SUPPLEMENTARY MATERIAL FOR "APPROXIMATING FACES OF MARGINAL POLYTOPES IN DISCRETE HIERARCHICAL MODELS"

By Nanwei Wang
York University, Toronto, Canada
AND
By Johannes Rauh
York University, Toronto, Canada
Max Planck Institute for Mathematics in the Sciences, Germany
AND
By Hélène Massam
York University, Toronto, Canada

APPENDIX A: PARAMETRIZING HIERARCHICAL MODELS

In this section, we recall the usual parametrization of hierarchical models, see, for example, Letac and Massam (2012). The starting point is the parametrization (2) of the hierarchical model, which we repeat here for convenience:

$$
\begin{equation*}
\log p(i)=\sum_{D \in \Delta} \theta_{D}\left(i_{D}\right) \tag{A1}
\end{equation*}
$$

This parametrization is not identifiable; that is, for any joint distribution p from the hierarchical model there are different choices for the functions θ_{D} that satisfy (A1). One way to make the parameters unique is to choose a special element within each set I_{v}, which we denote by 0 . The choice of 0 is arbitrary, and a different choice of 0 leads to a simple affine change of parameters. With this choice, the functions θ_{D} become unique if one requires $\theta_{D}\left(i_{D}\right)=0$ whenever $i_{v}=0$ for some $v \in D$.

A parametrization in terms of real numbers is obtained using the following definitions: for $i \in I$, we write

$$
S(i)=\left\{v \in V ; i_{v} \neq 0\right\}, \quad J=\{j \in I \backslash\{0\}, \quad S(j) \in \Delta\} .
$$

For any $j \in J$, let

$$
\theta_{j}=\theta_{D}\left(i_{D}\right) \text { for the unique } i \in I \text { with } S(i)=D, i_{D}=j_{D} .
$$

To simplify the notation, we write $j \triangleleft i$ whenever $S(j) \subseteq S(i)$ and $j_{S(j)}=$ $i_{S(j)}$. It is convenient to introduce the vectors

$$
f_{i}=\sum_{j \in J: j \triangleleft i} e_{j}, \quad i \in I
$$

where $e_{j}, j \in J$ are the unit vectors in R^{J}. Moreover, let A be the $J \times I$ matrix with columns $f_{i}, i \in I$, and let \tilde{A} be the $(1+|J|) \times I$ matrix with columns equal to $\binom{1}{f_{i}}, i \in I$. Then (2) can be rewritten in the following equivalent forms

$$
\begin{equation*}
\log p_{\theta}(i)=\sum_{j \in J: j \triangleleft i} \theta_{j}-k(\theta)=\left\langle\theta, f_{i}\right\rangle-k(\theta)=A^{t} \theta-k(\theta)=\tilde{A}^{t} \tilde{\theta}, \tag{A2}
\end{equation*}
$$

where $\tilde{\theta}=\left(\theta_{0}, \theta\right)$ as a column vector and

$$
\begin{equation*}
-\theta_{0}=k(\theta)=\log \left(\sum_{i \in I} \exp \left(\sum_{j \in J: j \triangleleft i} \theta_{j}\right)\right) \tag{A3}
\end{equation*}
$$

acts as a normalization constant. If $n=(n(i), i \in I)$ denotes the I-dimensional column vector of cell counts, then

$$
\begin{equation*}
\tilde{A} n=\binom{N}{t} \quad \text { and } \quad A n=t \tag{A4}
\end{equation*}
$$

where $N=\sum_{i \in I} n(i)$ is the total cell counts and t is the column vector of sufficient statistic with components equal to the $j_{S(j)}$-marginal counts $n\left(j_{S(j)}\right)$, i.e. $t=\left(t_{j}, j \in J\right)$ where $t_{j}=n\left(j_{S(j)}\right)=\sum_{i \mid i_{S(j)}=j_{S(j)}} n(i), j \in J$.

It follows from (A4) that $\frac{t}{N}=\sum_{i \in I} \frac{n(i)}{N} f_{i}$. Therefore, t belongs to the convex polytope with extreme points $f_{i}, i \in I$. This polytope is the marginal polytope of the hierarchical model, denoted by \mathbf{P}_{Δ}.

