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This supplementary material is organized as follows. In Section A, we first
explain the intuition behind the example in Section 3.2.3 [6] where the GLRT
is shown to be sub-optimal, and construct a series of other cases where this
sub-optimality is observed. We then provide the proofs of Propositions 1
and 2 in Sections B.1 and B.2, respectively. It follows by some background
on distance metrics and their properties in Section C. The proofs of Theorem
1 (a) and (b) are completed in Section D and E respectively. The proofs of
the lemmas for Theorem 2 are collected in Section F. Finally, the technical
lemmas which were crucially used in the proofs of the Proposition 2 and the
monotone cone example are proved in Section G.

APPENDIX A: THE GLRT SUB-OPTIMALITY

In this appendix, we first try to understand why the GLRT is sub-optimal
for the Cartesian product cone K× = Circd−1(α) × R, and use this in-
tuition to construct a more general class of problems for which a similar
sub-optimality is witnessed.

A.1. Why is the GLRT sub-optimal?. Let us consider tests with
null C1 = {0} and a general product alternative of the form C2 = K× =
K × R, where K ⊆ Rd−1 is a base cone. Note that K = Circd−1 in our
previous example.
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Now recall the decomposition (22) of the statistic T that underlies the
GLRT. By the product nature of the cone, we have

T (y) = ‖ΠK×y‖2 = ‖(ΠK(y−d), yd)‖2 =
√
‖ΠK(y−d)‖22 + ‖yd‖22,

where y−d : = (y1, . . . , yd−1) ∈ Rd−1 is formed from the first d−1 coordinates
of y. Suppose that we are interested in testing between the zero vector and a
vector θ∗ = (0, . . . , 0, θ∗d), nonzero only in the last coordinate, which belongs
to the alternative. With this particular choice, under the null distribution,
we have y = σg whereas under the alternative, we have y = θ∗+σg. Letting
E0 and E1 denote expectations under these two Gaussian distributions, the
performance of the GLRT in this direction is governed by the difference

1

σ

{
E1[T (y)]− E0[T (y)]

}
= E1

√
‖ΠK(g−d)‖22 + ‖

θ∗d
σ

+ gd‖22

−E0

√
‖ΠK(g−d)‖22 + ‖gd‖22.

Note both terms in this difference involve a (d−1)-dimensional “pure noise”
component—namely, the quantity ‖ΠK(g−d)‖22 defined by the sub-vector
g−d : = (g1, . . . , gd−1)—with the only signal lying the last coordinate. For
many choices of cone K, the pure noise component acts as a strong mask for
the signal component, so that the GLRT is poor at detecting differences in
the direction θ∗. Since the vector θ∗ belongs to the alternative, this leads to
sub-optimality in its overall behavior. Guided by this idea, we can construct
a series of other cases where the GLRT is sub-optimal. See Appendix A.2
for details.

A.2. More examples on the GLRT sub-optimality. Now let us
construct a larger class of product cones for which the GLRT is sub-optimal.
For a given subset S ⊆ {1, . . . , d}, define the subvectors θS = (θi, i ∈ S) and
θSc = (θj , j ∈ Sc}, where Sc denotes the complement of S. For an integer
` ≥ 1, consider any cone K` ⊂ Rd with the following two properties:

• its Gaussian width scales as EW(K` ∩ B(1)) �
√
d, and

• for some fixed subset {1, 2 . . . , d} of cardinality `, there is a scalar
γ > 0 such that

‖θS‖2 ≥ γ‖θSc‖2 for all θ ∈ K`.

As one concrete example, it is easy to check that the circular cone is a special
example with ` = 1 and γ = 1/ tan(α). The following result applies to the
GLRT when applied to testing the null C1 = {0} versus the alternative
C2 = Ks

× = K × R.
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Proposition A.1. For the previously described cone testing problem,
the GLRT testing radius is sandwiched as

ε2GLR �
√
dσ2,

whereas a truncation test can succeed at radius ε2 �
√
`σ2.

Proof. The claimed scaling of the GLRT testing radius follows as a
corollary of Theorem 1 after a direct evaluation of δ2

LR(C1, C2). In order to
do so, we begin by observing that

inf
η∈C2×S−1

〈η, EΠC2g〉 ≤ 〈ed, EΠc2g〉 = 0, and

EW(C2 ∩ B(1)) = E‖ΠC2g‖2 �
√
d

which implies that δ2
LR(C1, C2) �

√
d, and hence implies the sandwich claim

on the GLRT via Theorem 1.
On the other hand, for some pre-selected β > 0, consider the truncation

test

ϕ(y) : = I
[
‖yS‖2 ≥ β

]
,

This test can be viewed as a GLRT for testing the zero null against the
alternative R`, and hence it will succeed with separation ε2 � σ2

√
`. Putting

these pieces together, we conclude that the GLRT is sub-optimal whenever
` is of lower order than d.

APPENDIX B: PROOFS FOR PROPOSITION 1 AND 2

In this section, we complete the proofs of Propositions 1 and 2 in Sec-
tions B.1 and B.2, respectively.

B.1. Proof of Proposition 1. As in the proof of Theorem 1 and The-
orem 2, we can assume without loss of generality that σ = 1 since K+ is
invariant under rescaling by positive numbers. We split our proof into two
cases, depending on whether or not the dimension d is less than 81.

Case 1:. First suppose that d < 81. If the separation is upper bounded as
ε2 ≤ κρ

√
d, then setting κρ = 1/18 yields

ε2 ≤ κρ
√
d < 1/2.

Similar to our proof for Theorem 1(b) Case 1, if ε2 < 1/2, every test yields
testing error no smaller than 1/2. It is seen by considering a simple verses
simple testing problem (84a). So our lower bound directly holds for the case
when d < 81 satisfies.
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Case 2:. Let us consider the case when dimension d ≥ 81. The idea is
to make use of our Lemma 2 to show that the testing error is at least ρ
whenever ε2 ≤ κρ

√
d. In order to apply Lemma 2, the key is to construct a

probability measure Q supported on set K ∩ Bc(1) such that for i.i.d. pair
η, η′ drawn from Q, quantity Eeλ〈η, η′〉 can be well controlled. We claim that
there exists such a probability measure Q that

Eη,η′eλ〈η, η
′〉 ≤ exp

(
exp

(
2 + λ√
d− 1

)
−
(

1− 1√
d

)2
)

where λ : = ε2.

(59)

Taking inequality (59) as given for now, letting κρ = 1/8, we have λ =
ε2 ≤

√
d/8. So the right hand side in expression (59) can be further upper

bounded as

exp

(
exp

(
2√
d− 1

+

√
d√

d− 1

λ√
d

)
−
(

1− 1√
d

)2
)
≤ exp

(
exp

(
1

4
+

9

8
· 1

8

)
−
(

1− 1

9

)2
)

< 2,

where we use the fact that d ≥ 81. As a consequence of Lemma 2, the testing
error of every test satisfies

inf
ψ
E(ψ; {0},K+, ε) ≥ 1− 1

2

√
Eη,η′ exp(ε2〈η, η′〉)− 1 >

1

2
≥ ρ.

Putting these two cases together, our lower bound holds for any dimension
thus we complete the proof of Proposition 1.

So it only remains to construct a probability measure Q such that the
inequality (59) holds. We begin by introducing some helpful notation. For
an integer s to be specified, consider a collection of vectors S containing all
d-dimensional vectors with exactly s nonzero entries and each nonzero entry
equals to 1/

√
s. Note that there are in total M : =

(
d
s

)
vectors of this type.

Letting Q be the uniform distribution over this set of vectors namely

Q({η}) : =
1

M
, η ∈ S.(60)

Then we can write the expectation as

Eeλ〈η, η
′〉 =

1

M2

∑
η,η′∈S

eλ〈η, η
′〉.
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Note that the inner product 〈η, η′〉 takes values i/s, for integer i ∈ {0, 1, . . . , s}
and given every vector η and integer i ∈ {0, 1, . . . , s}, the number of η′ such
that 〈η, η′〉 = i/s equals to

(
s
i

)(
d−s
s−i
)
. Consequently, we obtain

Eeλ〈η, η
′〉 =

(
d

s

)−1 s∑
i=0

(
s

i

)(
d− s
s− i

)
eλi/s =

s∑
i=0

Aiz
i

i!
,(61)

where

z : = eλ/s and Ai : =
(s!(d− s)!)2

((s− i)!)2d!(d− 2s+ i)!
.

Let us set integer s : = b
√
dc. We claim quantity Ai satisfies the following

bound

Ai ≤ exp
(
− (1− 1√

d
)2 +

2i√
d− 1

)
for all i ∈ {0, 1, . . . , s}.(62)

Taking expression (62) as given for now and plugging into inequality (61),
we have

Eeλ〈η, η
′〉 ≤ exp

(
− (1− 1√

d
)2
) s∑
i=0

(z exp( 2√
d−1

))i

i!

