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1 Supplementary Text

1.1 Motivating Simulation Study: Genomic Selection

In this particular subsection, our goal is to empirically motivate the desire to have a principled variable
selection procedure for nonparametric and/or black box methods. We also want to empirically illustrate
the behavior of the effect size analog. To do this, we consider a similar statistical genetics-inspired
simulation design that we utilize in the main text. Briefly, we will assume that all of the observed
genetic effects explain a fixed proportion of the total phenotypic variance. This proportion is referred to
as the broad-sense heritability of the trait, which we set to be H?> = 0.3. From the more conventional
statistics perspective, the parameter H? can alternatively be described as a factor controlling the signal-
to-noise ratio. Next, we make use of n = 2000 synthetic genotypes that are independently generated to
have p = 500 single nucleotide polymorphisms (SNPs) with allele frequencies randomly sampled from
a uniform distribution over values ranging from [0.05,0.5]. The resulting n x p simulated genotype
matrix X is then used to generate continuous phenotypes that mirror genetic architectures affected by
a combination of linear (additive) and interaction (epistatic) effects. Specifically, we randomly choose
J* =30 “causal” (or truly associated) markers that we classify into two distinct groups: (i) a small set of
5 select variants, and (ii) a larger set of 25 causal variants. All causal markers have additive effects and,
when applicable, the group 1 causal SNPs interact with group 2 causal SNPs, but never with each other
(the same rule applies to the second group).

The linear effect sizes for all j* associated genetic variants are assumed to come from a standard
normal distribution or g« ~ N(0,1). Next, we create a separate matrix W which holds all pairwise
interactions between the group 1 and 2 causal markers. These corresponding interaction effect sizes are
also drawn as v ~ N(0,I). We scale both the additive and interaction effects so that collectively they
explain a fixed proportion of H2. Namely, the additive effects make up p%, while the pairwise interactions
make up the remaining (1 — p)%. Alternatively, the proportion of the heritability explained by additivity
is said to be V(X3) = pH?, while the proportion detailed by nonlinearity is given as V(W~) = (1 — p)H.
Once we obtain the final effect sizes for all causal variants, we draw normally distributed random errors
as € ~ N(0,I) to make up the remaining (1 — H*)% of the total phenotypic variance V(y). Finally,
continuous phenotypes are then created by summing over all observed effects using the following two
simulation models:

(i) y=XB+W~vy+e
(i) y=Zw+XB+Wvy+e

where Z contains covariates representing population structure, and w are the corresponding fixed effects
which are also assumed to follow a standard multivariate normal distribution. We will consider three
simulation scenarios. Scenario I involves phenotypes generated by model (i). Scenarios II and III consider
model (ii) where we introduce population stratification effects by allowing the top 5 and 10 genotype
principal components (PCs) Z to make up 30% of the overall variation in the simulated traits, respectively.

Within these three scenarios, we also consider two choices for the parameter p = {0.5,1}. Intuitively,
p = 1 represents the limiting case where the variation of a trait is driven by solely additive effects. For p =
0.5, the additive and interaction effects are assumed to equally contribute to the total phenotypic variance.
Once again, in these simulations, we are interested in demonstrating the power of the nonparametric
methods and their ability to facilitate out-of-sample prediction. We evaluate the predictive accuracy
of two methods. The first is a standard GP regression model with a zero mean prior and a Gaussian
covariance function. Posterior estimates of the function f are obtained by using a Gibbs sampler with
10,000 MCMC iterations and hyper-parameters set to a = 5 and b = 2/5 (see Algorithmic Overview
below). The second method we consider is a standard linear model, which is fit by using ordinary least
squares (OLS). The linear model is used to serve as a baseline. Mean squared error (MSE) and predictive



correlation (R) are used to compare out-of-sample predictive accuracy. We also record the tabulated
frequency for which a given method exhibits the lowest MSE and greatest predictive R, which we denote
as Opt%mse and Opt%g, respectively. We analyze 100 different simulated datasets for all simulation
scenarios I-IIT and each case p. For each iterative run, we randomly split the data into training data with
80% of the samples and a test set with the remaining 20%.

Overall numerical results for each case of p are presented in Table S1, and then further illustrated
as boxplots in Figure S1 to show how the two methods perform while taking into account variability
across simulations. The GP regression outperforms the standard linear model OLS estimates in all of
the simulation scenarios. As expected, this discrepancy is obvious when there is population stratification
(i.e. Scenarios IT and IIT), particularly when there are underlying interactions affecting the generation
of phenotypes (i.e. p = 0.5). This is unsurprising given that the GP determines function estimates in
a nonlinear space. Altogether, these results are consistent with past genomic selection and phenotypic
prediction studies regarding nonparametric models [1].

