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8. Appendix for Section 3.

PROOF OF PROPOSITION 3.1. For any g ∈ G with g(Ti) = qi, i = 1, . . . , n,
and qi ≥ qi+1, i = 1, . . . , n − 1, define a step function g̃ such that g̃(x) = qi for
x ∈ (Ti−1, Ti]; otherwise g̃(x) = 0. Then, g̃ ≤ g, which implies that

(8.1)
∫ b

a
wi(x)g̃(x)dx ≤

∫ b

a
wi(x)g(x)dx,

as wi ≥ 0. Now, define ḡ(x) ,
g̃(x)∫ b

a g̃(x)dx
so that

∫ b
a ḡ(x)dx = 1. By (8.1),

Ln(g) =

∏n
i=1 g(Ti)∏s

i=1(
∫ b
a wi(x)g(x)dx)ni

=

∏n
i=1 qi∏s

i=1(
∫ b
a wi(x)g̃(x)dx)ni

≥
∏n
i=1 qi∏s

i=1(
∫ b
a wi(x)g(x)dx)ni

= Ln(g).

PROPOSITION 8.1. The function L̃n defined in (3.3) is concave in p.

PROOF. (i) For finite p, it suffices to show that Ωi(p) , log(
∑n

k=1 cike
pk)

is convex in p as sum of convex functions with non-negative weights is
still a convex function. To this end, we shall show that the Hessian matrix
Hi of Ωi is positive semi-definite. Define Wi ,

∑n
k=1 cike

pk and γi ,
(ci1e

p1 , . . . , cine
pn)>. Note that

∂Ωi

∂pj
=

1

Wi
cije

pj ,

∂2Ωi

∂p2
j

=
1

Wi
cije

pj − 1

W 2
i

(
cije

pj

)2

,

∂2Ωi

∂pjpl
= − 1

W 2
i

cijcile
pjepl .
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Hence, Hi = 1
W 2
i

(Widiag(γi) − γiγ>i ). Now, for any x ∈ Rn, by Cauchy-
Schwartz inequality,

x>Hix =
1

W 2
i

( n∑
j=1

γij

n∑
j=1

γijx
2
j −

( n∑
j=1

γijxj

)2)
≥ 0.

Finally, observe that if x = (c, . . . , c)> for any c ∈ R, x>Hix = 0. There-
fore, Ωi is only positive semi-definite.

(ii) For p1 and p2, if either one of them such that at least one, but not all, of
its components equals −∞, then the convex combination of p1 and p2 also
has a component being equal to −∞. Therefore, the concavity inequality is
trivially satisfied.

PROPOSITION 8.2. Suppose that wi > 0 for all i = 1, . . . , s. For each n ∈
N, the monotone MLE ĝn for the true unbiased density g0 uniquely exists almost
surely.

PROOF. Recall that the domain ofLn(z1, . . . , zn) =
∏n
i=1 zi

∏s
j=1(

∑n
k=1 cjkzk)

−nj

is Kn = {z ∈ Rn : z1 ≥ . . . ≥ zn ≥ 0 and
∑n

i=1 zi(Ti − Ti−1) = 1}. Note that
the constraint

∑n
i=1 zi(Ti−Ti−1) = 1 ensures at least one of the z′is to be positive

(non-vanishing) and hence the terms in the denominator of Ln,
∑n

k=1 zkcjk > 0.
Let Dn := {z ∈ Kn : at least one but not all zi’s equal 0}. On Dn, Ln is still well-
defined and vanishes here. Therefore, Ln is continuous on Kn. As Kn is compact
almost surely, the maximum of Ln exists almost surely.

For uniqueness, suppose that z′ and z′′ both maximizes (3.1) subject to (3.2);
note that as the problem setting is non-trivial, none of the components in z′ and
z′′ is vanished. Then p′i , log z′i and p′′i , log z′′i both maximize (3.3) subject
to the corresponding constraints with zi replaced by epi . As L̃n is concave in p,
λp′ + (1 − λ)p′′ is also a maximizer of L̃n for any 0 ≤ λ ≤ 1. Therefore, L̃λ ,
L̃n(λp′ + (1− λ)p′′) is a constant function in λ for 0 ≤ λ ≤ 1 and hence,

d2L̃λ
dλ2

= 0 for λ ∈ [0, 1].

Since

L̃λ =
n∑
j=1

(
λp′j + (1− λ)p′′j

)
−

s∑
i=1

ni log

( n∑
k=1

cik exp(λp′k + (1− λ)p′′k)

)
,
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we have

dL̃λ
dλ

=

n∑
j=1

(p′j − p′′j )−
s∑
i=1

ni

∑n
k=1 cik(p

′
k − p′′k) exp(λp′k + (1− λ)p′′k)∑n

k=1 cik exp(λp′k + (1− λ)p′′k)
,

d2L̃λ
dλ2

=
s∑
i=1

ni
[
∑n

k=1 cik(p
′
k − p′′k) exp(λp′k + (1− λ)p′′k)]

2

[
∑n

k=1 cik exp(λp′k + (1− λ)p′′k)]
2

−
s∑
i=1

ni

∑n
k=1 cik(p

′
k − p′′k)2 exp(λp′k + (1− λ)p′′k)∑n

k=1 cik exp(λp′k + (1− λ)p′′k)
.