(a)

≤ exp
(
− (1− 1√

d
)2
)

exp

(
z exp(

2√
d− 1

)

)
(b)

≤ exp

(
−
(

1− 1√
d

)2

+ exp

(
2 + λ√
d− 1

))
,

where step (a) follows from the standard power series expansion ex =
∑∞

i=0
xi

i!

and step (b) follows by z = eλ/s and s = b
√
dc >

√
d−1. Therefore it verifies

inequality (59) and complete our argument.
It is only left for us to check inequality (62) for Ai. Using the fact that

1− x ≤ e−x, it is guaranteed that

A0 =
((d− s)!)2

d!(d− 2s)!
= (1− s

d
)(1− s

d− 1
) · · · (1− s

d− s+ 1
) ≤ exp(−s

s∑
i=1

1

d− s+ i
).

(63a)

Recall that integer s = b
√
dc, then we can bound the sum in expression (63a)

as

s
s∑
i=1

1

d− s+ i
≥ s

s∑
i=1

1

d
=
s2

d
≥ (1− 1√

d
)2,
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which, when combined with inequality (63a), implies that A0 ≤ exp(−(1−
1√
d
)2).

Moreover, direct calculations yield

Ai
Ai−1

=
(s− i+ 1)2

d− 2s+ i
, 1 ≤ i ≤ s.(63b)

This ratio is decreasing with index i as 1 ≤ i ≤ s, thus is upper bounded by
A1/A0, which implies that

Ai
Ai−1

≤ d

d− 2
√
d+ 1

= (1 +
1√
d− 1

)2 ≤ exp(
2√
d− 1

),

where the last inequality follows from 1 + x ≤ ex. Putting pieces together
validates bound (62) thus finishing the proof of Proposition 1.

B.2. Proof of Proposition 2. As in the proof of Theorem 1 and The-
orem 2, we can assume without loss of generality that σ = 1 since L and M
are both invariant under rescaling by positive numbers.

We split our proof into two cases, depending on whether or not
√

log(ed) <
14.

Case 1:. First suppose
√

log(ed) < 14, so that the choice κρ = 1/28 yields
the upper bound

ε2 ≤ κρ
√

log(ed) < 1/2.

Similar to our proof of the lower bound in Theorem 1, by reducing to a
simple testing problem (84a), any test yields testing error no smaller than
1/2 if ε2 < 1/2. Thus, we conclude that the stated lower bound holds when√

log(ed) < 14.

Case 2:. Otherwise, we may assume that
√

log(ed) ≥ 14. In this case, we
exploit Lemma 2 in order to show that the testing error is at least ρ whenever
ε2 ≤ κρ

√
log(ed). Doing so requires constructing a probability measure QL

supported on M ∩ L⊥ ∩ Bc(1) such that the expectation Eeε2〈η, η′〉 can be
well controlled, where (η, η′) are drawn i.i.d according to QL. Note that L
can be either {0} or span(1).

Before doing that, let us first introduce some notation. Let δ : = 9 and
r : = 1/3 (note that δ = r−2). Let

m : = max

{
n
∣∣∣ n∑
i=1

bδ − 1

δi
(d+ logδ d+ 3)c < d

}
.(64)
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We claim that the integer m defined above satisfies:

d3
4

logδ(d)e+ 1 ≤ m ≤ dlogδ de,(65)

where dxe denotes the smallest integer that is greater than or equal to x. To
see this, notice that for t = d3

4 logδ(d)e+ 1, we have

t∑
i=1

bδ − 1

δi
(d+ logδ d+ 3)c ≤

t∑
i=1

δ − 1

δi
(d+ logδ d+ 3) = (1− 1

δt
)(d+ α)

(i)

≤ d+ α− d+ α

δ2d3/4

(ii)
< d,

where we denote α : = logδ d + 3. The step (i) follows by definition that
t = d3

4 logδ(d)e+ 1 while step (ii) holds because as
√

log(ed) ≥ 14, we have

α = logδ d+ 3 < d1/4/δ2. On the other hand, for t = dlogδ de, we have

t∑
i=1

bδ − 1

δi
(d+ logδ d+ 3)c ≥

t∑
i=1

δ − 1

δi
(d+ α)− t

= (1− 1

δt
)(d+ α)− t

> d+ α− d+ α

d
− (logδ d+ 1),

where the last step uses fact t = dlogδ de. Since when
√

log(ed) ≥ 14, we
have α = logδ d+3 < d, therefore (d+α)/d+logδ d+1 ≤ 2+ logδ d+1 = α,
which guarantees that

t∑
i=1

bδ − 1

δi
(d+ logδ d+ 3)c > d.

We thereby established inequality (65).
We now claim that there exists a probability measure QL supported on

M ∩ L⊥ ∩Bc(1) such that

Eη,η′∼QLe
λ〈η, η′〉 ≤ exp

(
exp

(
9λ/4 + 2√
m− 1

)
−
(

1− 1√
m

)2

+
27λ

32(
√
m− 1)

)
, where λ : = ε2.

(66)

Recall that we showed in inequality (65) that m ≥ d3
4 logδ(d)e + 1. Setting

κρ = 1/62 implies that whenever ε2 ≤ κρ
√

log(ed), we have

ε2 ≤ 1

62

√
log(ed) =

1

62

√
1 +

4

3
log δ · 3

4
logδ d ≤

1

62

√
4

3
log δ

(
1 +

3

4
logδ d

)
≤ 1

36

√
m.

(67)
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So the right hand side in expression (66) can be made less than 2 by

exp

(
9λ/4 + 2√
m− 1

)
−
(

1− 1√
m

)2

+
27λ

32(
√
m− 1)

≤ exp

(
9λ

4
√
m

√
m√

m− 1
+

2

7

)
−
(

1− 1

8

)2

+
27λ

32
√
m

√
m√

m− 1

≤ exp

(
9

4 · 36

8

7
+

2

7

)
−
(

1− 1

8

)2

+
27

32 · 36

8

7
< log 2,

where we use the fact that
√
m ≥

√
1 + 3

4 logδ d ≥ 8. Lemma 2 thus guar-

antees the testing error to be no less than

inf
ψ
E(ψ;L,M, ε) ≥ 1− 1

2

√
Eη,η′ exp(ε2〈η, η′〉)− 1 >

1

2
≥ ρ,

which leads to our result in Proposition 2.
Now it only remains to construct a probability measure QL with the right

support such that inequality (66) holds. To do this, we make use of a fact
from the proof of Proposition 1 for the orthant cone K+ ⊂ Rm. Recall that to
establish Proposition 1, we constructed a probability measure D supported
on K+ ∩ Sm−1 ⊂ Rm such that if b, b′ are an i.i.d pair drawn from D, we
have

Eb,b′∼Deλ〈b, b
′〉 ≤ exp

(
exp

(
2 + λ√
m− 1

)
−
(

1− 1√
m

)2
)
.(68)

By construction, D is a uniform probability measure on the finite set S which
consists of all vectors in Rm which have s nonzero entries which are all equal
to 1/

√
s where s = b

√
mc.

Based on this measure D, let us define QL as in the following lemma and
establish some of its properties under the assumption that

√
log(ed) ≥ 14.

Lemma B.1. Let G be the m×m lower triangular matrix given by

G : =


1
r 1
r2 r 1
...

...
. . .

rm−1 rm−2 · · · 1

 .(69a)

There exists an d×m matrix F such that

F TF = Im(69b)

and such that for every b ∈ S and η : = FGb, we have
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1. η ∈M ∩ L⊥ ∩Bc(1) if L = {0}, and
2. η− η̄1 ∈M ∩L⊥∩Bc(1) if L = span(1), where η̄ =

∑d
i=1 ηi/d denotes

the mean of the vector η.

See Appendix G.2 for the proof of this claim.
If L = {0}, let probability measure QL be defined as the distribution of

η : = FGb where b ∼ D. Otherwise if L = span(1), let QL be the distribution
of η− η̄1 where again η : = FGb and b ∼ D. From Lemma B.1 we know that
QL is supported on M ∩ L⊥ ∩ Bc(1). It only remains to verify the critical
inequality (66) to complete the proof of Proposition 2. Let η = FGb and
η′ = FGb′ with b, b′ being i.i.d having distribution D. Using the fact that
F TF = Im, we can write the inner product of η, η′ as

〈η, η′〉 = bTGTF TFGb′ = 〈Gb, Gb′〉.

The following lemma relates inner product 〈η, η′〉 to 〈b, b′〉, and thereby
allows us to derive inequality (66) based on inequality (68). Recall that S
consists of all vectors in Rm which have s nonzero entries which are all equal
to 1/

√
s where s = b

√
mc.