1.2 Identifiability of the Effect Size Analog

In the main text of this paper, we consider a generalized projection operator between an infinite dimen-
sional function space, called a reproducing kernel Hilbert space (RKHS), and the original genotype space.
An RKHS may be defined based on a nonlinear transformation of data using a positive definite covariance
function (or kernel). Here, we conduct inference by specifying a Gaussian process (GP) to describe a
prior distribution over the elements in this space

f(x) ~ GP(m(x), k(x,x)), (S1)

where f(e) is completely specified by its mean function and positive definite covariance (kernel) function,
m(e) and k(e,e), respectively. In practice, we condition on a finite set of locations (i.e. a set of observed
samples n), and jointly rewrite the Gaussian process prior as a multivariate normal [2]

y=f+e, f~N(0,K), e~ N(0 7). (S2)

Altogether, we refer to the above as taking a “weight-space” view on Gaussian process regression [3].
Briefly, y is an n-dimensional vector of phenotypes, the residual noise € is assumed to follow a multivariate
normal distribution with mean zero and variance 72, and I is an identity matrix. The vector f =
[f(x1),..., f(x,)]7 is assumed to come from a multivariate normal with mean 0 and covariance matrix
K = ¥ with each k;; = k(x;,x,). Additionally, the matrix ¥ = [(x1), ..., (x,)]|T is a corresponding
matrix of concatenated vector spaces 1(x) = {V/d¢e(x)}72, detailing a subspace of the RKHS, H,, that
is realized by the span of the data. Namely,

My = {f1f(x) = ¥Lc and ||| < oo}

where || o ||k is the RKHS norm, and the coefficients ¢ determine the nonlinear function.

Our goal is to specify an identifiability requirement for the effect size analog. Similar results have
been previously presented for random Fourier feature maps [4]. The results in this section are, effectively,
a generalization of these claims. A reasonable identifiability requirement for the effect size analog is that
two different functions in H, will result in two different vectors for 3. This requirement can be restated
as the projection P = XTWT = Xf should be an injective map from c to 5 First we consider the classic
linear regression setting

B =Xy, (S3)

where X is the Moore-Penrose pseudoinverse — which, in the case of a full rank design matrix, equates to



X' = (XTX)~!XT and leads to the standard ordinary least-squares (OLS) regression coefficient estimates.

Observe that two vectors 51 and ,327 which only differ in the null space of X, will give rise to the same
model estimate f. This same issue will arise for our nonlinear effect size analog. Hence, the statement
we will make about the injectivity of the map P will hold modulo the null space of X.

Claim S1 (Generalizing Results from [4]). Consider a strictly positive definite covariance matriz K with
feature map ¢ : RP — RP. The projection P is injective for any coefficient vector for which the projection
P is in the span of the design matriz X. Alternatively, the projection P is injective for the span of the
design matriz, span(X).

Proof. Consider positive definite covariance matrices K. The assumption that the covariance function is
positive definite is key as it implies that the resulting ¥ spans the entire p-dimensional predictor space.
In the case that K is positive semi-definite, we have to understand the composition of the null space of
K with the null space of the design matrix X.

Let ¢; and cq be two different coefficient vectors corresponding to functions f; and f; in the restricted
RKHS subspace, respectively. There exists d such that co = ¢; + § with § # 0 and

B = Xwre
Bo = XIWTc, =XIWT(c; +6) = XTWTe, + XTWTS.
Since K is a positive definite matrix,
Xy = (Su +4,,

where § is the projection onto the span of X, and §, is the projection onto the null space of X. Note

that X6, = 0, so we cannot separate 51 #+ ﬁg if the difference between c¢; and co projects onto the
null space of X. By definition, if part of the vector § projects onto the span of X, then P§ # 0 and

B1 # Ba. O

1.3 Practical Computation of Distributional Centrality Measures

In the main text, we formally define the effect size analog as the result of projecting the design matrix
X onto the vector f = ¥Tc via the linear map,

B =XwTc =Xt (S4)

We also assume that the posterior for 5 is (approximately) multivariate normal with an empirical mean
vector p and positive semi-definite covariance/precision matrices ¥ = A~! estimated via sampling meth-
ods. Under these assumptions, we may partition conformably as follows

() (0] 528 (2 8)
ﬂ < ﬂ_] >7 12 ufj ) U',j 27] ) )\_] A_] 5

where Ej, 1y, 05 and \; are scalars; ,g,j, p_j, o_;, and A_; are (p — 1)-dimensional vectors; and X_;
and A_; are (p—1) x (p— 1) positive definite, symmetric matrices. With this partitioning, the Kullback-
Leibler divergence (KLD) — summarizing the influence/importance of the j-th variant and measuring

the difference between p(,é_j | Bj) and p(ﬁ_j) — simplifies to the following closed form solution

. 1 .
KLD(B;) = B —log(|Z_jA_j]) +tr(Z_;A_j) +1—p+a;(B; — Mj)z} : (S5)



where a; = AT jA:})\_j, log| | represents the log determinant function for a matrix, and tr(e) is the
matrix trace function. Notice there are a few computationally expensive steps within this derivation.
The first involves computing the log determinant and trace of a matrix product. With a reasonably sized
data set (i.e. p > 0), both of these terms with (1 — p) remain relatively equal for each marker j and make
a negligible contribution to the entire sum. Thus, we begin by simplifying computation to the following

KLD(B;) ~ a;(B; — 11;)* /2. (S6)

Next, notice that the KLD still relies on the full precision matrix A. For large p, this is an expensive
calculation; however, it only has to be done once and is used for all markers. Lastly, the rate of change
parameter «; depends on the partitioned matrix A:}. This requires inverting a p — 1 X p — 1 matrix
separately for each marker j. Based on the assumed projection in Equation (S4), we implement the
following procedures to reduce burden and complexity.

