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APPENDIX A: PARAMETRIZING HIERARCHICAL MODELS

In this section, we recall the usual parametrization of hierarchical mod-
els, see, for example, Letac and Massam (2012). The starting point is the
parametrization (2) of the hierarchical model, which we repeat here for con-
venience:

(A1) log p(i) =
∑
D∈∆

θD(iD)

This parametrization is not identifiable; that is, for any joint distribution p
from the hierarchical model there are different choices for the functions θD
that satisfy (A1). One way to make the parameters unique is to choose a
special element within each set Iv, which we denote by 0. The choice of
0 is arbitrary, and a different choice of 0 leads to a simple affine change of
parameters. With this choice, the functions θD become unique if one requires
θD(iD) = 0 whenever iv = 0 for some v ∈ D.

A parametrization in terms of real numbers is obtained using the following
definitions: for i ∈ I, we write

S(i) = {v ∈ V ; iv 6= 0}, J = {j ∈ I \ {0}, S(j) ∈ ∆}.
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For any j ∈ J , let

θj = θD(iD) for the unique i ∈ I with S(i) = D, iD = jD.

To simplify the notation, we write j / i whenever S(j) ⊆ S(i) and jS(j) =
iS(j). It is convenient to introduce the vectors

fi =
∑

j∈J :j/i

ej , i ∈ I

where ej , j ∈ J are the unit vectors in RJ . Moreover, let A be the J × I
matrix with columns fi, i ∈ I, and let Ã be the (1 + |J |) × I matrix with
columns equal to

(
1
fi

)
, i ∈ I. Then (2) can be rewritten in the following

equivalent forms

(A2) log pθ(i) =
∑

j∈J :j/i

θj − k(θ) = 〈θ, fi〉 − k(θ) = Atθ − k(θ) = Ãtθ̃,

where θ̃ = (θ0, θ) as a column vector and

(A3) − θ0 = k(θ) = log
(∑
i∈I

exp
( ∑
j∈J :j/i

θj

))
acts as a normalization constant. If n = (n(i), i ∈ I) denotes the I-dimen-
sional column vector of cell counts, then

(A4) Ãn =

(
N
t

)
and An = t,

where N =
∑

i∈I n(i) is the total cell counts and t is the column vector
of sufficient statistic with components equal to the jS(j)-marginal counts
n(jS(j)), i.e. t = (tj , j ∈ J) where tj = n(jS(j)) =

∑
i|iS(j)=jS(j) n(i), j ∈ J .

It follows from (A4) that t
N =

∑
i∈I

n(i)
N fi. Therefore, t belongs to the

convex polytope with extreme points fi, i ∈ I. This polytope is the marginal
polytope of the hierarchical model, denoted by P∆.

Example A.1. Let V = {a, b, c}, Ia = {0, 1} = Ib = Ic and ∆ =
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{a, b, c, ab, bc}. Then

I = (000, 100, 010, 110, 001, 101, 011, 111),

J = {(100), (010), (001), (110), (011)},

Ã =



f000︷︸︸︷
1

f001︷︸︸︷
1

f010︷︸︸︷
1

f011︷︸︸︷
1

f100︷︸︸︷
1

f101︷︸︸︷
1

f110︷︸︸︷
1

f111︷︸︸︷
1

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1



θ000

θ100

θ010

θ001

θ110

θ011

APPENDIX B: EXAMPLE: TWO BINARY RANDOM VARIABLES

Consider two binary random variables, and let ∆ = {∅, {1}, {2}, {1, 2}}.
The hierarchical model E∆ is the saturated model ; that is, it contains all
possible probability distributions with full support. Then

Ã =


f00︷︸︸︷
1

f01︷︸︸︷
1

f10︷︸︸︷
1

f11︷︸︸︷
1

0 1 0 1
0 0 1 1
0 0 0 1


θ00

θ01

θ10

θ11

The marginal polytope is a 3-simplex (a tetrahedron) with facets

F00 : 1− t01 − t10 + t11 ≥ 0, F01 : t01 − t11 ≥ 0,

F10 : t10 − t11 ≥ 0, F11 : t11 ≥ 0.

Each of the corresponding facets contains three columns of A. In fact, the
facet Fi in the above list does not contain the column fi of A.