Lemma B.2. For every b, b′ ∈ S, we have

〈Gb, Gb′〉 ≤ 〈b, b′〉
(1− r)2

+
r

s(1− r)2(1− r2)
,(70a)

‖Gb‖22 ≥
1

(1− r)2
− 2r + r2

s(1− r2)(1− r)2
.(70b)

See Appendix G.3 for the proof of this claim.
We are now ready to prove inequality (66). We consider the two cases

L = {0} and L = span(1) separately.
For L = {0}, recall that r = 1/3 and s = b

√
mc ≥

√
m− 1. Therefore as

a direct consequence of inequality (70a), we have

Eη,η∼Qeλ〈η, η
′〉 ≤ Eb,b′∼D exp

(
9λ

4
〈b, b′〉+

27λ

32(
√
m− 1)

)
.(71)

Combining inequality (71) with (68) completes the proof of inequality (66).
Let us now turn to the case when L = span(1). The proof is essentially

the same as for L = {0} with only some minor changes. Again our goal is
to check inequality (66). For this, we write

Eη,η′∼QLe
λ〈η, η′〉 = Eη,η′∼Q{0}e

λ〈η−η̄1, η′−η̄′1〉 ≤ Eη,η′∼Q{0}e
λ〈η, η′〉.
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Here the last step use the fact that 〈η−η̄1, η′−η̄′1〉 = 〈η, η′〉−dη̄η̄′ ≤ 〈η, η′〉
where the last inequality follows from the nonnegativity of every entry of
vectors η and η′ (this nonnegativity is a consequence of the nonnegativity
of F and G from Lemma B.1 and nonnegativity of vectors in S).

Thus, we have completed the proof of Proposition 2.

APPENDIX C: DISTANCES AND THEIR PROPERTIES

Here we collect some background on distances between probability mea-
sures that are useful in analyzing testing error. Suppose P1 and P2 are two
probability measures on Euclidean space (Rd,B) equipped with Lebesgue
measure. For the purpose of this paper, we assume P1 � P2. The total
variation (TV) distance between P1 and P2 is defined as

‖P1 − P2‖TV : = sup
B∈B
|P1(B)− P2(B)| = 1

2

∫
|dP1 − dP2|.(72a)

A closely related measure of distance is the χ2 distance given by

χ2(P1,P2) : =

∫
(
dP1

dP2
− 1)2dP2.(72b)

For future reference, we note that the TV distance and χ2 distance are
related via the inequality

‖P1 − P2‖TV ≤
1

2

√
χ2(P1,P2).(72c)

APPENDIX D: AUXILIARY PROOFS FOR THEOREM 1 (A)

In this appendix, we collect the proofs of lemmas involved in the proof of
Theorem 1(a).

D.1. Proof of Lemma 4.1. For future reference, we also note that tail
bound (51a) implies that the variance is bounded as

var(Z(θ)) =

∫ ∞
0

P
(∣∣Z(θ)− E[Z(θ)]

∣∣ ≥ √u)du ≤ 2

∫ ∞
0

e−u/2du = 4.

(73)

To prove Lemma 4.1, given every vector θ, we claim that the function
g 7→ ‖ΠK(θ + g)‖2 is 1-Lipschitz, whereas the function g 7→ 〈θ, ΠKg〉 is a
‖θ‖2-Lipschitz function. From these claims, the concentration results then
follow from Borell’s theorem [2].
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In order to establish the Lipschitz property, consider two vectors g, g′ ∈
Rd. By the triangle inequaliuty non-expansiveness of Euclidean projection,
we have∣∣∣‖ΠK(θ + g)‖2 − ‖ΠK(θ + g′)‖2

∣∣∣ ≤ ‖ΠK(θ + g)−ΠK(θ + g′)‖2 ≤ ‖g − g′‖2.

Combined with the Cauchy-Schwarz inequality, we conclude that∣∣〈θ, ΠKg〉 − 〈θ, ΠKg
′〉
∣∣ ≤ ‖θ‖2 ‖ΠKg −ΠKg

′‖2 ≤ ‖θ‖2 ‖g − g′‖2,

which completes the proof of Lemma 4.1.

D.2. Proof of inequality (53). To prove inequality (53), we make use
of the following auxiliary Lemma D.1.

Lemma D.1. For every closed convex cone K and vector θ ∈ K, we have
the lower bounds

Γ(θ) ≥ ‖θ‖22
2‖θ‖2 + 8E‖ΠKg‖2

− 2√
e
.(74a)

Moreover, for any vector θ that also satisfies the inequality 〈θ, EΠKg〉 ≥
‖θ‖22, we have

Γ(θ) ≥ α2(θ)
〈θ, EΠKg〉 − ‖θ‖22

α(θ)‖θ‖2 + 2E‖ΠKg‖2
− 2√

e
,(74b)

where α(θ) : = 1− exp
(
−〈θ,EΠKg〉2

8‖θ‖22

)
.

We now use Lemma D.1 to prove the lower bound (53). Note that the
inequality ‖θ‖22 ≥ Bρδ2

LR({0},K) implies that one of the following two lower
bounds must hold:

‖θ‖22 ≥ BρE‖ΠKg‖2,(75a)

or 〈θ, EΠKg〉 ≥
√
BρE‖ΠKg‖2.(75b)

We will analyze these two cases separately.

Case 1. In order to show that the lower bound (75a) implies inequal-
ity (53), we will prove a stronger result—namely, that the inequality ‖θ‖22 ≥√
BρE‖ΠKg‖2/2 implies that inequality (53) holds.
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From the lower bound (74a) and the fact that, for each fixed a > 0, the
function x 7→ x2/(2x+ a) is increasing on the interval [0,∞), we find that

Γ(θ) ≥
√
BρE‖ΠKg‖2/2

√
2B

1/4
ρ + 8

√
E‖ΠKg‖2

− 2√
e
.

Further, because of general bound (21) that E‖ΠKg‖2 ≥ 1/
√

2π and the
fact that the function x 7→ x/(a+ x) is increasing in x, we obtain

Γ(θ) ≥
√
Bρ

2(8πBρ)1/4 + 16
− 2√

e
,

which ensures inequality (53).

Case 2. We now turn to the case when inequality (75b) is satisfied. We may
assume the inequality ‖θ‖22 ≥

√
BρE‖ΠKg‖2/2 is violated because otherwise,

inequality (53) follows immediately. When this inequality is violated, we have

〈θ, EΠKg〉 ≥
√
BρE‖ΠKg‖2 and ‖θ‖22 <

√
BρE‖ΠKg‖2/2.(76)

Our strategy is to make use of inequality (74b), and we begin by bound-
ing the quantity α appearing therein. By combining inequality (76) and
inequality (21)—namely, E‖ΠKg‖2 ≥ 1/

√
2π, we find that

α ≥ 1− exp

(
−
√
BρE‖ΠKg‖2

4

)
≥ 1− exp

(
−
√
Bρ

4
√

2π

)
≥ 1/2, whenever Bρ ≥ 32π.

Using expression (76), we deduce that

Γ(θ) ≥
α2
√
BρE‖ΠKg‖2

α(4Bρ)1/4 + 4
√

E‖ΠKg‖2
−
√

2

e
≥

√
BρE‖ΠKg‖2

(26Bρ)1/4 + 16
√

E‖ΠKg‖2
−
√

2

e
.

where the second inequality uses the previously obtained lower bound α >
1/2, and the fact that the function x 7→ x2/(x+ b) is increasing in x.

This completes the proof of inequality (53).

Proof of Lemma D.1. Now it is only left for us to prove Lemma D.1. We de-
fine the random variable Z(θ) : = ‖ΠK(θ+g)‖2−‖ΠKg‖2, as well as its posi-
tive and negative parts Z+(θ) = max{0, Z(θ)} and Z−(θ) = max{0,−Z(θ)},
so that Γ(θ) = EZ(θ) = EZ+(θ)−EZ−(θ). Our strategy is to bound EZ−(θ)
from above and then bound EZ+(θ) from below. The following auxiliary
lemma is useful for these purposes:
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Lemma D.2. For every closed convex cone K ⊂ Rd and vectors x ∈ K
and y ∈ Rd, we have:

∣∣∣‖ΠK(x+ y)‖2 − ‖ΠK(y)‖2
∣∣∣ ≤ ‖x‖2, and

(77)

max
{

2〈x, y〉+ ‖x‖22, 2〈x, ΠKy〉 − ‖x‖22
} (i)

≤ ‖ΠK(x+ y)‖22 − ‖ΠK(y)‖22
(ii)

≤ 2〈x, ΠKy〉+ ‖x‖22.

(78)

We return to prove this claim in Appendix D.3.
Inequality (77) implies that Z(θ) ≥ −‖θ‖2 and thus EZ−(θ) ≤ ‖θ‖2P{Z(θ) ≤

0}. The lower bound in inequality (78) then implies that P{Z(θ) ≤ 0} ≤
P{〈θ, g〉 ≤ −‖θ‖22/2} ≤ exp

(
− ‖θ‖

2
2

8

)
, whence

EZ−(θ) ≤ ‖θ‖2 exp

(
−‖θ‖22

8

)
≤ sup

u>0

(
ue−u

2/8
)

=
2√
e
.