Case #1: Calculating the Matrices A:jl- with p < n. In this case, the calculation of A:} is not
very expensive, and so can be done directly to calculate oi; = AT jA:;)\_ j- The overall time complexity
for this operation is O(p?).

Case #2: Calculating the Matrices A_

; with p > n. This is case is more appropriate for the
genetic association studies that we consider in the main text. Here, the calculation of A:; can be
reduced to the inverse of an n x n matrix. Let £ = o(f) be the empirical posterior covariance matrix of
the estimated functions f. Then from the projection in Equation (S4), we estimate

> = ¢(8) = XtQxiT. (S7)

Rather than calculate the precision matrix A = 3T directly (which is p x p in computation), we can
alternatively let A = XT7X (which reduces computation to n x n). This A satisfies the Moore-Penrose
psuedoinverse conditions:

(i) ATA=XTQIXXTQXITXTQIX (i) TAXE = XQXITXTQIXXTQXT
= XTQINO X = XX
- XTOfx = xtoxir
= A =3

as long as X has linearly independent rows. Next, for this case, we need to compute the rate of change
o = /\IjA:;/\_j for every marker j. Recall that the precision matrix A = XTQIX = 3. We will now
find L = A'/2 such that A = LLT. This will allow us to reduce the complexity of repeatedly finding
the pseudo-inverse of subsets of this matrix for every marker j. We first find the matrix (21)'/2 using a
factorization such as SVD. Now, we may define L = XT(Q)/2, This matrix has dimension p x n. Now
that we have computed L, we may partition for every marker j as L = [1;; L_;]. This leads to

_ T
Aj=L_LT, Al =LTLT (S8)
Using these quantities, we calculate a; = )\T_jLT_TjLT_j)\,j. To compute LT_j)\,j, we use QR decomposi-

tion and solve the linear equation L_;b = A_;. This is a fast calculation because the dimension of the
matrix L_; is (p — 1) x (n — 1). Overall, the time complexity for these computations is O(p?).



Note on Low Rank Design Matrices. If n < p, and rank(X) = r < n, we need to modify the above
calculations. In these such cases, assume the following matrix decomposition

X = UDVT,

where U is an n X r matrix, D is a r x r diagonal matrix, and V is a p X r matrix. Now by definition via
Equation (S7)

X =VQ'VT, A=ViQivIiT (S9)

where Q* = D~'UTQUD ! is an 7 x r positive-definite matrix. The above computational reducing steps
will now work for n < p cases with V replacing X, Q* replacing Q, and r replacing n.

1.4 Preprocessing of Real Datasets

We use three real genetic datasets in the present study. The first dataset comes from the Wellcome
Trust Case Control Consortium (WTCCC) 1 [5] (http://www.wtccc.org.uk/), which initially consisted
of 2,938 shared controls with 458,868 SNPs after following the quality control procedures of previous
studies [4,6,7]). Missing genotypes were further imputed by using the BIMBAM software [8] (http:
//www.haplotype.org/bimbam.html). In the main text, we utilize the real data from chromosome 22
and simulate continuous phenotypes to assess the power of RATE and other commonly used association
mapping methods. All polymorphic SNPs with minor allele frequencies (MAFs) above 1% were used in
the simulation studies. Exclusively considering this group of individuals and SNPs resulted in a final
dataset consisting of n = 2,938 samples and p = 5,747 markers.

The second dataset we consider is small quantitative trait loci (QTL) association mapping study
from the Versailles Arabidopsis Stock Center [9] (http://publiclines.versailles.inra.fr/page/33).
Specifically, this study consists of n = 403 F6 plants from a Bay-0 x Shahdara recombinant inbred lines
(RILs) population that were genotyped for p = 1028 genetic markers and phenotyped for sixty-three
different metabolic traits [10] After pruning the genotypes of variants with near perfect correlation (r? >
0.99), we obtained a final set of p = 524 markers. In the main text, we limit the scope of our analysis to six
biochemical content measurements including: allyl, Indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl
(MO4I3M), 4-methylsulfinylbutyl (MSO4), 8-methylthiooctyl (MT8), and 3-hydroxypropyl (OHP3).