The EMLE of the saturated model is just the empirical distribution; that
is, p∗ = 1

N n. Suppose that t lies on the facet F00 (i.e. n = (0, n01, n10, n11)
with n(01), n(10), n(11) > 0). If pθ(s) → p∗, then pθ(s)(00) → 0, while all
other probabilities converge to a non-zero value. It follows that

θ
(s)
00 = log pθ(s)(00)→ −∞,

θ
(s)
01 = log

pθ(s)(01)

pθ(s)(00)
→ +∞,

θ
(s)
10 = log

pθ(s)(10)

pθ(s)(00)
→ +∞,

θ
(s)
11 = log

pθ(s)(11)pθ(s)(00)

pθ(s)(01)pθ(s)(10)
→ −∞.
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On the other hand, θ
(s)
01 + θ

(s)
00 = log pθ(s)(01) converges to a finite value, as

do θ
(s)
10 + θ

(s)
00 = log pθ(s)(10) and θ

(s)
11 + θ

(s)
01 = log pθ(s)(11)/pθ(s)(10).

Proceeding similarly for the other facets, one can show for the limits

θij := lims→∞ θ
(s)
ij :

θ00 θ01 θ10 θ11 finite parameter combinations:

F00 −∞ +∞ +∞ −∞ θ
(s)
01 + θ

(s)
00 , θ

(s)
10 + θ

(s)
00 , θ

(s)
11 + θ

(s)
01

F01 finite −∞ finite +∞ θ
(s)
00 , θ

(s)
10 , θ

(s)
01 + θ

(s)
11

F10 finite finite −∞ +∞ θ
(s)
00 , θ

(s)
01 , θ

(s)
10 + θ

(s)
11

F11 finite finite finite −∞ θ
(s)
00 , θ

(s)
10 , θ

(s)
01

Each line of the last column contains three combinations of the parameters

θ
(s)
i that converge to a finite value. Any other parameter combination that

converges is a linear combination of these three. This can be seen by using
the coordinates µi introduced in Section 4.2. For example, on the facet F01,
consider the parameters

µ10 = log p(10)/p(00) = θ10, µ11 = log p(11)/p(00) = θ10 + θ01 + θ11,

µ01 = log p(01)/p(00) = θ01.

Then µ10 and µ11 are identifiable parameters on EF01 , and µ01 diverges close
to F01. By Lemma 4.1, the linear combinations that are well-defined are
µ10 = θ10 and µ11 = θ10 + (θ01 + θ11). The above table also lists θ00, which
is not a linear combination of those but that is fine because it is not free.

We obtain similar results for the facets F01 and F11. The results are
summarized in the following table:

facet µ01 µ10 µ11

F01 −∞ finite finite
F10 finite −∞ finite
F11 finite finite −∞

Of course, by definition of the µis, we cannot consider the facet F00 where
n(00) = 0. To study F00, we have to choose another zero cell and redefine
the parameters µi.

The situation is more complicated for faces smaller than facets, because
sending a single parameter to plus or minus infinity can be enough to send
the distribution to a face F of higher codimension, as we will see below. The
remaining parameters then determine the position within E∆,F . Thus, in this
case there are more remaining parameters than the dimension of E∆,F .

imsart-aos ver. 2014/10/16 file: supp-final.tex date: April 11, 2018
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For example, the data vector n = (n00, 0, n10, 0) (with n00, n10 > 0) lies
on the face F = F01 ∩ F11 of codimension two. If pθ(s) → p∗, then

θ
(s)
00 = log pθ(s)(00)→ log

n00

N
,

θ
(s)
01 = log

pθ(s)(01)

pθ(s)(00)
→ −∞,

θ
(s)
10 = log

pθ(s)(10)

pθ(s)(00)
→ log

n10

n00
.

However, the limit of θ
(s)
11 = log

p
θ(s)

(11)p
θ(s)

(00)

p
θ(s)

(01)p
θ(s)

(10) is not determined. The only

constraint is that θ
(s)
11 cannot go to +∞ faster than θ

(s)
01 goes to −∞, since

p
θ
(s)
11

= exp(θ
(s)
00 + θ

(s)
01 + θ

(s)
10 + θ

(s)
11 ) has to converge to zero.