Example A.1. Let $V=\{a, b, c\}, I_{a}=\{0,1\}=I_{b}=I_{c}$ and $\Delta=$
$\{a, b, c, a b, b c\}$. Then

$$
\begin{aligned}
& I=(000,100,010,110,001,101,011,111), \\
& J=\{(100),(010),(001),(110),(011)\},
\end{aligned}
$$

APPENDIX B: EXAMPLE: TWO BINARY RANDOM VARIABLES

Consider two binary random variables, and let $\Delta=\{\emptyset,\{1\},\{2\},\{1,2\}\}$. The hierarchical model \mathcal{E}_{Δ} is the saturated model; that is, it contains all possible probability distributions with full support. Then

$$
\tilde{A}=\overbrace{\left(\begin{array}{ll}
1 \\
0 & \overbrace{1} \\
0 & \overbrace{00} \\
0 & \overbrace{1}^{f_{01}} \\
0 & \overbrace{1} \\
0 & 0
\end{array}\right.}^{\begin{array}{l}
1 \\
1 \\
1 \\
f_{10}
\end{array}} \begin{gathered}
1 \\
f_{11}
\end{gathered} \overbrace{\theta_{00}}^{\theta_{01}} \begin{aligned}
& \theta_{01} \\
& \theta_{10} \\
& \theta_{11}
\end{aligned}
$$

The marginal polytope is a 3 -simplex (a tetrahedron) with facets

$$
\begin{gathered}
\mathbf{F}_{00}: 1-t_{01}-t_{10}+t_{11} \geq 0, \quad \mathbf{F}_{01}: t_{01}-t_{11} \geq 0 \\
\mathbf{F}_{10}: t_{10}-t_{11} \geq 0, \quad \mathbf{F}_{11}: t_{11} \geq 0
\end{gathered}
$$

Each of the corresponding facets contains three columns of A. In fact, the facet \mathbf{F}_{i} in the above list does not contain the column f_{i} of A.

The EMLE of the saturated model is just the empirical distribution; that is, $p^{*}=\frac{1}{N} n$. Suppose that t lies on the facet \mathbf{F}_{00} (i.e. $n=\left(0, n_{01}, n_{10}, n_{11}\right)$ with $n(01), n(10), n(11)>0)$. If $p_{\theta^{(s)}} \rightarrow p^{*}$, then $p_{\theta^{(s)}}(00) \rightarrow 0$, while all other probabilities converge to a non-zero value. It follows that

$$
\begin{aligned}
& \theta_{00}^{(s)}=\log p_{\theta^{(s)}}(00) \rightarrow-\infty, \\
& \theta_{01}^{(s)}=\log \frac{p_{\theta^{(s)}}(01)}{p_{\theta^{(s)}}(00)} \rightarrow+\infty, \\
& \theta_{10}^{(s)}=\log \frac{p_{\theta^{(s)}}(10)}{p_{\theta^{(s)}}(00)} \rightarrow+\infty, \\
& \theta_{11}^{(s)}=\log \frac{p_{\theta^{(s)}}(11) p_{\theta^{(s)}}(00)}{p_{\theta^{(s)}}(01) p_{\theta^{(s)}}(10)} \rightarrow-\infty .
\end{aligned}
$$

On the other hand, $\theta_{01}^{(s)}+\theta_{00}^{(s)}=\log p_{\theta^{(s)}}(01)$ converges to a finite value, as do $\theta_{10}^{(s)}+\theta_{00}^{(s)}=\log p_{\theta^{(s)}}(10)$ and $\theta_{11}^{(s)}+\theta_{01}^{(s)}=\log p_{\theta^{(s)}}(11) / p_{\theta^{(s)}}(10)$.

Proceeding similarly for the other facets, one can show for the limits $\theta_{i j}:=\lim _{s \rightarrow \infty} \theta_{i j}^{(s)}:$

	θ_{00}	θ_{01}	θ_{10}	θ_{11}	finite parameter combinations:
\mathbf{F}_{00}	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$\theta_{01}^{(s)}+\theta_{00}^{(s)}, \theta_{10}^{(s)}+\theta_{00}^{(s)}, \theta_{11}^{(s)}+\theta_{01}^{(s)}$
\mathbf{F}_{01}	finite	$-\infty$	finite	$+\infty$	$\theta_{00}^{(s)}, \theta_{10}^{(s)}, \theta_{01}^{(s)}+\theta_{11}^{(s)}$
\mathbf{F}_{10}	finite	finite	$-\infty$	$+\infty$	$\theta_{00}^{(s)}, \theta_{01}^{(s)}, \theta_{10}^{(s)}+\theta_{11}^{(s)}$
\mathbf{F}_{11}	finite	finite	finite	$-\infty$	$\theta_{00}^{(s)}, \theta_{10}^{(s)}, \theta_{01}^{(s)}$

Each line of the last column contains three combinations of the parameters $\theta_{i}^{(s)}$ that converge to a finite value. Any other parameter combination that converges is a linear combination of these three. This can be seen by using the coordinates μ_{i} introduced in Section 4.2. For example, on the facet \mathbf{F}_{01}, consider the parameters

$$
\begin{gathered}
\mu_{10}=\log p(10) / p(00)=\theta_{10}, \quad \mu_{11}=\log p(11) / p(00)=\theta_{10}+\theta_{01}+\theta_{11}, \\
\mu_{01}=\log p(01) / p(00)=\theta_{01} .
\end{gathered}
$$

Then μ_{10} and μ_{11} are identifiable parameters on $\mathcal{E}_{F_{01}}$, and μ_{01} diverges close to \mathbf{F}_{01}. By Lemma 4.1, the linear combinations that are well-defined are $\mu_{10}=\theta_{10}$ and $\mu_{11}=\theta_{10}+\left(\theta_{01}+\theta_{11}\right)$. The above table also lists θ_{00}, which is not a linear combination of those but that is fine because it is not free.