The third dataset is from the Wellcome Trust Centre for Human Genetics (http://mtweb.cs.ucl.
ac.uk/mus/www/mouse/index.shtml). This study originally contains n = 1,904 heterogenous stock of
mice from 85 families (all descending from eight inbred progenitor strains) [11], and 131 quantitative traits
that are classified into 6 broad categories including behavior, diabetes, asthma, immunology, haematology,
and biochemistry (http://mtweb.cs.ucl.ac.uk/mus/www/GSCAN/index.shtml/index.o0ld.shtml). In
the main text, we focused on three specific phenotypes: body weight (Glucose.BodyWeight), percentage
of CD8+ cells (Imm.PctCD8), and high-density lipoprotein content (Biochem.HDL). All phenotypes were
previously corrected for sex, age, body weight, season, and year effects [11]. A total of 12,226 autosomal
SNPs were available for all mice. For individuals with missing genotypes, we imputed values by the mean
genotype of that SNP in their corresponding family. All polymorphic SNPs with minor allele frequency
above 5% were used for association mapping.

Other Resources. Significant loci in the RIL QTL study were mapped to the nearest gene(s) using
the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/gene/). In the
heterogenous stock of mice data applications, SNPs are mapped to the closest neighboring gene(s) using
the Mouse Genome Informatics database (http://www.informatics.jax.org).


http://www.wtccc.org.uk/
http://www.haplotype.org/bimbam.html
http://www.haplotype.org/bimbam.html
http://publiclines.versailles.inra.fr/page/33
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1.5 Dissection of Phenotypic Variance in Real Datasets

In the two real data applications presented in the main text, we detail the proportions of phenotypic
variances explained by different orders of genetic effects. Namely, investigate whether the analyzed traits
can be best be described by additivity, pairwise interactions, third order interactions, or (in the case of
the heterogenous stock of mice) common environmental effects. To do so, we consider following linear
mixed model (LMM) for both the Arabidopsis QTL study and the mice GWAS, respectively:

y=g +8g2+gs+e, e~ MVN(O,7I) (S10)

where g1 ~ MVN(0, 07K) is the linear effects component; go ~ MVN(0, 03K?) is the pairwise interaction
component; and g3 ~ MVN(0,02K?) is the third order interaction component. Here, we let o2 =
{0%,03,03} be the corresponding random effect variance terms. The matrix I is an identity matrix. The
covariance matrix K = XXT/p is the conventional (linear) genetic relatedness matrix [6,12-16]. The
covariance matrix K? = K o K represents a pairwise interaction relationship matrix and is obtained
by using the Hadamard product (i.e. the squaring of each element) of the linear kernel matrix with
itself [17-19]. Similarly, the matrix K® = K o K o K represents a third order interaction relationship
matrix (i.e. the cubing of each element). The key purpose of these analyses is to directly estimate the
contribution of nonlinear genetic effects across the different phenotypes and traits that we consider. We
quantify these contributions by examining the proportion of phenotypic variance explained (pPVE) using
the following equation [4,6,7,20,21]:

~2
o*
J _ o
pPVE, « Ztr(zj), ZpPVEj =1, ji=1,...,3
J

where ¥ = [K,K? K?3]. In the Tables S4 and S6, we detail the estimates of the pPVEs (and their
standard errors) corresponding to the random effect variance terms % = {5%,03,55}. Intuitively, the
variance component that explains the greatest proportion of the overall PVE then represents the most
influential effect onto that particular phenotypic response. The LMM defined in Equation (S10) is
implemented by using the -vc 1 argument within the GEMMA open source software [15] (http://www.
xzlab.org/software.html). Briefly, this configuration fits variance component models by using an MQS
algorithm [21], which is based on a combination between a method of moments (MoM) [22] and minimal
norm quadratic unbiased estimation criteria (MINQUE) [23].


http://www.xzlab.org/software.html
http://www.xzlab.org/software.html

2 Supplementary Algorithmic Overview

Algorithm 1 Gaussian Process Regression (GPR)

1: Select a positive definite covariance function k(x;, x;) where x; and x; are n-dimensional vectors from
the design matrix.

2: Construct the n X n covariance matrix K.

3: Define the full model where y = f + ¢ and € ~ N(0, 7°I).

4: Specify the prior distributions f ~ A(0,K) and 72 ~ Scale-Inv-x(a, b).

5: Run the Gibbs Sampler (T Iterations).

6: fort=1— T do

7: f|72,y ~ N(m*,V*) where m* = 772V*y and V* = 72(72K + 1)~ };

8: 72| £,y ~ Scale-Inv-x?(a*, b*) where a* = a +n and b* = a* " [ab+ (y — £)T(y — f)];

9: B =XTf.