Putting together the pieces, we have established the lower bound

EZ(θ) = EZ+(θ)− EZ−(θ) ≥ EZ+(θ)− 2√
e
.(79)

The next task is to lower bound the expectation EZ+(θ). By the triangle
inequality, we have

‖ΠK(θ + g)‖2 ≤ ‖ΠK(θ + g)−ΠK(g)‖2 + ‖ΠK(g)‖2
≤ ‖θ‖2 + ‖ΠK(g)‖2,

where the second inequality uses non-expansiveness of the projection. Con-
sequently, we have the lower bound

EZ+(θ) = E
(
‖ΠK(θ + g)‖22 − ‖ΠKg‖22

)+
‖ΠK(θ + g)‖2 + ‖ΠKg‖2

≥ E
(
‖ΠK(θ + g)‖22 − ‖ΠKg‖22

)+
‖θ‖2 + 2‖ΠKg‖2

.

(80)

Note that inequality (78)(i) implies two lower bounds on the difference
‖ΠK(θ + g)‖22 − ‖ΠKg‖22. We treat each of these lower bounds in turn, and
show how they lead to inequalities (74a) and (74b).



14 WEI, Y., WAINWRIGHT, M. AND GUNTUBOYINA, A.

Proof of inequality (74a):. Inequality (80) and the first lower bound term
from inequality (78)(i) imply that

EZ+(θ) ≥ E
(
2〈θ, g〉+ ‖θ‖22

)+
‖θ‖2 + 2‖ΠKg‖2

≥ E
‖θ‖22

‖θ‖2 + 2‖ΠKg‖2
I{〈θ, g〉 ≥ 0}.

Jensen’s inequality (and the fact that P{〈θ, g〉 ≥ 0} = 1/2) now allow us to
deduce

EZ+(θ) ≥ P {〈θ, g〉 ≥ 0} ‖θ‖22
(
‖θ‖2 +

2E‖ΠKg‖2
P {〈θ, g〉 ≥ 0}

)−1

=
‖θ‖22

2‖θ‖2 + 8E‖ΠKg‖2

and this gives inequality (74a).

Proof of inequality (74b):. Putting inequality (80), the second term on the
left hand side of inequality (78)(i), along with the fact that 〈θ, EΠKg〉 ≥
‖θ‖22 together guarantees that

EZ+(θ) ≥ E
(
2〈θ, ΠKg〉 − ‖θ‖22

)+
‖θ‖2 + 2‖ΠKg‖2

≥ E
〈θ, EΠKg〉 − ‖θ‖22
‖θ‖2 + 2‖ΠKg‖2

I
{
〈θ, ΠKg〉 >

1

2
〈θ, EΠKg〉

}
.

Now introducing the event D : =
{
〈θ, ΠKg〉 > 〈θ, EΠKg〉/2

}
, Jensen’s in-

equality implies that

EZ+(θ) ≥ P(D) E
〈θ, EΠKg〉 − ‖θ‖22
‖θ‖2 + 2E‖ΠKg‖2

P(D)

.(81)

The concentration inequality (51b) from Lemma 4.1 gives us that

P(D) ≥ P
{
〈θ, ΠKg〉 >

1

2
〈θ, EΠKg〉

}
≥ 1− exp

(
−〈θ, EΠKg〉2

8‖θ‖22

)
.(82)

Inequality (74b) now follows by combining inequalities (79), (81) and (82).

D.3. Proof of Lemma D.2. It remains to prove Lemma D.2. Inequal-
ity (77) is a standard Lipschitz property of projection onto a closed con-
vex cone. Turning to inequality (78), recall the polar cone K∗ : = {z |
〈z, θ〉 ≤ 0, ∀ θ ∈ K}, as well as the Moreau decomposition (18)—namely,
z = ΠK(z) + ΠK∗(z). Using this notation, we have

‖ΠK(x+ y)‖22 − ‖ΠKy‖22 = ‖x+ y −ΠK∗(x+ y)‖22 − ‖y −ΠK∗y‖22
= ‖x‖22 + 2〈x, y −ΠK∗(x+ y)〉+ ‖y −ΠK∗(x+ y)‖22 − ‖y −ΠK∗y‖22.
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Since ΠK∗(y) is the closest point in K∗ to y, we have ‖y −ΠK∗(x+ y)‖2 ≥
‖y −ΠK∗(y)‖2, and hence

‖ΠK(x+ y)‖22 − ‖ΠKy‖22 ≥ ‖x‖22 + 2〈x, y −ΠK∗(x+ y)〉.(83)

Since x ∈ K and ΠK∗(x+y) ∈ K∗, we have 〈x, ΠK∗(x+y)〉 ≤ 0, and hence,
inequality (83) leads to the bound (i) in equation (78). In order to establish
inequality (ii) in equation (78), we begin by rewriting expression (83) as

‖ΠK(x+ y)‖22 − ‖ΠKy‖22 ≥ ‖x‖22 + 2〈x, y −ΠK∗y〉+ 2〈x, ΠK∗y −ΠK∗(x+ y)〉.

Applying the Cauchy-Schwarz inequality to the final term above and using
the 1-Lipschitz property of z 7→ ΠK∗z, we obtain:

〈x, ΠK∗y −ΠK∗(x+ y)〉 ≥ −‖x‖2‖ΠK∗y −ΠK∗(x+ y)‖2 ≥ −‖x‖22,

which establishes the upper bound of inequality (78).
Finally, in order to prove the lower bound in inequality (78), we write

‖ΠK(x+ y)‖22 − ‖ΠKy‖22
=‖x+ y −ΠK∗(x+ y)‖22 − ‖x+ y −ΠK∗y − x‖22
=‖x+ y −ΠK∗(x+ y)‖22 − ‖x+ y −ΠK∗y‖22 + 2〈x, x+ y −ΠK∗y〉 − ‖x‖22.

Since the vector ΠK∗(x+ y) corresponds to the projection of x+ y onto K∗,
we have ‖x+ y −ΠK∗(x+ y)‖2 ≤ ‖x+ y −ΠK∗y‖2 and thus

‖ΠK(x+ y)‖22 − ‖ΠKy‖22 ≤ ‖x‖22 + 2〈x, ΠKy〉,

which completes the proof of inequality (78).

APPENDIX E: AUXILIARY PROOFS FOR THEOREM 1 (B)

In this appendix, we collect the proofs of lemmas involved in the proof of
Theorem 1(b), corresponding to the lower bound on the GLRT performance.

E.1. Proof for scenario E‖ΠKg‖2 < 128. When E‖ΠKg‖2 < 128,
we begin by setting bρ = 1

256 . The assumed bound ε2 ≤ 1
256δ

2
LR({0},K) then

implies that

ε2 ≤ 1

256
δ2
LR({0},K) ≤ E‖ΠKg‖2

256
<

1

2
.

For every ε2 ≤ 1
2 , we claim that E(φ; {0},K, ε) ≥ 1/2. Note that the uniform

error E(φ; {0},K, ε) is at least as large as the error in the simple binary test

H0 : y ∼ N(0, Id) versus H1 : y ∼ N(θ, Id),(84a)
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where θ ∈ K is any vector such that ‖θ‖2 = ε. We claim that the error for
the simple binary test (84a) is lower bounded as

inf
ψ
E(ψ; {0}, {θ}, ε) ≥ 1/2 whenever ε2 ≤ 1/2.(84b)

The proof of this claim is straightforward: introducing the shorthand Pθ =
N(θ, Id) and P0 = N(0, Id), we have

inf
ψ
E(ψ; {0}, {θ}, ε) = 1− ‖Pθ − P0‖TV.

Using the relation between χ2 distance and TV-distance in expression (72c)
and the fact that χ2(Pθ,P0) = exp(ε2)− 1, we find that the testing error
satisfies

inf
ψ
E(ψ; {0}, {θ}, ε) ≥ 1− 1

2

√
exp(ε2)− 1 ≥ 1/2, whenever ε2 ≤ 1/2.

(See Section C for more details on the relation between the TV and χ2-distances.)
This completes the proof under the condition E‖ΠKg‖2 < 128.

E.2. Proof of Lemma E.1. Let us first state Lemma E.1 and give a
proof of it.

Lemma E.1. For any constant a ≥ 1 and for every closed convex cone
K 6= {0}, we have

0 ≤ Γ(θ) ≤ 2a‖θ‖22 + 4〈θ, EΠKg〉
E‖ΠKg‖2

+ b‖θ‖2 for all θ ∈ K,(85a)

where

b : = 3 exp(−(E‖ΠKg‖2)2

8
) + 24 exp(−a

2‖θ‖22
16

).(85b)

In order to prove that Γ(θ) ≥ 0, we first introduce the convenient short-
hand notation v1 : = ΠK∗(θ + g) and v2 : = ΠK∗g. Recall that K∗ denotes
the polar cone of K defined in expression (17). With this notation, the the
Moreau decomposition (18) then implies that

‖ΠK(θ + g)‖22 − ‖ΠKg‖22 = ‖θ + g − v1‖22 − ‖g − v2‖22
= ‖θ‖22 + 2〈θ, g − v1〉+ ‖g − v1‖22 − ‖g − v2‖22.