We obtain similar results for the facets \mathbf{F}_{01} and \mathbf{F}_{11}. The results are summarized in the following table:

facet	μ_{01}	μ_{10}	μ_{11}
\mathbf{F}_{01}	$-\infty$	finite	finite
\mathbf{F}_{10}	finite	$-\infty$	finite
\mathbf{F}_{11}	finite	finite	$-\infty$

Of course, by definition of the $\mu_{i} \mathrm{~s}$, we cannot consider the facet \mathbf{F}_{00} where $n(00)=0$. To study \mathbf{F}_{00}, we have to choose another zero cell and redefine the parameters μ_{i}.

The situation is more complicated for faces smaller than facets, because sending a single parameter to plus or minus infinity can be enough to send the distribution to a face F of higher codimension, as we will see below. The remaining parameters then determine the position within $\mathcal{E}_{\Delta, F}$. Thus, in this case there are more remaining parameters than the dimension of $\mathcal{E}_{\Delta, F}$.

For example, the data vector $n=\left(n_{00}, 0, n_{10}, 0\right)\left(\right.$ with $\left.n_{00}, n_{10}>0\right)$ lies on the face $\mathbf{F}=\mathbf{F}_{01} \cap \mathbf{F}_{11}$ of codimension two. If $p_{\theta^{(s)}} \rightarrow p^{*}$, then

$$
\begin{aligned}
& \theta_{00}^{(s)}=\log p_{\theta^{(s)}}(00) \rightarrow \log \frac{n_{00}}{N}, \\
& \theta_{01}^{(s)}=\log \frac{p_{\theta^{(s)}}(01)}{p_{\theta^{(s)}}(00)} \rightarrow-\infty, \\
& \theta_{10}^{(s)}=\log \frac{p_{\theta^{(s)}}(10)}{p_{\theta^{(s)}}(00)} \rightarrow \log \frac{n_{10}}{n_{00}} .
\end{aligned}
$$

However, the limit of $\theta_{11}^{(s)}=\log \frac{p_{\theta^{(s)}}(11) p_{\theta^{(s)}}(00)}{p_{\theta(s)}(01) p_{\theta}(s)(10)}$ is not determined. The only constraint is that $\theta_{11}^{(s)}$ cannot go to $+\infty$ faster than $\theta_{01}^{(s)}$ goes to $-\infty$, since $p_{\theta_{11}^{(s)}}=\exp \left(\theta_{00}^{(s)}+\theta_{01}^{(s)}+\theta_{10}^{(s)}+\theta_{11}^{(s)}\right)$ has to converge to zero.

With the same data vector $n=\left(n_{00}, 0, n_{10}, 0\right)$, suppose we use a numerical algorithm to optimize the likelihood function by optimizing the parameters θ_{j} in turn. To be precise, we order the parameters θ_{j} in some way. For simplicity, say that the parameters are $\theta_{1}, \theta_{2}, \ldots, \theta_{h}$. Then we let

$$
\theta_{j}^{(k+1)}=\arg \max _{y \in \mathbf{R}} l\left(\theta_{1}^{(k+1)}, \ldots, \theta_{j-1}^{(k+1)}, y, \theta_{j+1}^{(k)}, \ldots, \theta_{h}^{(k)}\right)
$$

(this is called the non-linear Gauss-Seidel method). Let us choose the ordering $\theta_{01}, \theta_{10}, \theta_{11}$ (note that $\theta_{00}=-k(\theta)$ is not a free parameter). We start at $\theta_{01}^{(0)}=\theta_{10}^{(0)}=\theta_{11}^{(0)}=0$. In the first step, we only look at θ_{01}. That is, we want to solve

$$
\begin{array}{r}
0=\frac{\partial}{\partial \theta_{01}} l(\theta)=-\frac{\exp \left(\theta_{01}^{(1)}\right)+\exp \left(\theta_{01}^{(1)}+\theta_{10}^{(0)}+\theta_{11}^{(0)}\right)}{1+\exp \left(\theta_{01}^{(1)}\right)+\exp \left(\theta_{10}^{(0)}\right)+\exp \left(\theta_{01}^{(1)}+\theta_{10}^{(0)}+\theta_{11}^{(0)}\right)} \tag{B5}\\
=-\frac{2 \exp \left(\theta_{01}^{(1)}\right)}{1+2 \exp \left(\theta_{01}^{(1)}\right)} .
\end{array}
$$