10: end for -

11: Calculate the empirical mean, covariance, and precision of the posterior distribution p(3|y) as u, X,

and A, respectively.
12: Compute the centrality of every p predictor via Kullback-Leibler Divergence (KLD).
13: for j=1—pdo
14: KLD(§;) = 5 [—10g(|2fjAfj|) Ftr(B_jA) +1 = p+a;(B; — py)? .
15: end for
16: Scale each centrality measure for the p predictors to determine their relative importance.
17: for j =1 — pdo _ _
15 RATE(5;) = KLD(3;)/ ¥ KLD(7).
19: end for




Algorithm 2 Bayesian Kernel Ridge Regression (BKRR)

1:

=

13:
14:
15:
16:
17:
18:
19:
: end for

Select a positive definite covariance function k(x;,x;) where x; and x; are n-dimensional vectors from
the design matrix.
Construct the n x n covariance matrix K.
Define the full model where y = K9 + & and € ~ N/(0, 7°I).
Specify the prior distributions 9 ~ N (0,02K~1) and 02, 7% ~ Scale-Inv-x(a, b).
Run the Gibbs Sampler (7" Iterations).
fort=1—1T do
9| 02,72y ~ N(m*, V*) with m* = 772V*KTy and V* = 7202(72K~! + 02I)7};
o? | 9,72,y ~ Scale-inv-x?(aj,b%) where a’ = a+ g and b’ = aX 1 (ab + ITK19);

o) Yo

72 9,0%y ~ Scale-inv-x?(aZ, b)) where a’ = a+n and b* = a*~!(ab+€Te) where e = y—K1;
B = XK9.
: end for

: Calculate the empirical mean, covariance, and precision of the posterior distribution p(,@ ly) as p, X,

and A, respectively.
Compute the centrality of every p predictor via Kullback-Leibler Divergence (KLD).
for j=1—pdo
KLD(§;) = 5 [—10g(|2—jA—j|) Ftr(B_jA) +1 - p+a;(B; — py)? .
end for
Scale each centrality measure for the p predictors to determine their relative importance.
for j=1—pdo _ _
RATE(S;) = KLD(5;)/ 52 KLD(8).
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Algorithm 3 Bayesian Neural Network (BNN)

Jew s

[

Input Hidden Output
layer layer layer

: Specify the architecture of the neural network (e.g. see above), operating over input/output pairs

D = {(xi,¥:)}_,. Denote the output of the network for a given x; as ¥;.

: Specify a prior distribution () over all parameters (e.g. weights and biases) in the network, summa-

rized in a vector 6.

: Use an MCMC sampler or any approximate Bayesian method to obtain a set of T samples {§(t)}z":1

from the posterior predictive distribution p(y5,..., vy} | D).

:fort=1—1T do

30 — xig®.

: end for
: Using the samples for 3, calculate the empirical mean, covariance, and precision of the posterior

distribution p(ﬁ | D) as u, 2, and A, respectively.

: Compute the centrality of every j predictor via Kullback-Leibler Divergence (KLD).
:for j=1—pdo
10:

11:
12:
13:
14:
15:

KLD(8;) = 5 [—log(@fﬂ\fﬂ) +tr(ZjA) +1—p+oy(B — Mj)Q]
end for
Scale each centrality measure for the p predictors to determine their relative importance.
for j=1—pdo ~ _
RATE(5;) = KLD(3;)/ ¥ KLD(F).
end for

10



3 Supplementary Figures
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Figure S1. Comparisons of the out-of-sample predictive mean squared errors (MSE) and
predictive correlations (R) for the linear regression model using the standard OLS
estimates and the GP regression method using the effect size analogue. Scenario I
corresponds to phenotypic outcomes being generated via a standard linear model without population
structure. Scenarios II and III introduce population stratification effects by allowing the top 5 and 10
genotype PCs to make up 30% of the phenotypic variance, respectively. Here, the broad-sense
heritability is set to H?> = 0.3 with control parameter p = {0.5,1}, which is used to determine the
proportion of signal that is contributed by interaction effects. Figure (a) corresponds to MSE results,
while Figure (b) depicts results for predictive correlation. Results are based on 100 replicates in each
case.
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Figure S2. Orders of distributional centrality via RATE measures in the presence of
interaction effects. These are simple proof of concept simulations with broad-sense heritability level
H? = 0.6 and p = 0.5. Here, (1 — p) is used to determine the proportion of signal that is contributed by
interaction effects. Data are simulated such that the effects of only the last three genetic variants

J* ={23,24,25} (blue) are nonzero. The dashed line is drawn at the level of relative equivalence

