Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T09:57:45.454Z Has data issue: false hasContentIssue false

Limit Theorems for Random Triangular URN Schemes

Published online by Cambridge University Press:  14 July 2016

Rafik Aguech*
Affiliation:
Faculté des Sciences de Monastir, Tunisia
*
Postal address: Département de Mathématiques, Faculté des Sciences de Monastir, 5019 Monastir et EPAM Sousse, Tunisia. Email address: rafik.aguech@ipeit.rnu.tn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study a generalized Pólya urn with balls of two colors and a random triangular replacement matrix. We extend some results of Janson (2004), (2005) to the case where the largest eigenvalue of the mean of the replacement matrix is not in the dominant class. Using some useful martingales and the embedding method introduced in Athreya and Karlin (1968), we describe the asymptotic composition of the urn after the nth draw, for large n.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2009 

References

[1] Aldous, D., Flannery, B. and Palacios, J. L. (1988). Two applications of urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of Markov chains. Prob. Eng. Inf. Sci. 2, 293307.CrossRefGoogle Scholar
[2] Athreya, K. B. and Karlin, S. (1968). Embedding of urn schemes into continuous time Markov branching process and related limit theorems. Ann. Math. Statist. 39, 18011817.Google Scholar
[3] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.Google Scholar
[4] Bagchi, A. and Pal, A. K. (1985). Asymptotic normality in the generalized Pólya–Eggenberger urn model, with an application to computer data structures. SIAM J. Algebraic Discrete Meth. 6, 394405.Google Scholar
[5] Bernstein, S. (1940). Sur un probléme du schéma des urnes à composition variable. C. R. (Doklady) Acad. Sci. URSS 28, 57.Google Scholar
[6] Eggenberger, F. and Pòlya, G. (1923). Über die statistik verketetter vorgäge. Z. Angew. Math. Mech. 1, 279289.Google Scholar
[7] Flajolet, P. and Vincent, P. (2005). Triangular urns with dimension 2 and 3. , École Polytechnique.Google Scholar
[8] Flajolet, P., Gabarró, J. and Pekari, H. (2005). Analytic urns. Ann. Prob. 33, 12001233.Google Scholar
[9] Gouet, R. (1993). Martingale functional central limit theorems for a generalized Pólya urn. Ann. Prob. 21, 16241639.Google Scholar
[10] Harris, T. E. (1951). Some mathematical models for branching processes. In Proc. 2nd Berkeley Symp. Math. Statist. Prob., University of California Press, Berkeley, pp. 305328.Google Scholar
[11] Janson, S. (2004). Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110, 177245.Google Scholar
[12] Janson, S. (2006). Limit theorems for triangular urn schemes. Prob. Theory Relat. Fields 134, 417452.Google Scholar
[13] Karlin, S. and McGregor, J. (1968). Embeddability of discrete time simple branching processes into continuous time branching processes. Trans. Amer. Math. Soc. 132, 115136.Google Scholar
[14] Kotz, S., Mahmoud, H. and Robert, P. (2000). On generalized Pólya urn models. Statist. Prob. Lett. 49, 163173.CrossRefGoogle Scholar
[15] Pólya, G. (1931). Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré 1, 117161.Google Scholar
[16] Savkevitch, V. (1940). Sur le schéma des urnes à composition variable. C. R (Doklady) Acad. Sci. URSS 28, 812.Google Scholar