This derivative is negative for any finite value of $\theta_{01}^{(1)}$, and thus the critical equation has no finite solution. If we try to solve this equation numerically, we will find that $\theta_{01}^{(1)}$ will be a large negative number. Next, we look at θ_{10}. We fix the other variables and try to solve

$$
\begin{array}{r}
0=\frac{\partial}{\partial \theta_{10}} l(\theta)=\frac{n_{10}}{N}-\frac{\exp \left(\theta_{10}^{(1)}\right)+\exp \left(\theta_{01}^{(1)}+\theta_{10}^{(1)}+\theta_{11}^{(0)}\right)}{1+\exp \left(\theta_{01}^{(1)}\right)+\exp \left(\theta_{10}^{(1)}\right)+} \operatorname{exp(\theta _{01}^{(1)}+\theta _{10}^{(1)}+\theta _{11}^{(0)})} \\
\approx \frac{n_{10}}{N}-\frac{\exp \left(\theta_{10}^{(1)}\right)}{1+\exp \left(\theta_{10}^{(1)}\right)},
\end{array}
$$

where we have used that $\theta_{01}^{(1)}$ is a large negative number. This equation always has a unique solution

$$
\theta_{10}^{(1)} \approx \log \frac{n_{10}}{N-n_{10}} .
$$

Finally, we look at θ_{11}. We have to solve

$$
0=\frac{\partial}{\partial \theta_{11}} l(\theta)=-\frac{\exp \left(\theta_{01}^{(1)}+\theta_{10}^{(1)}+\theta_{11}^{(1)}\right)}{1+\exp \left(\theta_{01}^{(1)}\right)+\exp \left(\theta_{10}^{(1)}\right)+\exp \left(\theta_{01}^{(1)}+\theta_{10}^{(1)}+\theta_{11}^{(1)}\right)} \approx 0 .
$$

Actually, this equation again has no solution, and the numerical solution for $\theta_{11}^{(1)}$ should be close to numerical minus infinity. However, since $\theta_{01}^{(1)}$ is already close to $-\infty$, the equation is already approximately satisfied. Thus, there is no need to change θ_{11}. In simulations, we observed that usually $\theta_{11}^{(1)}$ will be negative, but not as negative as $\theta_{01}^{(1)}$. In theory, we would have to iterate and now optimize θ_{01} again. But the values will not change much, since the critical equations are already satisfied to a high numerical precision after one iteration.

It is not difficult to see that the result is different if we change the order of the variables. If θ_{11} is optimized before θ_{01}, then θ_{11}^{1} will in any case be a large negative number.

For general data, the derivative of $l(\theta)$ with respect to θ_{01} (equation (B5)) takes the form

$$
\frac{\partial}{\partial \theta_{01}} l(\theta)=\frac{t_{01}}{N}-\frac{\exp \left(\theta_{01}^{(1)}\right)+\exp \left(\theta_{01}^{(1)}+\theta_{10}^{(0)}+\theta_{11}^{(0)}\right)}{1+\exp \left(\theta_{01}^{(1)}\right)+\exp \left(\theta_{10}^{(0)}\right)+\exp \left(\theta_{01}^{(1)}+\theta_{10}^{(0)}+\theta_{11}^{(0)}\right)}
$$

Setting this derivative to zero and solving for $\theta_{01}^{(1)}$ leads to a linear equation in $\theta_{01}^{(1)}$ with symbolic solution

$$
\theta_{01}^{(1)}=\log \frac{1+\exp \left(\theta_{10}^{(0)}\right)}{1+\exp \left(\theta_{10}^{(0)}+\theta_{11}^{(0)}\right)} \frac{\frac{t_{01}}{N}}{1-\frac{t_{01}}{N}} .
$$

In fact, for any hierarchical model, the likelihood equation is linear in any single parameter θ_{j}, as long as all other parameters are kept fixed (more generally this is true when the design matrix A is a $0-1$-matrix). Instead of optimizing the likelihood numerically with respect to one parameter, it is possible to use these symbolic solutions. This leads to the Iterative Proportional Fitting Procedure (IPFP). In our example, the IPFP would lead to a division by zero right in the first step, indicating that the MLE does not exist (unfortunately, IPFP does not always fail that quickly when the MLE does not exist).