(i.e. 1/p). Figure (a) shows the first order centrality across all markers; (b)-(d) show results when the
most significantly associated variants are iteratively nullified. Uniformity check values are also reported:
(i) the entropic difference A, and (ii) the corresponding empirical effective sample size (ESS) estimates.
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Figure S3. Orders of distributional centrality via RATE measures when associated
variants are strongly correlated with non-associated markers. These are simple proof of
concept simulations with broad-sense heritability level H? = 0.6 and p = 0.5. Here, (1 — p) is used to
determine the proportion of signal that is contributed by interaction effects. Data are simulated such
that the effects of only the last three genetic variants j* = {23,24, 25} (blue) are nonzero; yet, they are
positively correlated (R = 0.9) with nonsignificant markers #1-3, respectively. The dashed line is drawn
at the level of relative equivalence (i.e. 1/p). Figure (a) shows the first order centrality across all
markers; (b)-(d) show results when the most significantly associated variants are iteratively nullified.
Uniformity check values are also reported: (i) the entropic difference A, and (ii) the corresponding
empirical effective sample size (ESS) estimates.
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Figure S4. Orders of distributional centrality via RATE measures when associated
variants are strongly correlated with non-associated markers. These are simple proof of
concept simulations with broad-sense heritability level H* = 0.6 and p = 1. Here, (1 — p) is used to
determine the proportion of signal that is contributed by interaction effects. Data are simulated such
that the effects of only the last three genetic variants j* = {23,24, 25} (blue) are nonzero; yet, they are
positively correlated (R = 0.9) with nonsignificant markers #1-3, respectively. The dashed line is drawn
at the level of relative equivalence (i.e. 1/p). Figure (a) shows the first order centrality across all
markers; (b)-(d) show results when the most significantly associated variants are iteratively nullified.
Uniformity check values are also reported: (i) the entropic difference A, and (ii) the corresponding
empirical effective sample size (ESS) estimates.
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Figure S5. Orders of distributional centrality via RATE measures when non-associated
variants are deemed significant. These are simple proof of concept simulations with broad-sense
heritability level H?> = 0.6 and p = 0.5. Here, (1 — p) is used to determine the proportion of signal that
is contributed by interaction effects. Data are simulated such that the effects of only the last three
genetic variants j* = {23, 24,25} (blue) are nonzero. The dashed line is drawn at the level of relative
equivalence (i.e. 1/p). Figure (a) shows the first order centrality across all markers; (b)-(d) show the
results when nonsignificant markers #1-3 are iteratively nullified. Uniformity check values are also
reported: (i) the entropic difference A, and (ii) the corresponding empirical effective sample size (ESS)
estimates.
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Figure S6. Orders of distributional centrality via RATE measures under the null
hypothesis that all variants in the data contribute equally to the heritability of a trait.
These are simple proof of concept simulations with broad-sense heritability level H? = 0.6. Data are
simulated such that the effects of all genetic variants are the same. The dashed line is drawn at the
level of relative equivalence (i.e. 1/p). Figures (a)-(d) show results for four different randomly generated
datasets. Uniformity check values are also reported: (i) the entropic difference A, and (ii) the
corresponding empirical effective sample size (ESS) estimates.
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Figure S7. Orders of distributional centrality via raw and unscaled Kullback-Leibler
divergence (KLD) measures after phenotypes have been permuted. These are simple proof of
concept simulations with broad-sense heritability level H* = 0.6 and p = {0.5,1}. Here, (1 — p) is used
to determine the proportion of signal that is contributed by interaction effects. Data are simulated such
that the effects of only the last three genetic variants j* = {23,24, 25} (blue) are nonzero. Figures (a)
and (c) show the first order centrality across all markers; (b) and (d) show comparative results when
the phenotypes have been permuted once.
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Figure S8. Power analysis for prioritizing genetic variants in the presence of population
stratification effects (Top 10 PCs). Phenotypes are simulated with broad-sense heritability level
H? = 0.3 with control parameter p = {0.5,1} in Figures (a) and (b), respectively. Here, (1 — p) is used
to determine the proportion of signal that is contributed by interaction effects. Compared approaches
include Gaussian process regression with RATE (blue), Bayesian variable selection with a spike and slab
prior (PIPs) (pink), lasso regression (red), the elastic net (green), and the SCANONE method (orange).
Area under the curve (AUC) is reported to facilitate comparisons. Results are based on 100 replicates
in each case, where data is created under simulation model (ii) with the top 10 genotype PCs.
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Figure S9. Power analysis for prioritizing causal variants under the “optimal” model
criterion. Phenotypes are simulated with broad-sense heritability level H® = 0.3 with control
parameter p = {0.5,1} in Figures (a) and (b), respectively. Here, (1 — p) is used to determine the
proportion of signal that is contributed by interaction effects. Criterions considered include

RATESs > 1/p (blue), the Bayesian “median probability model” (pink) (i.e. PIPs > 0.5), and the
multiple testing corrected SCANONE method P < 8.33 x 1076 (orange). Scenario I corresponds to
phenotypic outcomes being generated via simulation model (i) without population structure. Scenarios
IT and IIT introduce population stratification effects with simulation model (ii) by allowing the top 5
and 10 genotype PCs to make up 30% of the phenotypic variance, respectively. Results are based on
100 replicates in each case.
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Figure S10. Genetic map wide scan for the allyl content metabolism trait analyzed in
Arabidopsis thaliana QTL mapping study. Compared methods are (a) Gaussian process regression
with RATE and (b) SCANONE (orange). Significant markers are determined by RATE(B) > 1/p and
P < 9 x 1075, respectively. The latter represents the genome-wide Bonferroni-corrected significance
threshold. To ease the comparisons, points in blue represent genetic markers with significant
distributional centrality measures. Markers labeled in color were not found by RATE.
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Figure S11. Genetic map wide scan for the indol-3-ylmethyl (I3M) metabolism trait
analyzed in Arabidopsis thaliana QTL mapping study. Compared methods are (a) Gaussian
process regression with RATE and (b) SCANONE (orange). Significant markers are determined by
RATE(B) > 1/p and P <9 x 1075, respectively. The latter represents the genome-wide
Bonferroni-corrected significance threshold. To ease the comparisons, points in blue represent genetic
markers with significant distributional centrality measures. Markers labeled in color were not found by