With the same data vector n = (n00, 0, n10, 0), suppose we use a numeri-
cal algorithm to optimize the likelihood function by optimizing the param-
eters θj in turn. To be precise, we order the parameters θj in some way. For
simplicity, say that the parameters are θ1, θ2, . . . , θh. Then we let

θ
(k+1)
j = arg max

y∈R
l(θ

(k+1)
1 , . . . , θ

(k+1)
j−1 , y, θ

(k)
j+1, . . . , θ

(k)
h )

(this is called the non-linear Gauss-Seidel method). Let us choose the or-
dering θ01, θ10, θ11 (note that θ00 = −k(θ) is not a free parameter). We start

at θ
(0)
01 = θ

(0)
10 = θ

(0)
11 = 0. In the first step, we only look at θ01. That is, we

want to solve

(B5) 0 =
∂

∂θ01
l(θ) = − exp(θ

(1)
01 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(0)
10 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

= − 2 exp(θ
(1)
01 )

1 + 2 exp(θ
(1)
01 )

.

This derivative is negative for any finite value of θ
(1)
01 , and thus the critical

equation has no finite solution. If we try to solve this equation numerically,

we will find that θ
(1)
01 will be a large negative number. Next, we look at θ10.

We fix the other variables and try to solve

0 =
∂

∂θ10
l(θ) =

n10

N
− exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(0)
11 )

≈ n10

N
− exp(θ

(1)
10 )

1 + exp(θ
(1)
10 )

,
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where we have used that θ
(1)
01 is a large negative number. This equation

always has a unique solution

θ
(1)
10 ≈ log

n10

N − n10
.

Finally, we look at θ11. We have to solve

0 =
∂

∂θ11
l(θ) = − exp(θ

(1)
01 + θ

(1)
10 + θ

(1)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(1)
11 )
≈ 0.

Actually, this equation again has no solution, and the numerical solution

for θ
(1)
11 should be close to numerical minus infinity. However, since θ

(1)
01 is

already close to −∞, the equation is already approximately satisfied. Thus,

there is no need to change θ11. In simulations, we observed that usually θ
(1)
11

will be negative, but not as negative as θ
(1)
01 . In theory, we would have to

iterate and now optimize θ01 again. But the values will not change much,
since the critical equations are already satisfied to a high numerical precision
after one iteration.

It is not difficult to see that the result is different if we change the order
of the variables. If θ11 is optimized before θ01, then θ1

11 will in any case be a
large negative number.

For general data, the derivative of l(θ) with respect to θ01 (equation (B5))
takes the form

∂

∂θ01
l(θ) =

t01

N
− exp(θ

(1)
01 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(0)
10 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

.

Setting this derivative to zero and solving for θ
(1)
01 leads to a linear equation

in θ
(1)
01 with symbolic solution

θ
(1)
01 = log

1 + exp(θ
(0)
10 )

1 + exp(θ
(0)
10 + θ

(0)
11 )

t01
N

1− t01
N

.

In fact, for any hierarchical model, the likelihood equation is linear in any
single parameter θj , as long as all other parameters are kept fixed (more
generally this is true when the design matrix A is a 0-1-matrix). Instead of
optimizing the likelihood numerically with respect to one parameter, it is
possible to use these symbolic solutions. This leads to the Iterative Propor-
tional Fitting Procedure (IPFP). In our example, the IPFP would lead to
a division by zero right in the first step, indicating that the MLE does not
exist (unfortunately, IPFP does not always fail that quickly when the MLE
does not exist).
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APPENDIX C: PARAMETRIZATIONS ADAPTED TO FACIAL SETS

Let us briefly discuss how to remedy problems 1. (identifiability), 2. (re-
lation between parameters on E and EFt) and 3. (cancellation of infinities
in linear combinations of diverging parameters) from the beginning of Sec-
tion 4.2. The idea to remedy 1. and 2. is to define parameters µi, i ∈ L,
of EA such that a subset Lt ⊆ L of the parameters parametrizes EFt,A in a
consistent way. Denote by Aµ = (aµj,i, j ∈ L, i ∈ I) the design matrix of EA
corresponding to the new parameters µ. Then the necessary conditions are:

(∗) Let AµLt,Ft := (aµj,i, j ∈ Lt, i ∈ Ft) be the submatrix of Aµ with rows

indexed by Lt and columns indexed by Lt, and denote by ÃµLt,Ft the

same matrix with an additional row of ones. The rank of ÃµLt,Ft is equal

to |Lt|+ 1, the number of its rows (and thus, AµLt,Ft has rank |Lt|).
(∗∗) aµj,i = 0 for all i ∈ Ft and j ∈ L \ Lt.