APPENDIX C: PARAMETRIZATIONS ADAPTED TO FACIAL SETS

Let us briefly discuss how to remedy problems 1. (identifiability), 2. (relation between parameters on \mathcal{E} and $\mathcal{E}_{F_{t}}$) and 3 . (cancellation of infinities in linear combinations of diverging parameters) from the beginning of Section 4.2. The idea to remedy 1. and 2 . is to define parameters $\mu_{i}, i \in L$, of \mathcal{E}_{A} such that a subset $L_{t} \subseteq L$ of the parameters parametrizes $\mathcal{E}_{F_{t}, A}$ in a consistent way. Denote by $A^{\mu}=\left(a_{j, i}^{\mu}, j \in L, i \in I\right)$ the design matrix of \mathcal{E}_{A} corresponding to the new parameters μ. Then the necessary conditions are:
$(*)$ Let $A_{L_{t}, F_{t}}^{\mu}:=\left(a_{j, i}^{\mu}, j \in L_{t}, i \in F_{t}\right)$ be the submatrix of A^{μ} with rows indexed by L_{t} and columns indexed by L_{t}, and denote by $\tilde{A}_{L_{t}, F_{t}}^{\mu}$ the same matrix with an additional row of ones. The rank of $\tilde{A}_{L_{t}, F_{t}}^{\mu}$ is equal to $\left|L_{t}\right|+1$, the number of its rows (and thus, $A_{L_{t}, F_{t}}^{\mu}$ has rank $\left|L_{t}\right|$).
$(* *) a_{j, i}^{\mu}=0$ for all $i \in F_{t}$ and $j \in L \backslash L_{t}$.
In fact, $(* *)$ implies that $A_{L_{t}, F_{t}}^{\mu}$ is the design matrix of $\mathcal{E}_{A, F_{t}}$, since the parameters μ_{i} with $i \notin L_{t}$ do not play a role in the parametrization $\mu \mapsto p_{F_{t}, \mu}$. Moreover, $(*)$ implies that the parametrization $\mu \mapsto p_{F_{t}, \mu}$ is identifiable. In this sense, we have remedied problem 1.

Since $\tilde{A}_{L_{t}, F_{t}}^{\mu}$ has full row rank, it has a right inverse matrix \tilde{C}, such that $\tilde{A}_{L_{t}, F_{t}}^{\mu} \tilde{C}=I_{\left|L_{t}\right|+1}$ equals the identity matrix of size $\left|L_{t}\right|+1$. Recall that

$$
\begin{aligned}
\log p_{F_{t}, \mu}(i) & =\left\langle\mu^{t}, f_{i}^{\mu}\right\rangle-k_{F}(\mu) \\
\log p_{\mu}(i) & =\left\langle\tilde{\mu}^{t}, f_{i}^{\mu}\right\rangle-k(\mu)
\end{aligned}
$$

for any parameter vector μ and all $i \in F_{t}$. Since f_{i}^{μ} are the columns of A^{μ} and since the components of f_{i}^{μ} corresponding to $L \backslash L_{t}$ vanish by ($* *$), we may apply the matrix C obtained from \tilde{C} by dropping the row corresponding to k_{F} or k and obtain

$$
\begin{equation*}
\left(\log p_{\mu}\right) C=\mu_{L_{t}} \quad \text { and } \quad\left(\log p_{F_{t}, \mu}\right) C=\mu_{L} \tag{C6}
\end{equation*}
$$

When $p_{\mu^{(s)}}$ is a sequence in \mathcal{E}_{A} with limit p_{μ} in $\mathcal{E}_{F_{t}, A}$, then (C6) shows that $\mu_{i}^{(s)} \rightarrow \mu_{i}$ for $i \in L_{t}$. In this sense, we have remedied problem 2.

Finally, we solve problem 3 . Suppose that we have chosen parameters μ_{L} as in Section 4.2, and let $A^{\mu_{L}}$ be the design matrix with respect to these parameters. Then $\left(A^{\mu_{L}}\right)_{j, i}=0$ if $i \in F_{t}$ and $j \notin L_{t}$. Moreover, for $j \in L_{t}$, the j th column of $A_{\mu_{L}}$ has a single non-vanishing entry (equal to one) at position j. Suppose that F_{t} corresponds to a face \mathbf{F}_{t} of codimension c. Then there are c facets of \mathbf{P} whose intersection is \mathbf{F}_{t}. Thus, following the notation
introduced in Remark 2.2, there exist c inequalities

$$
\begin{equation*}
\left\langle\tilde{g}_{1}, \tilde{x}\right\rangle \geq 0, \quad \ldots, \quad\left\langle\tilde{g}_{c}, \tilde{x}\right\rangle \geq 0 \tag{C7}
\end{equation*}
$$

that together define \mathbf{F}_{t}. In this case, the vectors $\tilde{g}_{1}, \ldots, \tilde{g}_{c}$ are linearly independent and satisfy $\left\langle\tilde{g}_{j}, \tilde{f}_{i}\right\rangle=0$ (thus, they are a basis of the kernel of $\left.\left(\tilde{A}_{F_{t}}^{\mu_{L}}\right)^{t}\right)$. It follows that the k th component of g_{j}, denoted by $g_{j, k}$, vanishes if $k \in L_{t}$; that is, the inequalities (C7) do not involve the variables corresponding to L_{t}. Let G be the square matrix, indexed by $L \backslash L_{t}$ with entries $g_{j, k}, j, k \in L \backslash L_{t}$. Then the square matrix

$$
\tilde{G}=\left(\begin{array}{ll}
1 & 0 \\
0 & G
\end{array}\right)
$$

is invertible. We claim that the parameters $\lambda=\tilde{G}^{-1} \mu_{L}$ are what we are looking for.

