preczewski L, Stocker SJ, et al. Incidence of benign inflammatory disease in patients undergoing Whipple procedure for clinically suspected carcinoma: a single-institution experience. Am J Surg. 2006;191:437–41.

    Article  PubMed  Google Scholar 

  42. Aranha GV, Hodul PJ, Creech S, Jacobs W. Zero mortality after 152 consecutive pancreaticoduodenectomies with pancreaticogastrostomy. J Am Coll Surg. 2003;197:223–31.

    Article  PubMed  Google Scholar 

  43. Bartsch DK, Kress R, Sina-Frey M, et al. Prevalence of familial pancreatic cancer in Germany. Int J Cancer. 2004;110:902–6.

    Article  PubMed  CAS  Google Scholar 

  44. Lynch HT, Fitzsimmons ML, McClellan J, et al. Familial pancreatic cancer (part II): surveillance, diagnostic tests, and surgical strategies. Nebraska Med J. 1990;75:130–3.

    CAS  Google Scholar 

  45. Hemminki K, Li X. Familial and second primary pancreatic cancers: a nationwide epidemiologic study from Sweden. Int J Cancer. 2003;103:525–30.

    Article  PubMed  CAS  Google Scholar 

  46. Klapman J, Malafa MP. Early detection of pancreatic cancer: why, who, and how to screen. Cancer Control. 2008;15:280–7.

    PubMed  Google Scholar 

  47. Davis VW, Bathe OF, Schiller DE, et al. Metabolomics and surgical oncology: potential role for small molecule biomarkers. J Surg Oncol. 2011;103:451–9.

    Article  PubMed  CAS  Google Scholar 

  48. Atherton HJ, Bailey NJ, Zhang W, et al. A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-alpha null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol Genomics. 2006;27:178–86.

    Article  PubMed  CAS  Google Scholar 

  49. Chan EC, Koh PK, Mal M, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2009;8:352–61.

    Article  PubMed  CAS  Google Scholar 

  50. Denkert C, Budczies J, Weichert W, et al. Metabolite profiling of human colon carcinoma–deregulation of TCA cycle and amino acid turnover. Mol Cancer. 2008;7:72.

    Article  PubMed  Google Scholar 

  51. Wang J, Ma C, Liao Z, et al. Study on chronic pancreatitis and pancreatic cancer using MRS and pancreatic juice samples. World J Gastroenterol. 2011;17:2126–30.

    Article  PubMed  Google Scholar 

  52. Fearon KC, Barber MD, Falconer JS, et al. Pancreatic cancer as a model: inflammatory mediators, acute-phase response, and cancer cachexia. World J Surg. 1999;23:584–8.

    Article  PubMed  CAS  Google Scholar 

  53. Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of sarcogenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35.

    Article  PubMed  Google Scholar 

  54. Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001;93:1054–61.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors thank Mrs. Barb Prodor and the Alberta Cancer Foundation as well as the Canadian Association of General Surgeons for their financial support.

CONFLICT OF INTEREST

There are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa W. Davis BSc, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, V.W., Schiller, D.E., Eurich, D. et al. Pancreatic Ductal Adenocarcinoma is Associated with a Distinct Urinary Metabolomic Signature. Ann Surg Oncol 20 (Suppl 3), 415–423 (2013). https://doi.org/10.1245/s10434-012-2686-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2686-7

Keywords

Navigation