Open Access
December, 1972 A Converse to a Combinatorial Limit Theorem
J. Robinson
Ann. Math. Statist. 43(6): 2053-2057 (December, 1972). DOI: 10.1214/aoms/1177690884

Abstract

Let $a_n(i), b_n(i), i = 1, \cdots, n$, be $2n$ numbers defined for every $n$ and let $\bar{A}(k) = \sum^n_{i=1} |a_n(i)|^k$ and $\bar{B}(k) = \sum^n_{i=1}|b_n(i)|^k$. Let $(I_{n1}, \cdots, I_{nn})$ be a random permutation of $(1, \cdots, n)$ and let $S_n = \sum^n_{i=1} b_n(i)a_n(I_{ni})$. If $\bar{A}(k)/\lbrack\bar{A}(2)\rbrack^{\frac{1}{2}k} \rightarrow 0\quad \text{and}\quad \bar{B}(k)/\lbrack\bar{B}(2)\rbrack^{\frac{1}{2}k} \rightarrow 0.$ then it is known that the condition of Hoeffding, $n^{\frac{1}{2}k-1} \bar{A}(k)\bar{B}(k)/\lbrack\bar{A}(2) \bar{B}(2)\rbrack^{\frac{1}{2}k} \rightarrow 0,\quad k = 3,4, \cdots,$ is sufficient for the standardized moments of $S_n$ to tend to the moments of a standard normal variate. It is shown here that these conditions are also necessary. The relationship of these conditions to the Liapounov conditions is pointed out.

Citation

Download Citation

J. Robinson. "A Converse to a Combinatorial Limit Theorem." Ann. Math. Statist. 43 (6) 2053 - 2057, December, 1972. https://doi.org/10.1214/aoms/1177690884

Information

Published: December, 1972
First available in Project Euclid: 27 April 2007

zbMATH: 0253.60027
MathSciNet: MR370704
Digital Object Identifier: 10.1214/aoms/1177690884

Rights: Copyright © 1972 Institute of Mathematical Statistics

Vol.43 • No. 6 • December, 1972
Back to Top