The design matrix with respect to the parameters λ is $A^{\lambda}=\tilde{G} A^{\mu_{L}}$. For any $j \notin L_{t}$,

$$
A_{j, i}^{\lambda}=0, \quad \text { if } i \in F_{t}, \quad \text { and } \quad A_{j, i}^{\lambda}=\left\langle\tilde{g}_{j}, \tilde{f}_{i}\right\rangle \geq 0, \quad \text { if } i \notin F_{t} .
$$

This implies the following properties:

1. If all parameters λ_{j} with $j \notin L_{t}$ are sent to $-\infty$, then p_{λ} tends towards a limit distribution with support F_{t}.
2. The coefficient of λ_{j} in any log-probability is non-negative, so there is no cancellation of $\pm \infty$.

So far, we only used the fact that the vectors \tilde{g}_{j} define valid inequalities for the face \mathbf{F}_{t}. Suppose that we choose \tilde{g}_{j} in such a way that each inequality $\left\langle\tilde{g}_{j}, \tilde{x}\right\rangle \geq 0$ defines a facet. The intersection of less than c facets is a face that strictly contains \mathbf{F}_{t}. This implies that for each j, there exists $i_{j} \in I \backslash F_{t}$ such that $f_{i_{j}}$ satisfies

$$
\left\langle\tilde{g}_{j}, \tilde{f}_{i_{j}}\right\rangle>0, \quad \text { and } \quad\left\langle\tilde{g}_{j^{\prime}}, \tilde{f}_{i_{j}}\right\rangle=0 \text { for all } j^{\prime} \neq j,
$$

and so

$$
A_{j, i_{j}}^{\lambda}>0, \quad \text { and } \quad A_{j^{\prime}}^{\lambda}, i_{j}=0 \text { for all } j^{\prime} \neq j
$$

Hence:
3. If $\lambda_{j}^{(s)}$ are sequences of parameters such that $p_{\lambda^{(s)}}$ tends towards a limit distribution with support F_{t}, then $\lambda_{j}^{(s)} \rightarrow-\infty$ for all $j \notin L_{t}$.
It is not difficult to see that, conversely, any parametrization that satisfies these three properties comes from facets defining the face \mathbf{F}_{t}.

APPENDIX D: UNIFORM SAMPLING FOR THE 4×4 GRID

This section enhances the example in Section 5.1. In a second experiment, we generated random samples from the uniform distribution, that is from the probability distribution P_{θ} in the hierarchical model where all parameters $\theta_{j}, j \in J$, are set to zero. For each sample size, 1000 samples were obtained. The results are given in the following table:

sample size	MLE does not exist	$F_{1}=F_{t}$	$F_{2}=F_{t}$
10	98.5%	96.3%	100.0%
15	68.9%	99.9%	100.0%
20	29.0%	100.0%	100.0%
50	0.0%	100.0%	100.0%

As the table shows, for larger samples the probability that a random sample lies on a proper face becomes very small. If $F_{t}=I$, then clearly $F_{t}=F_{2}$. But we also found $F_{t}=F_{2}$ for all samples with t lying on a proper face, which shows that F_{2} is an excellent approximation of F_{t} in this model. For the inner approximation, we observed some samples with $F_{1} \neq F_{t}$, but they seem to be very rare.

APPENDIX E: ESTIMATED CELL FREQUENCIES FOR THE NLTCS DATA

The following table lists the estimates of the top five cell counts obtained using our method and compares them with those obtained by other methods in Dobra and Lenkoski (2011).

