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1. Data processing. The method, and code to reproduce results in
this paper is available as an R package at https://github.com/amcdavid/
HurdleNormal.

In all models and data sets, the cellular detection rate
∑

j Iyij>0 [Finak
et al., 2015] was used as an unpenalized adjustment covariate in W as de-
scribed in Algorithm 1. In the Tfh data, a separate, unpenalized intercept
was fit for each donor, as well. For the Gaussian and Hurdle models, positive
values were conditionally centered

ỹij =

{
0 if vij = 0,

yij − ȳ+j else,

where ȳ+j is the average in a gene over positive values. This made Vj and
Yj marginally orthogonal, speeding up the convergence of the optimization
algorithm and reducing the leverage of zeros in the Gaussian model. The
“Gaussian(raw)” model was also fit to the untransformed data, but not
always discussed as it gave similar results as the Logistic model.

The graph stability (via repeated 50% sample splitting) was used to esti-
mate the network size. At 60% stability, the number of selected edges ranged
from 11 (Hurdle) to 32 (Gaussian).

Background noise in the mouse dendritic cells (mDC) data set was thresh-
olded as described previously [Finak et al., 2015], and filtered for low-
expression and cluster-disrupted cells. Supplemental Figure 1 shows the
Bayesian information criterion for the fitted path. An interior minimum
fails to occur in the solution path for three of the methods.

1

https://github.com/amcdavid/HurdleNormal
https://github.com/amcdavid/HurdleNormal


2 MCDAVID ET AL.

Hurdle
(Anisometric) Logistic

Gaussian Gaussian(raw)

0
50

00
10

00
0

15
00

0

20
00

0

25
00

0
0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

0

20000

40000

60000

0

25000

50000

75000

100000

0

20000

40000

60000

0

10000

20000

30000

edges

B
IC

 S
co

re

Supplemental Figure 1: Bayesian information criterion on mDC data set

2. Singular normal distributions and Multivariate Hurdle Dis-
tributions. A random vector Y has singular Normal distribution N (µ,Σ)
[Rao, 1973] with mean µ and covariance Σ with rank r < m if the following
holds for a matrix U with UTΣ = 0: a) UTY = UTµ almost surely, and b)
Y has a density

(1) f(y) =
(2π)−r/2

(det+ Σ)1/2
exp{−(y − µ)TΣ−(y − µ)/2},

with respect to Lebesgue measure restricted to the hyperplane UTY =
UTµ. Here det+ is the pseudo-determinant (product of non-zero eigenvalues)
and Σ− is a pseudo-inverse, such as the Moore-Penrose inverse. In the case
that Σ is zero outside a positive-definite submatrix of size r × r, U can be
chosen to be a diagonal selection matrix consisting of zeros and ones, and
Y has a density with respect to the measure λr ⊗ δm−r0 , which is the case
treated here.

2.1. Normalizing the joint density. The expression
(2)

f(y) = exp

{
vTGv + vTHy − 1

2
yTKy − C(G,H,K)

}
, y ∈ Rm,



GRAPHICAL MODELS SUPPLEMENT 3

that was given in (6) is a normalizable density. Let K+ =
(
IKI

)−
and

rewrite (5) as

log f(y|V = v) = vTHy − 1

2
yTKy

= vTHy − vTHK+Hv + vTHTK+KK+Hv − 1

2
yTKy

Using the notation from (7) and applying (1), the normalizing constant of
the density in (1) is found to be given by

C(G,H,K) = log
∑

v∈{0,1}m
exp

[
vTGv + hT

(
IKI

)−
h/2

] [
det+

(
1

2π
IKI

)]1/2
.

2.2. The anisometric penalty is a score test of θa = 0 for all a.

Proposition 1. Let H =
[
∂2 log f[b|A](y)

∂θiθj

]
be the conditional information.

Suppose H and thus also its inverse H−1 is block-diagonal. Then the aniso-
metric group lasso penalty is equivalent to a score test of the null hypothesis
that θ = 0 vs. the alternative that a pre-specified subvector θa 6= 0.

Proof: Let c = V \ {a, b} and suppose that θc = 0. From the KKT condi-
tions, θa = 0 is an optimum if and only if

∇TaH−1aa ∇a < λ2,

where ∇a =
∂ log f[b|A](y)

∂θa
is the a-subvector of the conditional log-likelihood

gradient. Taking λ2 to be an appropriate quantile from a χ2-distribution
with dim(Haa) degrees of freedom results yields a score test.