The right hand side above is greater than ‖θ‖22 + 2〈θ, g − v1〉 because ‖g −
v1‖22 ≥ minv∈K∗ ‖g − v‖22 = ‖g − v2‖22. From the fact that E〈θ, g〉 = 0 and
〈θ, v〉 ≤ 0 for all v ∈ K∗, we have Γ(θ) ≥ 0.
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Now let us prove the upper bound for expected difference Γ(θ). Using the
convenient shorthand notation Z(θ) : = ‖ΠK(θ + g)‖2 − ‖ΠKg‖2, we define
the event

B : = {‖ΠKg‖2 ≥
1

2
E‖ΠKg‖2}, where g ∼ N(0, Id).

Our proof is then based on the decomposition Γ(θ) = EZ(θ) = EZ(θ)I(Bc)+
EZ(θ)I(B). In particular, we upper bound each of these two terms separately.

Bounding E[Z(θ)I(Bc)]:. The analysis of this term is straightforward: in-
equality (77) from Lemma D.2 guarantees that Z(θ) ≤ ‖θ‖2, whence

EZ(θ)I(Bc) ≤ ‖θ‖2P(Bc).(86)

Bounding E[Z(θ)I(B)]:. Turning to the second term, we have

EZ(θ)I(B) ≤ EZ+(θ)I(B)

= E
(
‖ΠK(θ + g)‖22 − ‖ΠKg‖22

)+
‖ΠK(θ + g)‖2 + ‖ΠKg‖2

I(B) ≤ E
(
‖ΠK(θ + g)‖22 − ‖ΠKg‖22

)+
‖ΠKg‖2

I(B).

On event B, we can lower bound quantity ‖ΠKg‖2 with E‖ΠKg‖2/2 thus

E
(
‖ΠK(θ + g)‖22 − ‖ΠKg‖22

)+
‖ΠKg‖2

I(B) ≤ E
(
‖ΠK(θ + g)‖22 − ‖ΠKg‖22

)+ I(B)

E‖ΠKg‖2/2︸ ︷︷ ︸
: =T1

.

(87)

Next we use inequality (78) to bound the numerator of the quantity T1,
namely

E
(
‖ΠK(θ + g)‖22 − ‖ΠKg‖22

)+ I(B) ≤ E
(
2〈θ, ΠKg〉+ ‖θ‖22

)+ I(B)

≤ E
(
2〈θ, ΠKg〉+ a‖θ‖22

)+ I(B),

for every constant a ≥ 1. To further simplify notation, introduce event
C : = {θTΠKg ≥ −a‖θ‖22/2} and by definition, we obtain

E
(
2〈θ, ΠKg〉+ a‖θ‖22

)+ I(B) = E
(
2〈θ, ΠKg〉+ a‖θ‖22

)
I(B ∩ C)

≤ a‖θ‖22 + 2E[〈θ, ΠKg〉I(B ∩ C)].(88)

The right hand side of inequality (88) consists of two terms. The first term
a‖θ‖22 is a constant, so that we only need to further bound the second term
2E〈θ, ΠKg〉I(B ∩ C). We claim that

E[〈θ, ΠKg〉I(B ∩ C)] ≤ E〈θ, ΠKg〉+ ‖θ‖2E‖ΠKg‖2(6
√
P(Cc) + P(Bc)/2).

(89)



18 WEI, Y., WAINWRIGHT, M. AND GUNTUBOYINA, A.

Taking inequality (89) as given for the moment, combining inequalities (87),
(88) and (89) yields

EZ+(θ)I(B) ≤ T1 ≤
2a‖θ‖22 + 4E〈θ, ΠKg〉

E‖ΠKg‖2
+ ‖θ‖2(24

√
P(Cc) + 2P(Bc)).

(90)

As a summary of the above two parts—namely inequalities (86) and (90),
if we assume inequality (89), we have

Γ(θ) ≤ 2a‖θ‖22 + 4E〈θ, ΠKg〉
E‖ΠKg‖2

+ ‖θ‖2(24
√
P(Cc) + 3P(Bc)).(91)

Based on expression (91), the last step in proving Lemma E.1 is to control the
probabilities P(Cc) and P(Bc) respectively. Using the fact that 〈θ, ΠKg〉 =
〈θ, (g −ΠK∗g)〉 ≥ 〈θ, g〉 and the concentration of 〈θ, g〉, we have

P(Cc) = P(〈θ, ΠKg〉 < −
a

2
‖θ‖22) ≤ P(〈θ, g〉 < −a

2
‖θ‖22) ≤ exp(−a

2‖θ‖22
8

),

and P(Bc) = P(‖ΠKg‖2 <
1

2
E‖ΠKg‖2) ≤ exp(−(E‖ΠKg‖2)2

8
).

where the second inequality follows directly from concentration result in
Lemma 4.1 (51a). Substituting the above two inequalities into expression (91)
yields Lemma E.1.

So it is only left for us to show inequality (89). To see this, first notice
that

E[〈θ, ΠKg〉I(B ∩ C)] = E〈θ, ΠKg〉 − E〈θ, ΠKg〉I(Cc ∪ Bc).(92)

The Cauchy-Schwarz inequality and triangle inequality allow us to deduce

−E〈θ, ΠKg〉I(Cc ∪ Bc) = 〈θ, −E[ΠKgI(Cc ∪ Bc)]〉
≤ ‖θ‖2‖E[ΠKgI(Cc ∪ Bc)]‖2

≤ ‖θ‖2
{
‖EΠKgI(Cc)‖2 + ‖EΠKgI(Bc)‖2

}
.

Jensen’s inequality further guarantees that

−E〈θ, ΠKg〉I(Cc ∪ Bc) ≤ ‖θ‖2
{
E[‖ΠKg‖2I(Cc)︸ ︷︷ ︸

: =T2

] + E[‖ΠKg‖2I(Bc)︸ ︷︷ ︸
: =T3

]
}
,(93)
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By definition, on event Bc, we have ‖ΠKg‖2 ≤ E‖ΠKg‖2/2, and conse-
quently

T3 ≤
E‖ΠKg‖2P(Bc)

2
.(94)

Turning to the quantity T2, applying Cauchy-Schwartz inequality yields

T2 ≤
√

E‖ΠKg‖22
√
EI(Cc) =

√
(E‖ΠKg‖2)2 + var(‖ΠKg‖2)

√
P(Cc).

The variance term can be bounded as in inequality (73) which says that
var(‖ΠKg‖2) ≤ 4.

From inequality (21), for every nontrivial cone (K 6= {0}), we are guar-
anteed that E‖ΠKg‖2 ≥ 1/

√
2π, and hence var(‖ΠKg‖2) ≤ 8π(E‖ΠKg‖2)2.

Consequently, the quantity T2 can be further bounded as

T2 ≤
√

1 + 8πE‖ΠKg‖2
√
P(Cc) ≤ 6E‖ΠKg‖2

√
P(Cc).(95)

Putting together inequalities (94), (95) and (93) yields

−E[〈θ, ΠKg〉I(Cc ∪ (C ∩ Bc))] ≤ ‖θ‖2E‖ΠKg‖2(6
√

P(Cc) + P(Bc)/2),

which validates claim (89) when combined with inequality (92). We finish
the proof of Lemma E.1.

E.3. Calculate the testing error. The following lemma allows us to
relate ‖ΠKg‖2 to its expectation:

Lemma E.2. Given every closed convex cone K such that E‖ΠKg‖2 ≥
128, we have

P(‖ΠKg‖2 > E‖ΠKg‖2) > 7/16.(96)

See supplementary file [Appendix E.5] for the proof of this claim.
For future reference, we note that it is relatively straightforward to show

that the random variable ‖ΠKg‖2 is distributed as a mixture of χ-distributions,
and indeed, the Lemma E.2 can be proved via this route. Raubertas et al. [4]
proved that the squared quantity ‖ΠKg‖22 is a mixture of χ2 distributions,
and a very similar argument yields the analogous statement for ‖ΠKg‖2.

We are now ready to calculate the testing error for the GLRT given in
equation (11b). Our goal is to lower bound the error E(φβ; {0},K, ε) uni-
formly over the chosen threshold β ∈ [0,∞). We divide the choice of β
into three cases, depending on the relationship between β and E‖ΠKg‖2,
E‖ΠK(θ+g)‖2. Notice this particular θ is chosen to be the one that satisfies
inequality (55).
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Case 1. First, consider a threshold β ∈ [0, E‖ΠKg‖2]. It then follows
immediately from inequality (96) that the type I error by its own satisfies

type I error = P0(‖ΠKy‖2 ≥ β) ≥ P(‖ΠKg‖2 ≥ E‖ΠKg‖2) ≥ 7

16
.

Case 2. Otherwise, consider a threshold β ∈
(
E‖ΠKg‖2, E‖ΠK(θ + g)‖2

]
.