Support of Cell	Observed	GoM	LC	CGGMs	MLE on facial set
\emptyset	3853	3269	3836.01	3767.76	3647.4
$\{10\}$	1107	1010	1111.51	1145.86	1046.9
$\{1: 16\}$	660	612	646.39	574.76	604.4
$\{5\}$	351	331	360.52	452.75	336
$\{5,10\}$	303	273	285.27	350.24	257.59
$\{12\}$	216	202	220.47	202.12	239.24

APPENDIX F: THE 5×10 GRID
This section presents the details for the example in Section 6.2. Let Δ be the simplicial complex of the 5×10 grid graph. We exploit the regularity of this graph and make use of the vertical separators in the grid to obtain inner and outer approximations of the facial sets. The graph has 50 nodes, which is too many to directly compute a facial set or even to store it. However,

Fig 1.5×10 grid graph, the red and blue nodes are the set of separators we use to compute F_{1}, they are used iteratively to get a better lower approximation

Fig 2. Five induced subgrids
the 5×10 grid has 8 vertical separators marked in red and blue in Figure 1, and we can use these to approximate F_{t}. Since facial sets for 5×3 grids can be computed reasonably fast (3 to 4 seconds on a laptop with 2.50 GHz processor and 12 GB memory), we only use three of these vertical separators at a time, say the blue separators
$S_{2}=\{11, \ldots, 15\}, S_{4}=\{21, \ldots, 25\}, S_{6}=\{31, \ldots, 35\}, S_{8}=\{41, \ldots, 45\}$.
These separate the vertex sets $V_{1}=\{1, \ldots, 15\}, V_{3}=\{11, \ldots, 25\}, V_{5}=$ $\{21, \ldots, 35\}, V_{7}=\{31, \ldots, 45\}, V_{9}=\{41, \ldots, 50\}$.

Adding the blue separators to Δ gives a simplicial complex

$$
\Delta_{S_{2} ; S_{4} ; S_{6} ; S_{8}}:=\Delta \bigcup_{j=2,4,6,8}\left\{F: F \subseteq S_{j}\right\}
$$

with five irreducible components supported on the vertex sets $V_{1}, V_{3}, V_{5}, V_{7}$ and V_{9} (Figure 3). To compute a facial set with respect to $\Delta_{S_{2} ; S_{4} ; S_{6} ; S_{8}}$,

Fig 3. (a) The 5×10 grid with the blue separators completed. (b) The five irreducible subcomplexes after completing the blue separators.
according to Lemma 2.5 applied four times, we need to compute

$$
\begin{gathered}
G_{1, V_{1}}:=F_{\Delta_{S_{2}} \mid V_{1}}\left(\pi_{V_{1}}\left(I_{+}\right)\right), \quad G_{1, V_{3}}:=F_{\Delta_{S_{2} ; S_{4} \mid V_{3}}}\left(\pi_{V_{3}}\left(I_{+}\right)\right), \\
G_{1, V_{5}}:=F_{\Delta_{S_{4} ; S_{6}} \mid V_{5}}\left(\pi_{V_{5}}\left(I_{+}\right)\right), \quad G_{1, V_{7}}:=F_{\Delta_{S_{6} ; S_{8} \mid V_{7}}}\left(\pi_{V_{7}}\left(I_{+}\right)\right), \\
G_{1, V_{9}}:=F_{\Delta_{S_{8}} \mid V_{9}}\left(\pi_{V_{9}}\left(I_{+}\right)\right) .
\end{gathered}
$$

Then $G_{1}:=\bigcap_{i} \pi_{V_{i}}^{-1}\left(G_{1, V_{i}}\right)$ is equal to $F_{\Delta_{S_{2} ; S_{4} ; S_{6} ; S_{8}}}\left(I_{+}\right)$, and thus an inner approximation of F_{t}. As stated before, we do not need to compute G_{1} explicitly, but we represent it by means of the $G_{1, V_{i}}$.

We can improve the approximations by also considering the red separators $S_{1}=\{6, \ldots, 10\}, S_{3}=\{16, \ldots, 20\}, S_{5}=\{26, \ldots, 30\}, S_{7}=\{36, \ldots, 40\}$, that separate $V_{0}=\{1, \ldots, 10\}, V_{2}=\{6, \ldots, 20\}, V_{4}=\{16, \ldots, 30\}, V_{6}=$ $\{26, \ldots, 40\}, V_{8}=\{36, \ldots, 50\}$. As explained in Section 3.1, we want to compute $G_{1}^{(2)}:=F_{\Delta_{S_{1} ; S_{3} ; S_{5} ; S_{7}}}\left(G_{1}\right)$. Again, instead of computing $G_{1}^{(2)}$ directly, we need only compute the much smaller sets $G_{1, V_{0}}^{(2)}:=\pi_{V_{0}}\left(G_{1}^{(2)}\right), G_{1, V_{2}}^{(2)}:=$ $\pi_{V_{2}}\left(G_{1}^{(2)}\right), \ldots, G_{1, V_{8}}^{(2)}:=\pi_{V_{8}}\left(G_{1}^{(2)}\right)$. But is it possible to compute $G_{1, V_{0}}^{(2)}, G_{1, V_{2}}^{(2)}$, $\ldots, G_{1, V_{8}}^{(2)}$ from $G_{1, V_{1}}, G_{1, V_{3}}, \ldots, G_{1, V_{9}}$, without computing G_{1} in between?