RATE.
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Figure S12. Genetic map wide scan for the 4-methylsulfinylbutyl (MSO4) metabolism
trait analyzed in Arabidopsis thaliana QTL mapping study. Compared methods are (a)
Gaussian process regression with RATE and (b) SCANONE (orange). Significant markers are

determined by RATE(S) > 1/p and P < 9 x 107°, respectively. The latter represents the genome-wide
Bonferroni-corrected significance threshold. To ease the comparisons, points in blue represent genetic
markers with significant distributional centrality measures. Markers labeled in color were not found by
RATE.
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Figure S13. Genetic map wide scan for the 8-methylthiooctyl (MT8) metabolism trait
analyzed in Arabidopsis thaliana QTL mapping study. Compared methods are (a) Gaussian
process regression with RATE and (b) SCANONE (orange). Significant markers are determined by
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Figure S14. Genetic map wide scan for the 3-hydroxypropyl (OHP3) metabolism trait
analyzed in Arabidopsis thaliana QTL mapping study. Compared methods are (a) Gaussian
process regression with RATE and (b) SCANONE (orange). Significant markers are determined by
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Figure S15. Lower-triangular heat map illustrating the correlation structure for a
proportion of the genotyped markers in the Arabidopsis thaliana QTL mapping study.
The legend represents a correlation scale on an [-1,1] interval that has been evenly divided into ten
shorter subintervals. The main takeaway here is that there appears to be an underlying covarying
structure between groups of markers located on different chromosomes.
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Figure S16. Lower-triangular heat map illustrating the correlation structure between the
six metabolic phenotypes in the Arabidopsis thaliana QTL mapping study. The six traits
analyzed include: allyl content, indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl (MO4I3M),
4-methylsulfinylbutyl (MSO4), 8-methylthiooctyl (MT8), and 3-hydroxypropyl (OHP3). The legend
represents a correlation scale on an [-1,1] interval that has been evenly divided into ten shorter
subintervals.
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Figure S17. Genome-wide scan for body weight in the heterogenous stock of mice dataset.
Figure (a) depicts the relative distributional centrality measures (RATE) of quality-control-positive
SNPs plotted against their genomic positions. Gaussian process regression was used to derive these
measures. Chromosomes are shown in alternating colors for clarity, with the top 5 most enriched
regions being highlighted by the star symbol. Figure (b) serves as a direct comparison and depicts
results from a typical GWAS analysis using SCANONE. Here, we overlay the enriched regions detected
by RATE to simplify the comparison.
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Figure S18. Genome-wide scan for percentage of CD8+ cells in the heterogenous stock of
mice dataset. Figure (a) depicts the relative distributional centrality measures (RATE) of
quality-control-positive SNPs plotted against their genomic positions. Gaussian process regression was
used to derive these measures. Chromosomes are shown in alternating colors for clarity, with the top 5
most enriched regions being highlighted by the star symbol. Figure (b) serves as a direct comparison
and depicts results from a typical GWAS analysis using SCANONE. Here, we overlay the enriched
regions detected by RATE to simplify the comparison.
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4 Supplementary Tables

Table S1. Mean squared errors (MSE) and predictive correlation coefficient (R) using the
OLS estimates and the effect size analog. Scenarios I, II, and III correspond to phenotypes being
generated under a linear model without population structure and one where stratification effects are
introduced via the top 5 and 10 genotypic principle components, respectively. We assume that a
broad-sense heritability level H* = {0.3} with control parameter p = {0.5,1}. Here, (1 — p) is used to
determine the proportion of signal that is contributed by interaction effects. The proportion of times
that a method exhibits the lowest MSE or greatest R is denoted as Opt%wmse and Opt%pg. Values in
bold represent the approach with the best (and most robust) performance. Standard errors are given in
parentheses.

p=0.5 p=1
Scenario LM GP LM GP
I 1.24 (0.12) 0.95 (0.09) | 1.03 (0.10) 0.84 (0.07)
MSE II 0.81 (0.09) 0.69 (0.08) | 0.59 (0.07) 0.58 (0.06)
111 0.80 (0.08) 0.68 (0.07) | 0.59 (0.07) 0.57 (0.06)
I 0.00 1.00 0.02 0.98
Opt%mse I 0.02 0.98 0.34 0.66
111 0.04 0.96 0.42 0.58
I 0.20 (0.08) 0.22 (0.08) | 0.37 (0.06) 0.39 (0.06)
R II 0.54 (0.05) 0.59 (0.04) | 0.68 (0.04) 0.70 (0.03)
111 0.54 (0.06) 0.59 (0.05) | 0.67 (0.05) 0.70 (0.04)
I 0.21 0.79 0.23 0.77
Opt%r I 0.02 0.98 0.11 0.89
111 0.00 1.00 0.13 0.87