In this case, we again use inequality (96) to bound the type I error, namely

type I error = P0(‖ΠKy‖2 ≥ β)

= P
[
‖ΠKg‖2 ≥ E‖ΠKg‖2

]
− P

[
‖ΠKg‖2 ∈ [E‖ΠKg‖2, β)

]
≥ 7

16
−max

x
{f‖ΠKg‖2(x)(β − E‖ΠKg‖2)},

where we use f‖ΠKg‖2 to denote the density function of the random variable
‖ΠKg‖2 As discussed earlier, the random variable ‖ΠKg‖2 is distributed as
a mixture of χ-distributions; in particular, see Lemma E.2 above and the
surrounding discussion for details. As can be verified by direct numerical
calculation, any χk variable has a density that bounded from above by 4/5.
Using this fact, we have

type I error ≥ 7

16
− 4

5
(β − E‖ΠKg‖2)

(i)

≥ 7

16
− 4

5
Γ(θ)

(ii)
> 3/8,

where step (i) follows by the assumption that β belongs to the interval(
E‖ΠKg‖2, E‖ΠK(θ + g)‖2

]
, and step (ii) follows since Γ(θ) ≤ 1/16.

Case 3. Otherwise, given a threshold β ∈
(
E‖ΠK(g + θ)‖2,∞

)
, we define

the scalar x : = β−E‖ΠK(g+θ)‖2. From the concentration inequality given
in Lemma 4.1, we can deduce that

type II error ≥ Pθ(‖ΠKy‖2 ≤ β)

= 1− P
(
‖ΠK(θ + g)‖2 − E‖ΠK(θ + g)‖2 > β − E‖ΠK(θ + g)‖2

)
≥ 1− exp(−x2/2).

At the same time,

type I error = P0(‖ΠKy‖2 ≥ β) = P(‖ΠKg‖2 ≥ E‖ΠKg‖2)− P(‖ΠKg‖2 ∈ [E‖ΠKg‖2, β))

≥ 7

16
− 4

5
(β − E‖ΠKg‖2),

where we again use inequality (96) and the boundedness of the density of
‖ΠKg‖2. Recalling that we have defined x : = β − E‖ΠK(g + θ)‖2 as well as
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Γ(θ) = E
(
‖ΠK(θ + g)‖2 − ‖ΠKg‖2

)
, we have

β − E‖ΠKg‖2 = x+ Γ(θ) ≤ x+
1

16
,

where the last step uses the fact that Γ(θ) ≤ 1/16. Consequently, the type
I error is lower bounded as

type I error ≥ 7

16
− 4

5
(x+ 1/16) =

31

80
− 4

5
x.

Combining the two types of error, we find that the testing error is lower
bounded as

inf
x>0

{
(
31

80
− 4

5
x)+ + 1− exp(−x2/2)

}
= 1− exp(− 312

2× 642
) ≥ 0.11.

Putting pieces together, the GLRT cannot succeed with error smaller than
0.11 no matter how the cut-off β is chosen.

E.4. Proof of inequality (55). Now let us turn to the proof of in-
equality (55). First notice that if the radius satisfies ε2 ≤ bρδ

2
LR({0},K),

then there exists some θ ∈ H1 with ‖θ‖2 = ε that satisfies

‖θ‖22 ≤ bρE‖ΠKg‖2 and 〈θ, EΠKg〉 ≤
√
bρE‖ΠKg‖2.(97)

Setting a = 4/
√
bρ ≥ 1 in inequality (85a) yields

Γ(θ) ≤
8‖θ‖22/

√
bρ + 4〈θ, EΠKg〉
E‖ΠKg‖2

+ b‖θ‖2

where b : = 3 exp(− (E‖ΠKg‖2)2

8 )+24 exp(−‖θ‖
2
2

bρ
). Now we only need to bound

the two terms in the upper bound separately. First, note that inequality (97)
yields

8‖θ‖22/
√
bρ + 4〈θ, EΠKg〉
E‖ΠKg‖2

≤ 12
√
bρ.(98)

On the other hand, again by applying inequality (97), it is straightforward
to verify the following two facts that

‖θ‖2 exp(−(E‖ΠKg‖2)2

8
) ≤

√
bρE‖ΠKg‖2 exp(−(E‖ΠKg‖2)2

8
)

≤
√
bρ max

x∈(0,∞)

√
x exp(−x

2

8
) =

√
bρ

(
2

e

)1/4

,

and ‖θ‖2 exp(−‖θ‖
2
2

bρ
) ≤ sup

x∈(0,∞)
x exp(−x

2

bρ
) =

√
bρ
2e
.
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Combining the above two inequalities ensures an upper bound for product
b‖θ‖2 and directly leads to upper bound of quantity Γ(θ), namely

Γ(θ) ≤ 12
√
bρ + 3

√
bρ

(
2

e

)1/4

+ 24

√
bρ
2e
,

With the choice of bρ, we established inequality (55).

E.5. Proof of Lemma E.2. In order to prove this result, we first define
random variable F : = ‖ΠKg‖22 − m, where m : = E‖ΠKg‖22 and σ̃2 : =
var(F ). We make use of the Theorem 2.1 in Goldstein et al. [3] which shows
that the distribution of F and Gaussian distribution Z ∼ N(0, σ̃2) are very
close, more specifically, the Theorem says

‖F − Z‖TV ≤
16

σ̃2

√
m ≤ 8

E‖ΠKg‖2
.(99)

In the last inequality, we use the facts that σ̃2 ≥ 2m and
√
E‖ΠKg‖22 ≥

E‖ΠKg‖2.
It is known that the quantity ‖ΠKg‖22 is distributed as a mixture of χ2

distributions(see e.g., [4, 3])—in particular, we can write

‖ΠKg‖22
law
=

VK∑
i=1

Xi = WK + VK , WK =

VK∑
i=1

(Xi − 1),

where each {Xi}i≥1 is an i.i.d. sequence χ2
1 variables, independent of VK .

Applying the decomposition of variance yields

σ̃2 = var(VK) + 2E‖ΠKg‖22 ≥ 2m.

We can write the probability P(‖ΠKg‖2 > E‖ΠKg‖2) as

P(‖ΠKg‖2 > E‖ΠKg‖2) = P(‖ΠKg‖22 − E‖ΠKg‖22 > (E‖ΠKg‖2)2 − E‖ΠKg‖22) ≥ P(F > 0).

So if E‖ΠKg‖2 ≥ 128, then inequality (99) ensures that dTV (F,N) ≤ 1/16,
and hence

P(F > 0) ≥ P(Z > 0)− ‖F − Z‖TV ≥
7

16
.

We finish the proof of Lemma E.2.

APPENDIX F: AUXILIARY PROOFS FOR THEOREM 2

In this appendix, we collect the proofs of various lemmas used in the proof
of Theorem 2.
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F.1. Proof of Lemma 2. For every probability measure Q supported
on K ∩Bc(1), let vector θ be distributed accordingly to measure εQ then it
is supported on K ∩Bc(ε). Consider a mixture of distributions,

P1(y) = Eθ (2π)−d/2 exp(−‖y − θ‖
2
2

2
).(100)

Let us first control the χ2 distance between distributions P1 and P0 : =
N(0, Id). Direct calculations yield

χ2(P1,P0) + 1 = EP0

(
P1

P0

)2

= EP0

(
Eθ exp{−‖y − θ‖

2
2

2
+
‖y‖22

2
}
)2

= EP0

(
Eθ exp{〈y, θ〉 − ‖θ‖

2
2

2
}
)2

.

Suppose random vector θ′ is an independent copy of random vector θ, then

χ2(P1,P0) + 1 = EP0Eθ,θ′ exp{〈y, θ + θ′〉 − ‖θ‖
2
2 + ‖θ′‖22

2
}

= Eθ,θ′ exp{‖θ + θ′‖22
2

− ‖θ‖
2
2 + ‖θ′‖22

2
}

= Eθ,θ′ exp(〈θ, θ′〉)
= E exp(ε2〈η, η′〉),(101)

where the second step uses the fact the moment generating function of multi-
variate normal distribution. As we know, the testing error is always bounded
below by 1−‖P1,P0‖TV, so by the relation between the χ2 distance and TV
distance, we have:

testing error ≥ 1− 1

2

√
E exp (ε2〈η, η′〉)− 1,

which completes our proof.

F.2. Proof of Lemma F.1. Let us first provide a formal statement of
Lemma F.1 and then prove it.

Lemma F.1. Letting η and η′ denote an i.i.d pair of random variables
drawn from the distribution Q defined in equation (57), we have

Eη,η′ exp(ε2〈η, η′〉) ≤ 1

a2
exp

(
5ε2‖EΠKg‖22
(E‖ΠKg‖2)2

+
40ε4E(‖ΠKg‖22)

(E‖ΠKg‖2)4

)
,(102)

where a : = P(‖ΠKg‖2 ≥ 1
2E‖ΠKg‖2) and ε > 0 satisfies the inequality ε2 ≤

(E‖ΠKg‖2)2/32.
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To prove this result, we use Borell’s lemma [2] which states that for a
standard Gaussian vector Z ∼ N(0, Id) and a function f : Rd → R which is
L-Lipschitz, we have

E exp(af(Z)) ≤ exp(aEf(Z) + a2L2/2)(103)

for every a ≥ 0.
Let g, g′ be i.i.d standard normal vectors in Rd. Let

A(g) : = {‖ΠKg‖2 >
1

2
E‖ΠKg‖2} and A(g′) : = {‖ΠKg

′‖2 >
1

2
E‖ΠKg

′‖2}

By definition of the probability measure Q in expression (57), we have

Eη,η′ exp(ε2〈η, η′〉) = Eg,g′
[

exp

(
4ε2〈ΠKg, ΠKg

′〉
E‖ΠKg‖2E‖ΠKg′‖2

) ∣∣∣ A(g) ∩ A(g′)

]

=
1

P(A(g) ∩ A(g′))
Eg,g′ exp

(
4ε2〈ΠKg, ΠKg

′〉
E‖ΠKg‖2E‖ΠKg′‖2

)
I(A(g) ∩ A(g′)).