[^0]

Fig 4. Flow chart

This is indeed the case: By Lemma 2.5, all we need to compute $G_{1, V_{i}}^{(2)}$ is $G_{1, V_{j}}:=\pi_{V_{j}}\left(G_{1}\right), j=i-1, i+1$. For $i=0$, since $V_{0} \subset V_{1}$, we can compute $G_{1, V_{0}}$ from $\pi_{V_{1}}\left(G_{1}\right)=G_{1, V_{1}}$. For $i=2,4,6,8$, since $V_{i} \subset V_{i-1} \cup V_{i+1}$, we can compute $G_{1, V_{i}}$ from $\pi_{V_{i-1} \cup V_{i+1}}\left(G_{1}\right)$, which itself can be obtained by "gluing" $\pi_{V_{i-1}}\left(G_{1}\right)=G_{1, V_{i-1}}$ and $\pi_{V_{i+1}}\left(G_{1}\right)=G_{1, V_{i+1}}$:

$$
\pi_{V_{i-1} \cup V_{i+1}}\left(G_{1}\right)=\left(\pi_{V_{i-1}}^{V_{i-1} \cup V_{i+1}}\right)^{-1}\left(G_{1, V_{i-1}}\right) \cap\left(\pi_{V_{i+1}}^{V_{i-1} \cup V_{i+1}}\right)^{-1}\left(G_{1, V_{i+1}}\right)
$$

where $\pi_{V^{\prime \prime}}^{V^{\prime}}$ for $V^{\prime \prime} \subseteq V^{\prime}$ denotes the marginalization map from $I_{V^{\prime}}$ to $I_{V^{\prime \prime}}$ and where $\left(\pi_{V^{\prime \prime}}^{V^{\prime}}\right)^{-1}$ denotes the lifting from $I_{V^{\prime \prime}}$ to $I_{V^{\prime}}$.

As explained in Section 3.1, this procedure can be iterated: From $G_{1}^{(2)}$ we want to compute $G_{1}^{(3)}:=F_{\Delta_{S_{2} ; ;_{4} ; S_{6} ; S_{8}}}\left(G_{1}^{\prime}\right)$ or, more precisely, we want to compute $G_{1, V_{i}}^{(3)}=\pi_{V_{i}}\left(G_{1}^{(3)}\right)$ for $i=1,3, \ldots, 9$. Again, we do this without looking at $G_{1}^{(2)}$ directly by just using the information available through the $G_{1, V_{i}}^{(3)}$. Iterating this procedure, we obtain a sequence of sets $G_{1, V_{i}}^{(k)}, G_{1, V_{j}}^{(k)}$ (with odd i and even j), which stabilizes after a finite number of steps. Our best inner approximation is then $F_{1}=\bigcap_{i=0}^{9} \pi_{V_{i}}^{-1}\left(F_{1, V_{i}}\right)$, where $F_{1, V_{i}}:=\bigcup G_{1, V_{i}}^{(k)}$. Again, we do not compute F_{1} explicitly, but we represent it in terms of the $F_{1, V_{i}}$. The process is visualized in Figure 4.

Let us now consider the outer approximation F_{2}. We adapt Strategy 3 of Section 3.2 and cover the graph with 5×3 grid subgraphs, since the facial sets for such graphs can easily be computed. These subgrids are supported on the same vertex subsets $V_{i}, i=1, \ldots, 8$ as used when computing F_{1}. This makes it possible to compare F_{1} and F_{2}. For $i=1,3, \ldots, 8$ we compute $F_{2, V_{i}}=F_{\left.\Delta\right|_{V_{i}}}\left(\pi_{V_{i}}\left(I_{+}\right)\right)$. The outer approximation is then $F_{2}=\bigcap_{i} \pi_{V_{i}}^{-1}\left(F_{2, V_{i}}\right)$. Again, we don't compute F_{2} explicitly, but we only store $F_{2, V_{i}}$ in a computer as a representation of F_{2}. To compare the two approximations F_{1} and F_{2}, we need only compare their projections $F_{1, V_{i}}$ and $F_{2, V_{i}}$ pairwise, $i=1, \ldots, 8$.

REFERENCES

A. Dobra and A. Lenkoski. Copula Gaussian graphical models and their application to modelling functional disability data. Ann. Appl. Stat., 5(2A):969-993, 062011.
G. Letac and H. Massam. Bayes regularization and the geometry of discrete hierarchical loglinear models. Annals of Statistics, 40:861-890, 2012.

E-MAIL: wangnanw@yorku.ca
E-MAIL: jarauh@yorku.ca
E-MAIL: massamh@yorku.ca

[^0]: imsart-aos ver. 2014/10/16 file: supp-final.tex date: April 11, 2018