In fact, (∗∗) implies that AµLt,Ft is the design matrix of EA,Ft , since the pa-
rameters µi with i /∈ Lt do not play a role in the parametrization µ 7→ pFt,µ.
Moreover, (∗) implies that the parametrization µ 7→ pFt,µ is identifiable. In
this sense, we have remedied problem 1.

Since ÃµLt,Ft has full row rank, it has a right inverse matrix C̃, such that

ÃµLt,FtC̃ = I|Lt|+1 equals the identity matrix of size |Lt|+ 1. Recall that

log pFt,µ(i) = 〈µt, fµi 〉 − kF (µ),

log pµ(i) = 〈µ̃t, fµi 〉 − k(µ),

for any parameter vector µ and all i ∈ Ft. Since fµi are the columns of Aµ

and since the components of fµi corresponding to L \ Lt vanish by (∗∗), we
may apply the matrix C obtained from C̃ by dropping the row corresponding
to kF or k and obtain

(C6) (log pµ)C = µLt and (log pFt,µ)C = µL.

When pµ(s) is a sequence in EA with limit pµ in EFt,A, then (C6) shows that

µ
(s)
i → µi for i ∈ Lt. In this sense, we have remedied problem 2.
Finally, we solve problem 3. Suppose that we have chosen parameters µL

as in Section 4.2, and let AµL be the design matrix with respect to these
parameters. Then (AµL)j,i = 0 if i ∈ Ft and j /∈ Lt. Moreover, for j ∈ Lt,
the jth column of AµL has a single non-vanishing entry (equal to one) at
position j. Suppose that Ft corresponds to a face Ft of codimension c. Then
there are c facets of P whose intersection is Ft. Thus, following the notation
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introduced in Remark 2.2, there exist c inequalities

(C7) 〈g̃1, x̃〉 ≥ 0, . . . , 〈g̃c, x̃〉 ≥ 0

that together define Ft. In this case, the vectors g̃1, . . . , g̃c are linearly in-
dependent and satisfy 〈g̃j , f̃i〉 = 0 (thus, they are a basis of the kernel
of (ÃµLFt )t). It follows that the kth component of gj , denoted by gj,k, van-
ishes if k ∈ Lt; that is, the inequalities (C7) do not involve the variables
corresponding to Lt. Let G be the square matrix, indexed by L \ Lt with
entries gj,k, j, k ∈ L \ Lt. Then the square matrix

G̃ =

(
1 0
0 G

)
is invertible. We claim that the parameters λ = G̃−1µL are what we are
looking for.

The design matrix with respect to the parameters λ is Aλ = G̃AµL . For
any j /∈ Lt,

Aλj,i = 0, if i ∈ Ft, and Aλj,i = 〈g̃j , f̃i〉 ≥ 0, if i /∈ Ft.

This implies the following properties:

1. If all parameters λj with j /∈ Lt are sent to −∞, then pλ tends towards
a limit distribution with support Ft.

2. The coefficient of λj in any log-probability is non-negative, so there is
no cancellation of ±∞.

So far, we only used the fact that the vectors g̃j define valid inequalities
for the face Ft. Suppose that we choose g̃j in such a way that each inequality
〈g̃j , x̃〉 ≥ 0 defines a facet. The intersection of less than c facets is a face that
strictly contains Ft. This implies that for each j, there exists ij ∈ I \Ft such
that fij satisfies

〈g̃j , f̃ij 〉 > 0, and 〈g̃j′ , f̃ij 〉 = 0 for all j′ 6= j,

and so

Aλj,ij > 0, and Aλj′ , ij = 0 for all j′ 6= j.

Hence:

3. If λ
(s)
j are sequences of parameters such that pλ(s) tends towards a

limit distribution with support Ft, then λ
(s)
j → −∞ for all j /∈ Lt.