Using the independence of g, g′ and nonnegativity of the exponential func-
tion, we have

Eη,η′ exp(ε2〈η, η′〉) ≤ 1

P(A(g))2
Eg,g′ exp

(
4ε2〈ΠKg, ΠKg

′〉
E‖ΠKg‖2E‖ΠKg′‖2

)
︸ ︷︷ ︸

: =T1

.(104)

To simplify the notation, we write λ : = 4ε2/(E‖ΠKg‖2)2 so that

T1 = Eg,g′ exp
(
λ〈ΠKg, ΠKg

′〉
)
.(105)

Now for every fixed value of g, the function h 7→ 〈ΠKg, ΠKh〉 is Lipschitz
with Lipschitz constant equal to ‖ΠKg‖2. This is because

|〈ΠKg, ΠKh〉 − 〈ΠKg, ΠKh
′〉| ≤ ‖ΠKg‖2‖ΠKh−ΠKh

′‖2 ≤ ‖ΠKg‖2‖h− h′‖2,

where we used Cauchy-Schwartz inequality and the non-expansive property
of convex projection. As a consequence of inequality (103) and Cauchy-
Schwartz inequality, the term T1 can be upper bounded as

T1 ≤ Eg exp

(
λ〈ΠKg, EΠKg

′〉+
λ2‖ΠKg‖22

2

)
≤
√
Eg exp (2λ〈ΠKg, EΠKg′〉)︸ ︷︷ ︸

: =T2

√
Eg exp

(
λ2‖ΠKg‖22

)︸ ︷︷ ︸
: =T3

.(106)
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We now control T2, T3 separately. For T2, note again that h 7→ 〈ΠKh, EΠKg
′〉

is a Lipschitz function with Lipschitz constant equal to ‖EΠKg
′‖2. Inequal-

ity (103) implies therefore that

T2 ≤
√

exp
(
2λ〈EΠKg, EΠKg′〉+ 2λ2‖EΠKg′‖22

)
.(107)

To control quantity T3, we use a result from [1, Sublemma E.3] on the
moment generating function of ‖ΠKg‖2 which gives

T3 ≤

√
exp

(
λ2E(‖ΠKg‖22) +

2λ4E(‖ΠKg‖22)

1− 4λ2

)
, whenever λ < 1/4.

(108)

Because of the assumption that ε2 ≤ (E‖ΠKg‖2)2/32, we have λ ≤ 1/8 <
1/4. Therefore putting all the pieces together as above, we obtain

Eη,η′ exp(ε2〈η, η′〉) ≤ 1

P(A(g))2
exp

(
(λ+ λ2)‖EΠKg‖22 +

λ2E(‖ΠKg‖22)

2
+
λ4E(‖ΠKg‖22)

1− 4λ2

)
≤ 1

P(A(g))2
exp

(
1.25λ‖EΠKg‖22 + 2.5λ2E(‖ΠKg‖22)

)
=

1

P(A(g))2
exp

(
5ε2‖EΠKg‖22
(E(‖ΠKg‖22)

+
40ε4E(‖ΠKg‖22)

(E‖ΠKg‖2)4
)

)
.

This completes the proof of inequality (102).

APPENDIX G: AUXILIARY PROOFS FOR PROPOSITION 2 AND
THE MONOTONE CONE

In this appendix, we collect various results related to the monotone cone,
and the proof of Proposition 2.

G.1. Proof of Lemma 1. So as to simplify notation, we define ξ =
ΠKg, with jth coordinate denoted as ξj . Moreover, for a given vector g ∈ Rd
and integers 1 ≤ u < v ≤ d, we define the u to v average as

ḡuv : =
1

v − u+ 1

v∑
j=u

gj .

To demonstrate an upper bound for the inner product inf
η∈K∩Sd−1

〈η, EΠKg〉,

it turns out that it is enough to take η = 1√
2
(−1, 1, 0, . . . , 0) ∈ K ∩Sd−1 and

uses the fact that

inf
η∈K∩Sd−1

〈η, EΠKg〉 ≤
1√
2
E(ξ2 − ξ1).(109)
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So it is only left for us to analyze E(ξ2 − ξ1) which actually has an explicit
form based on the explicit representation of projection to the monotone cone
(see Robertson et al. [5], Chapter 1) where

ξi = λi − λ̄, λi = max
u≤j

min
v≥j

ḡuv.(110)

This is true because projecting to cone K = M ∩ L⊥ can be written into
two steps ΠKg = ΠL⊥(ΠMg) and projecting to subspace L⊥ only shifts the
vector to be mean zero.

We claim that the difference satisfies

ξ2 − ξ1 ≤ max
v≥2
|ḡ2v|+ max

v≥1
|ḡ1v|.(111)

To see this, as a consequence of expression (110), we have

ξ2 − ξ1 = max{min
v≥2

ḡ1v, min
v≥2

ḡ2v} −min
v≥1

ḡ1v.

The right hand side above only takes value in set {minv≥2 ḡ1v−g1, 0, minv≥2 ḡ2v−
minv≥1 ḡ1v} where the last two values agree with bound (111) obviously while
the first value can be written as

min
v≥2

ḡ1v − g1 = min
v≥2

(
1

v

v∑
i=2

gi − (1− 1

v
)g1

)
= min

v≥2
(1− 1

v
)(ḡ2v − g1) ≤ |ḡ2v|+ |g1|,

which also agrees with inequality (111).
Next let us prove that for every j = 1, 2, we have

Emax
v≥j
|ḡjv| < 20

√
2,(112)

and combine this fact with expressions (111) and (109) gives us inf
η∈K∩Sd−1

〈η, EΠKg〉 ≤

40 which validates the conclusion in Lemma 1.
It is only left for us to verify inequality (112). First as we can partition

the interval [j, d] into k smaller intervals where each smaller interval is of
length 2m except the last one, then

E max
j≤v≤d

|ḡjv| = E max
1≤m≤k

max
v∈Im

|ḡjv| ≤
k∑

m=1

Emax
v∈Ik
|ḡjv|,(113)

where Im = [2m + j − 2, 2m+1 + j − 3], 1 ≤ m < k, the number of intervals
k and length of Ik are chosen to make those intervals sum up to d.
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Given index 2m + j − 2 ≤ v ≤ 2m+1 + j − 3, random variables ḡjv are
Gaussian distributed with mean zero and variance 1/(v − j + 1). Suppose
we have Gaussian random variable Xv with mean zero and variance σ2

m =
1/(2m − 1) and the covariance satisfies cov(Xv, Xv′) = cov(ḡjv, ḡjv′). Since
σ2
m ≥ 1/(v − j + 1), the variable maxv∈Im |ḡjv| is stochastically dominated

by the maximum max2m≤v≤2m+1−1 |Xv|, and therefore

k∑
m=1

Emax
v∈Im

|ḡjv| ≤
k∑

m=1

E max
2m≤v≤2m+1−1

|Xv|.

Applying the fact that for t ≥ 2 number of Gaussian random variable εi ∼
N(0, σ2), we have Emax1≤i≤t |εi| ≤ 4σ

√
2 log t which gives

k∑
m=1

Emax
v∈Im

|ḡjv| ≤
k∑

m=1

4σm
√

2 log(2m) = 4
√

2 log 2

(
k∑

m=1

√
m

2m − 1

)
.

(114)

The last step is to control the sum
∑k

m=1

√
m

2m−1 . There are many ways to

show that it is upper bounded by some constant. One crude way is use the

fact that
√
m

2m−1 ≤ 2m/4 whenever m ≥ 5, therefore we have

k∑
m=1

√
m

2m − 1
=

4∑
m=1

√
m

2m − 1
+

k∑
m=5

√
m

2m − 1
<

4∑
m=1

√
m

2m − 1
+

k∑
m=5

1

2m/4

<
4∑

m=1

√
m

2m − 1
+

2−5/4

1− 2−1/4
< 6,

which validates inequality (112) when combined with inequalities (113) and
(114). This completes the proof of Lemma 1.

G.2. Proof of Lemma B.1. The proof of Lemma B.1 involves two
parts. First, we define the matrices G,F . Then we prove that the distribution
of η has the right support where we make use of Lemma B.2.