3. Simulation details.

3.1. Graphs and parametric alternatives. In the G-minimal and com-
plete scenarios, the underlying graph is a (perhaps incomplete) chain, with
either 1.5% of nodes connected (Figure 4a) or 5% (Figures 4b and 5). In
the e. coli scenario, the underlying graph is a 500-vertex subgraph sampled
from a network described in Gama-Castro et al. [2011] and available from
GeneNetWeaver [Schaffter et al., 2011]. In the G parametric alternative,
given the underlying graph, the data are derived from model (6), restated
in (2), with only the G interaction matrix set to non-zero. In this case, al-
though the specified conditional independences hold exactly, an auto-logistic
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(Ising) model is minimally complete, while the multivariate Hurdle model
is over-parametrized. In the complete parametric alternative, given the un-
derlying graph, all three interaction matrices G, H and K are non-zero
simultaneously in the appropriate entries.

3.2. Generative models. The Hurdle generative model, and deviations
from it are considered. In the exact case, observations are generated through
Gibbs sampling from model (6) using the full conditional distributions avail-
able in (8). Samples from conditional distributions are generated simply
as Bernoulli and Normal random variates. A 2000 iteration burn-in phase,
and sample thinning was employed. Thinned samples exhibited only mild
auto-correlation. In the contaminated case, a matrix of exact variates Y are
sampled, and onto them (given Yij 6= 0) is added t8-distributed noise. So
the final variates remain zero-inflated, but are heavier-tailed than a Normal
distribution. In the selection case, a matrix Ỹ of latent, non-zero-inflated
Gaussian variates are sampled that follow the graphical model implied by
the K-interaction matrix. These are zero-inflated through a selection model

P
(
Ṽj |Y = y

)
= logit(aj + bjyj),

Y = ỸṼ .

The parameters aj and bj are chosen to keep P (Ṽj) away from the boundary
values 0 and 1.

Lastly, in some cases, we consider in-silico 10-cell replicates. Given a
desired sample size n, draw 10n observations Y from model (6), and let the
observed data Y(10) follow

Y(10) = log2

10∑
i=1

2Yi/10.
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Garćıa-Sotelo, Alejandra López-Fuentes, Liliana Porrón-Sotelo, Shirley Alquicira-
Hernández, Alejandra Medina-Rivera, Irma Mart́ınez-Flores, Kevin Alquicira-
Hernández, Ruth Mart́ınez-Adame, César Bonavides-Mart́ınez, Juan Miranda-Ŕıos,
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Graph topologies and parametric models

1. G-minimal chain graphs, with tri-diagonal G-interaction matrix with off-diagonal
entries set to 1, and diagonal H, K. In this case, an Ising/logistic model is minimally
complete.

2. G-H-K-complete chain graphs, with off diagonal G = .2, H = −.75,K = −.4. The
proposed model is thus minimally complete.

3. e. coli-networks: 500 edges from a semi-empirical e. coli network and pairwise
hurdle likelihood. 50% of edge weights are G-minimal, 25% K-minimal and 25%
complete.

4. 10-cell versions of 1-3. The 10-cell observation Y(10) is generated as Y(10) =
log2

∑10
i=1 2Yi/10 and Y is generated as under model 1-3.

5. 1-3 with non-zero observations contaminated with t8 noise.

6. 1-3 with the following latent Gaussian/logistic selection model:

Ỹ ∼ N (µ,K),

P
(
Ṽj |Ỹ = ỹ

)
= logit(a+ bỹj),

Y = ỸṼ .(3)

Methods

1. Aracne [Margolin et al., 2006]: connects genes with significant pairwise mutual
information and applies pruning rules to suppress indirect effects.

2. Gaussian: neighborhood selection with `1-penalized linear regression [Meinshausen
and Bühlmann, 2006].

3. Logistic: neighborhood selection with `1-penalized logistic regression[Ravikumar
et al., 2010].

4. NPN: neighborhood selection with `1-penalized linear regression on Gaussian-
quantile transformed responses [Liu et al., 2009].

5. Hurdle (isometric): neighborhood selection with model (6) and isometric group-
lasso penalty.

6. Hurdle (anisometric): neighborhood selection with model (6) and anisometric
group-lasso penalty.

Supplemental Table 1
Overview of simulation scenarios and methods compared.
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