Table S2. A table that lists a description of the six quantitative phenotypes that are
analyzed in the Arabidopsis thaliana QTL mapping study. The six metabolic content traits
analyzed include: allyl content, indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl (MO4I3M),
4-methylsulfinylbutyl (MSO4), 8-methylthiooctyl (MT8), and 3-hydroxypropyl (OHP3). (XLSX)

Table S3. Table of all genetic markers and their distributional centrality measures for
each of the six metabolic traits in the Arabidopsis thaliana QTL mapping study. Listed are
the relative centrality (RATE) measures for each variant, along with their L1-regularized effect sizes as
computed by lasso regression, the combined L1 and L2-penalized coefficients from the elastic net, the
-log;, transformed p-values from SCANONE, and the posterior inclusion probabilities (PIPs) derived
from the Bayesian variable selection model. All genetic markers are given in order of their positions
along the genome. (XLSX)
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Table S4. Proportions of the phenotypic variance explained (PVE) by different orders of
genetic effects for the six quantitative phenotypes analyzed in the Arabidopsis thaliana

QTL mapping study. The six metabolic content traits analyzed include: allyl content,

indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl (MO4I3M), 4-methylsulfinylbutyl (MSO4),
8-methylthiooctyl (MT8), and 3-hydroxypropyl (OHP3). The orders of the genetic effects include: (1)
additive effects, (2) pairwise interactions, and (3) third order interactions. Values in bold represent the
type of effect that explains the greatest proportion of the overall PVE. Standard errors are given in

parentheses.

Phenotypic Traits

Genetic Effects Allyl I3M MOA4I3M MSO4 MTS OHP3
Additive 0.66 (0.23) | 0.50 (0.14) | 0.49 (0.20) | 0.50 (0.17) | 0.92 (0.20) | 0.50 (0.20)
Pairwise 0.10 (0.05) | 0.20 (0.07) | 0.28 (0.09) | 0.21 (0.07) | 0.03 (0.03) | 0.06 (0.05)

Third Order | 0.24 (0.19) | 0.30 (0.13) | 0.23 (0.15) | 0.29 (0.16) | 0.05 (0.05) | 0.44 (0.19)

Table S5. The distributional centrality measures for all SNPs in the heterogenous stock of
mice dataset. The three traits analyzed include: body weight (page 1), percentage of CD8+ cells
(page 2), and high-density lipoproteins (HDL) content (page 3), respectively. Listed are the RATE
values for each variant as computed via Gaussian process regression, as well as their marginal p-values
computed by using the standard GWAS analysis model SCANONE. Also listed are the chromosome
location and physical position (bp) for each SNP. (XLSX)

Table S6. Proportions of the phenotypic variance explained (PVE) by different orders of
genetic effects for the three quantitative traits analyzed in the heterogenous stock of mice
GWAS dataset. The three traits analyzed include: body weight, percentage (%) of CD8+ cells, and
high-density lipoproteins (HDL) content (page 3) The order classes for these genetic effects include: (1)
additive effects, (2) pairwise interactions, and (3) third order interactions. Values in bold represent the
type of effect that explains the greatest proportion of the overall PVE. Standard errors are given in

parentheses.

Phenotypic Traits

Genetic Effects

Body Weight

% of CD8+ Cells

HDL Content

Additive
Pairwise
Third Order

0.20 (0.01)
0.14 (0.03)

0.66 (0.04)

0.23 (0.10)
0.27 (0.22)
0.50 (0.25)

0.13 (0.02)
0.37 (0.07)
0.50 (0.11)
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Table S7. Empirical computational times for running RATE as a function of sample size
and the number of SNPs. Each entry represents the mean computation time (in minutes) it takes to
run RATE under implementation strategies. These approaches are using the full rank computation, and
the other utilizes the low rank matrix approximations derived in the Supplementary Text.
Computations were performed using 28 core nodes on the Athena computing cluster at the Brown
University Center for Statistical Sciences. To create genetic data for these simulations, we generated
5.0 x 103, 1 x 104, 1.5 x 10%, and 2.0 x 10* genetic markers, respectively. Sample sizes were set to 500,
1000, and 2500. Values in the parentheses are the standard deviations of the estimates across 25 runs.

Average Time (min) per SNP Size (p)

Implementation | Total Sample Size 5.0 x 103 1 x 10% 1.5 x 104 2.0 x 10*
n = 500 1.30 (0.01)  5.34 (0.01)  12.24 (0.04)  22.18 (0.09)
Full Rank n = 1,000 7.79 (0.03)  31.43 (0.09) 70.75 (0.09) 126.34 (0.09)
n = 2,500 33.8 (0.13)  67.6 (0.17)  352.1 (9.74) 688.5 (19.05)

n = 500 0.44 (0.01)  2.08 (0.01) 4.80 (0.01) 8.64 (0.05)

Low Rank n = 1,000 2.11 (0.01)  8.30 (0.10)  18.57 (0.10)  33.34 (0.20)
n = 2,500 13.86 (0.02) 51.23 (0.03) 113.13 (0.12) 200.24 (0.40)
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