As stated, matrix G is a lower triangular matrix satisfying (69a). Let us
now specify the matrix F . Recall that we denote δ : = r−2 and r : = 1/3.
To define matrix F , let us first define a partition of [d] into m consecutive
intervals

{
I1, . . . , Im

}
with m specified in expression (64) and the length of

each interval |Ii| = `i where `i is defined as

`i : = bδ − 1

δi
(d+ logδ d+ 3)c, 1 ≤ i ≤ m− 1,(115)
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and `m : = d−
∑m−1

i=1 `i.
Following directly from the definition (115), each length `i ≥ 1 and `i is

a decreasing sequence with regard to i. Also `i satisfies the following

`1 = bδ − 1

δ
(d+ logδ d+ 3)c < d and `i ≥ δ`i+1, for 1 ≤ i ≤ m− 1,

(116)

where the first inequality holds since as
√

log(ed) ≥ 14, we have (δ −
1)(logδ d + 3) ≤ d and the last inequality follows from the fact that babc ≥
abbc for positive integer a and b ≥ 0 (because abbc is an integer that is
smaller than ab).

We are now ready to define the d×m matrix F . We take

F (i, j) =


1√
`j

i ∈ Ij ,

0 otherwise.
(117)

It is easy to check that matrix F satisfies F TF = Im which validates in-
equality (69b).

First we show that both η = FGb and η − η̄1 belong to M. The i-th
coordinate of η can be written as

ηi =
1√
`j

j∑
t=1

rj−tbt, ∀ i ∈ Ij .

Therefore we can denote uj as the value of ηi for i ∈ Ij . To establish mono-
tonicity, we only need to compare the value in the consecutive blocks. Direct
calculation of the consecutive ratio yields

uj+1

uj
=
r(
∑j

t=1 r
j−tbt) + bj+1√
`j+1

√
`j∑j

t=1 r
j−tbt

≥ r

√
`j
`j+1

≥ 1,

where we used the nonnegativity of coordinates of vector b and the last
inequality follows from inequality (116) and δ = r−2. The monotonicity of
η − η̄1 thus inherits directly from the monotonicity of η.

To complete the proof of Lemma B.1, we only need to prove lower bounds
on ‖η‖2 and ‖η− η̄‖2. For these, we shall use inequality (70b) of Lemma B.2.

Proof of the bound ‖η‖2 ≥ 1:. Recall that r = 1/3 and as a direct conse-
quence of inequality (70b) in Lemma B.2, we have

〈η, η〉 = ‖Gb‖22 ≥
9

4
− 63

32s
> 1.96,(118)

where the last step follows form the fact that s = b
√
mc ≥ 7. Therefore, the

norm condition holds so η is supported on M ∩ LT ∩Bc(1).
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Proof of the bound ‖η − η̄1‖2 ≥ 1:. The norm ‖η − η̄1‖22 has the following
decomposition where

‖η − η̄1‖22 = ‖η‖22 − d(η̄)2.

We claim that d(η̄)2 ≤ 0.2. If we take this for now, combining with in-
equality (118) which says ‖η‖22 is greater than 1.96, we can deduce that
‖η − η̄1‖22 ≥ 1. So it suffices to verify the claim d(η̄)2 ≤ 0.2. Recall that
η = FGb. Direct calculation yields

dη̄ = 〈1, η〉 = 1T · FGb =
m∑
k=1

bk

m∑
i=k

√
`ir

i−k

︸ ︷︷ ︸
: =ak

.

Plugging into the definitions of r and `i guarantees that

ak ≤
m∑
i=k

√
(δ − 1)(d+ logδ d+ 3)

δi
1

δ(i−k)/2
=
√

(δ − 1)(d+ logδ d+ 3)δk
m∑
i=k

δ−i

≤

√
(d+ logδ d+ 3)

(δ − 1)δk−2
,

where the last step uses the summability of a geometric sequence—namely∑m
i=k δ

−i ≤ δ−k+1/(δ − 1). Now for every vector b, our goal is to control∑
akbk. Recall that every vector b has s nonzero entries which equal to 1/

√
s

where s = b
√
mc. Since ak decreases with k, this inner product

∑
akbk is

largest when the first s coordinates of b are nonzero, therefore

dη̄ ≤
s∑

k=1

ak
1√
s
≤ 1√

s

√
δ2(d+ logδ d+ 3)

δ − 1

s∑
k=1

1

δk/2
≤ 1√

s

√
δ2(d+ logδ d+ 3)

δ − 1

1√
δ − 1

,

and thus we have

d(η̄)2 ≤ 1√
m− 1

(d+ logδ d+ 3)

d

δ2

(δ − 1)(
√
δ − 1)2

≤ 81(d+ logδ d+ 3)

32d(
√
m− 1)

< 0.2,

where the last step uses
√
m ≥ 8. Therefore, the norm condition also holds

so η − η̄1 is supported on M ∩ LT ∩Bc(1).
Thus, we have completed the proof of Lemma B.1.
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G.3. Proof of Lemma B.2. By definition of the matrix G, we have

〈Gb, Gb′〉 =
m∑
t=1

(Gb)t(Gb
′)t =

m∑
t=1

(bt + rbt−1 + · · ·+ rt−1b1)(b′t + rb′t−1 + · · ·+ rt−1b′1)

=
m∑
t=1

t∑
u=1

t∑
v=1

r2t−u−vbub
′
v.

Switching the order of summation yields

〈Gb, Gb′〉 =
m∑
u=1

m∑
v=1

bub
′
v

m∑
t=max{u,v}

r2t−u−v

=

m∑
u=1

m∑
v=1

bub
′
v

ru+v

r2 max{u,v} − r2m+2

1− r2

=
1

1− r2

m∑
u=1

m∑
v=1

bub
′
vr
|u−v|

︸ ︷︷ ︸
: =∆1

− 1

1− r2

m∑
u=1

m∑
v=1

bub
′
vr

2m+2−u−v

︸ ︷︷ ︸
: =∆2

.(119)

We bound the two terms ∆1 and ∆2 separately.
Recall the fact that b, b′ belong to S, so there are exactly s = b

√
mc

nonzero entry in both b and b′ and these entries equal to 1/
√
s. The summa-

tion defining ∆1 is not affected by the permutation of coordinates, so that
we can assume without loss of generality that the indices of nonzero entries
in b are indexed by {1, . . . , s}, and that the indices of nonzero entries in b′

are indexed by {k, k + 1, . . . , k + s− 1} for some 1 ≤ k ≤ m+ 1− s.
We split our proof into two cases depending on whether k ≤ s or k > s.

Case 1 (k ≤ s):. The summation ∆1 can be written as

s(1− r2)∆1 = s
m∑
u=1

m∑
v=1

bub
′
vr
|u−v| =

s∑
u=1

k+s−1∑
v=k

r|u−v|.

Direct calculation yields

s(1− r2)∆1 =

k−1∑
u=1

k+s−1∑
v=k

rv−u +

s∑
u=k

u∑
v=k

ru−v +

s∑
u=k

k+s−1∑
v=u+1

rv−u

=
(1− rs)(r − rk)

(1− r)2
+
s− k + 1

1− r
− r

(1− r)2
(1− rs−k+1) +

r(s− k + 1)

1− r
− rk − rs+1

(1− r)2

=
1 + r

1− r
(s− k + 1) +

rk(rs + rs+2 − 2)

(1− r)2
.
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Notice the following two facts that

〈b, b′〉 =
s− k + 1

s
and

−2r

(1− r)2
≤ rk(rs + rs+2 − 2)

(1− r)2
< 0,

so that

1

(1− r)2
〈b, b′〉+

−2r

s(1− r2)(1− r)2
≤ ∆1 ≤

1

(1− r)2
〈b, b′〉.(120)

Case 2 (k > s):. The summation ∆1 satisfies the bounds

s(1− r2)∆1 = s
m∑
u=1

m∑
v=1

bub
′
vr
|u−v| =

s∑
u=1

k+s−1∑
v=k

rv−u =
rk−s(1− rs)2

(1− r)2
.

Since k − s ≥ 1, we have 〈b, b′〉 = 0 and consequently

∆1 ≤
1

(1− r)2
〈b, b′〉+

r

s(1− r2)(1− r)2
.(121)

Combining inequalities (119), (120) and (121), we can deduce that

〈Gb, Gb′〉 ≤ ∆1 ≤
1

(1− r)2
〈b, b′〉+

r

s(1− r2)(1− r)2
,

which validates inequality (70a).
On the other hand, when b = b′, the summation ∆2 is the largest when

the nonzero entries of b lie on coordinates m− s+ 1, . . . ,m. Thus we have

s(1− r2)∆2 ≤
m∑

u=m−s+1

m∑
v=m−s+1

r2m+2−u−v =
r2(1− rs)2

(1− r)2
<

r2

(1− r)2
.

(122)

Combining decomposition (119) with the inequalities (120), we can deduce
that

〈Gb, Gb〉 ≤ 1

(1− r)2
− 2r

s(1− r2)(1− r)2
− r2

s(1− r2)(1− r)2
,

where we use the fact that 〈b, b〉 = 1. This completes the proof of inequal-
ity (70b).
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