It is not difficult to see that, conversely, any parametrization that satisfies
these three properties comes from facets defining the face Ft.

imsart-aos ver. 2014/10/16 file: supp-final.tex date: April 11, 2018



APPROXIMATING FACES OF MARGINAL POLYTOPES 9

APPENDIX D: UNIFORM SAMPLING FOR THE 4× 4 GRID

This section enhances the example in Section 5.1. In a second experiment,
we generated random samples from the uniform distribution, that is from the
probability distribution Pθ in the hierarchical model where all parameters
θj , j ∈ J , are set to zero. For each sample size, 1000 samples were obtained.
The results are given in the following table:

sample size MLE does not exist F1 = Ft F2 = Ft

10 98.5% 96.3% 100.0%
15 68.9% 99.9% 100.0%
20 29.0% 100.0% 100.0%
50 0.0% 100.0% 100.0%

As the table shows, for larger samples the probability that a random sample
lies on a proper face becomes very small. If Ft = I, then clearly Ft = F2.
But we also found Ft = F2 for all samples with t lying on a proper face,
which shows that F2 is an excellent approximation of Ft in this model. For
the inner approximation, we observed some samples with F1 6= Ft, but they
seem to be very rare.

APPENDIX E: ESTIMATED CELL FREQUENCIES FOR THE NLTCS
DATA

The following table lists the estimates of the top five cell counts obtained
using our method and compares them with those obtained by other methods
in Dobra and Lenkoski (2011).

Support of Cell Observed GoM LC CGGMs MLE on facial set

∅ 3853 3269 3836.01 3767.76 3647.4
{10} 1107 1010 1111.51 1145.86 1046.9
{1 : 16} 660 612 646.39 574.76 604.4
{5} 351 331 360.52 452.75 336
{5, 10} 303 273 285.27 350.24 257.59
{12} 216 202 220.47 202.12 239.24

APPENDIX F: THE 5× 10 GRID

This section presents the details for the example in Section 6.2. Let ∆ be
the simplicial complex of the 5× 10 grid graph. We exploit the regularity of
this graph and make use of the vertical separators in the grid to obtain inner
and outer approximations of the facial sets. The graph has 50 nodes, which
is too many to directly compute a facial set or even to store it. However,
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Fig 1. 5 × 10 grid graph, the red and blue nodes are the set of separators we use to
compute F1, they are used iteratively to get a better lower approximation
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Fig 2. Five induced subgrids

the 5× 10 grid has 8 vertical separators marked in red and blue in Figure 1,
and we can use these to approximate Ft. Since facial sets for 5 × 3 grids
can be computed reasonably fast (3 to 4 seconds on a laptop with 2.50 GHz
processor and 12 GB memory), we only use three of these vertical separators
at a time, say the blue separators

S2 = {11, . . . , 15}, S4 = {21, . . . , 25}, S6 = {31, . . . , 35}, S8 = {41, . . . , 45}.

These separate the vertex sets V1 = {1, . . . , 15}, V3 = {11, . . . , 25}, V5 =
{21, . . . , 35}, V7 = {31, . . . , 45}, V9 = {41, . . . , 50}.

Adding the blue separators to ∆ gives a simplicial complex

∆S2;S4;S6;S8 := ∆
⋃

j=2,4,6,8

{F : F ⊆ Sj}

with five irreducible components supported on the vertex sets V1, V3, V5, V7

and V9 (Figure 3). To compute a facial set with respect to ∆S2;S4;S6;S8 ,
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(b)

Fig 3. (a) The 5 × 10 grid with the blue separators completed. (b) The five irreducible
subcomplexes after completing the blue separators.

according to Lemma 2.5 applied four times, we need to compute

G1,V1 := F∆S2
|V1 (πV1(I+)), G1,V3 := F∆S2;S4

|V3 (πV3(I+)),

G1,V5 := F∆S4;S6
|V5 (πV5(I+)), G1,V7 := F∆S6;S8

|V7 (πV7(I+)),

G1,V9 := F∆S8
|V9 (πV9(I+)).

Then G1 :=
⋂
i π
−1
Vi

(G1,Vi) is equal to F∆S2;S4;S6;S8
(I+), and thus an inner

approximation of Ft. As stated before, we do not need to compute G1 ex-
plicitly, but we represent it by means of the G1,Vi .

We can improve the approximations by also considering the red separators

S1 = {6, . . . , 10}, S3 = {16, . . . , 20}, S5 = {26, . . . , 30}, S7 = {36, . . . , 40},

that separate V0 = {1, . . . , 10}, V2 = {6, . . . , 20}, V4 = {16, . . . , 30}, V6 =
{26, . . . , 40}, V8 = {36, . . . , 50}. As explained in Section 3.1, we want to

computeG
(2)
1 := F∆S1;S3;S5;S7

(G1). Again, instead of computingG
(2)
1 directly,

we need only compute the much smaller sets G
(2)
1,V0

:= πV0(G
(2)
1 ), G

(2)
1,V2

:=

πV2(G
(2)
1 ), . . . , G

(2)
1,V8

:= πV8(G
(2)
1 ). But is it possible to compute G

(2)
1,V0

, G
(2)
1,V2

,

. . . , G
(2)
1,V8

from G1,V1 , G1,V3 , . . . , G1,V9 , without computing G1 in between?
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data I+ on 5× 10 grid

marginalize

I5+ := πV5 (I+)I3+ = πV3 (I+)I1+ = πV1 (I+) I7+ = πV7 (I+) I9+ = πV9 (I+)

G1,V1
G1,V3

G1,V5
G1,V7

G1,V9

marginalize
and glue

marginalize
and glue

marginalize
and glue

marginalize
and glue

G1,V2
G1,V4

G1,V6
G1,V8

G1,V0

marginalize

G′
1,V0

G′
1,V2

G′
1,V4

G′
1,V6

G′
1,V8

...
...

...
...

...

LP

LP

LP

LP

LP

LP

LP

LP

LP

LP

Fig 4. Flow chart
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This is indeed the case: By Lemma 2.5, all we need to compute G
(2)
1,Vi

is G1,Vj := πVj (G1), j = i−1, i+1. For i = 0, since V0 ⊂ V1, we can compute
G1,V0 from πV1(G1) = G1,V1 . For i = 2, 4, 6, 8, since Vi ⊂ Vi−1 ∪Vi+1, we can
compute G1,Vi from πVi−1∪Vi+1(G1), which itself can be obtained by “gluing”
πVi−1(G1) = G1,Vi−1 and πVi+1(G1) = G1,Vi+1 :

πVi−1∪Vi+1(G1) =
(
π
Vi−1∪Vi+1

Vi−1

)−1
(G1,Vi−1) ∩

(
π
Vi−1∪Vi+1

Vi+1

)−1
(G1,Vi+1),

where πV
′

V ′′ for V ′′ ⊆ V ′ denotes the marginalization map from IV ′ to IV ′′

and where
(
πV
′

V ′′

)−1
denotes the lifting from IV ′′ to IV ′ .

As explained in Section 3.1, this procedure can be iterated: From G
(2)
1

we want to compute G
(3)
1 := F∆S2;S4;S6;S8

(G′1) or, more precisely, we want to

compute G
(3)
1,Vi

= πVi(G
(3)
1 ) for i = 1, 3, . . . , 9. Again, we do this without look-

ing at G
(2)
1 directly by just using the information available through the G

(3)
1,Vi

.

Iterating this procedure, we obtain a sequence of sets G
(k)
1,Vi

, G
(k)
1,Vj

(with odd

i and even j), which stabilizes after a finite number of steps. Our best inner

approximation is then F1 =
⋂9
i=0 π

−1
Vi

(F1,Vi), where F1,Vi :=
⋃
G

(k)
1,Vi

. Again,
we do not compute F1 explicitly, but we represent it in terms of the F1,Vi .
The process is visualized in Figure 4.

Let us now consider the outer approximation F2. We adapt Strategy 3 of
Section 3.2 and cover the graph with 5 × 3 grid subgraphs, since the facial
sets for such graphs can easily be computed. These subgrids are supported
on the same vertex subsets Vi, i = 1, . . . , 8 as used when computing F1.
This makes it possible to compare F1 and F2. For i = 1, 3, . . . , 8 we compute
F2,Vi = F∆|Vi (πVi(I+)). The outer approximation is then F2 =

⋂
i π
−1
Vi

(F2,Vi).
Again, we don’t compute F2 explicitly, but we only store F2,Vi in a computer
as a representation of F2. To compare the two approximations F1 and F2, we
need only compare their projections F1,Vi and F2,Vi pairwise, i = 1, . . . , 8.
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