In particular, when λ = 1, we obtain an equation:

d2L̃λ
dλ2

∣∣∣∣
λ=1

=
s∑
i=1

ni
[
∑n

k=1 cik(p
′
k − p′′k)ep

′
k ]2

(
∑n

k=1 cike
p′k)2

−
s∑
i=1

ni

∑n
k=1 cik(p

′
k − p′′k)2ep

′
k∑n

k=1 cike
p′k

= 0.

Hence, we have
∑s

i=1 ni∆i = 0, where

∆i ,
(
∑n

k=1 cike
p′k)(

∑n
k=1 cik(p

′
k − p′′k)2ep

′
k)− (

∑n
k=1 cik(p

′
k − p′′k)ep

′
k)2

(
∑n

k=1 cike
p′k)2

.

By Cauchy-Schwartz inequality, ∆i ≥ 0 for all i = 1, . . . , s. Note that
∑s

i=1 ni∆i =
0 and ∆i ≥ 0 for all i = 1, . . . , s together imply that ∆i = 0 for all i = 1, . . . , s.
As wi > 0, cik > 0 for all k = 1, . . . , n. Hence, the equality holds if and only
if p′k − p′′k = c for all k = 1, . . . , n and for some c ∈ R. This is equivalent to
z′k = ecz′′k . As 1 =

∑k
i=1 z

′
k(Tk − Tk−1) = ec

∑k
i=1 z

′′
k(Tk − Tk−1) = ec, we

know that c = 0, and so z′ = z′′.

PROOF OF PROPOSITION 3.2. The problem is to minimize ψn subject to z1 ≥
. . . ≥ zn, or equivalently zi+1 − zi ≤ 0 for i = 1, . . . , n − 1. Note that we do
not explicitly require zn ≥ 0 as Ln will not be minimized at zn = 0. By the
homogeneity degree of 0 of ψn, we also do not need to consider the constraint∑n

i=1 zi(Ti − Ti−1) = 1. Denote µ0 = µn , 0. Using Karush-Kuhn-Tucker’s
theorem (see, for example, Chapter 11 in Luenberger and Ye (2008)), there exist
µi for i = 1, . . . , n− 1 such that the minimizer ẑ satisfies for k = 1, . . . , n,

(8.2)
∂ψn
∂zk

(ẑ) + µk−1 − µk = 0
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and

(8.3)


µi(ẑi+1 − ẑi) = 0, for i = 1, . . . , n− 1;

µi ≥ 0, for i = 1, . . . , n− 1;
ẑi+1 − ẑi ≤ 0, for i = 1, . . . , n− 1.

Now, summing (8.2) for k = 1, . . . , n and recursively using 8.2, we have respec-
tively,

n∑
j=1

∂ψn
∂zj

(ẑ) = 0 and µi =
i∑

j=1

∂ψn
∂zj

(ẑ) ≥ 0, for i = 1, . . . , n− 1.

According to Proposition 8.2, we let ẑ be the unique solution to (3.1)-(3.2). Define

ξK(z) ,
1

2

[
z − ẑ +K−1 5 ψn(ẑ)

]>
K

[
z − ẑ +K−1 5 ψn(ẑ)

]
,

where K is a positive-definite matrix to be determined. Then Hess(ξK) = K

and 5(ξK) = K

[
z − ẑ + K−1 5 ψn(ẑ)

]
. Hence, ξ is strictly concave with

5ξ(ẑ) = 5ψn(ẑ). Therefore, ẑ satisfies the necessary and sufficient conditions
for minimizing ξ subject to z1 ≥ . . . ≥ zn. Also, ẑ is the unique minimizer of ξ
subject to the constraints z1 ≥ . . . ≥ zn. Now, choose K to be a diagonal matrix
with diagonal entry di , 1

ẑ2i
. Then K is positive-definite and ẑ minimizes

ξ(z) =

n∑
i=1

[
zi − ẑi +

∂ψn
∂zi

(ẑ)d−1
i

]2

di =
n∑
i=1

[
zi −

(
ẑi −

∂ψn
∂zi

(ẑ)d−1
i

)]2

di.

subject to
z1 ≥ z2 ≥ . . . ≥ zn,

and it furnishes the antitonic regression of the function

g(i) , ẑi −
∂ψn
∂zi

(ẑ)d−1
i

on the ordered set {1, 2, . . . , n} with weight function di. Finally, it is well-known
(see, for example, Barlow et al. (1972) or Robertson, Wright and Dykstra (1988))
that the solution is

(ẑ1, . . . , ẑn) = slolcm
{ i∑
j=1

dj ,

i∑
j=1

g(j)dj

}n
i=0

.
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9. Appendix for Section 4.

PROOF OF PROPOSITION 4.1. (i) We first state a variant of Lemma 4.5 in
van de Geer (2000):

(9.1)
s∑
i=1

h2(f̂i,n, fi) ≤
s∑
i=1

∫ b

a

2f̂i,n(x)

f̂i,n(x) + fi(x)
d(Fi,ni − Fi)(x).

Its derivation is similar to that in van de Geer (2000) by noting the convexity
of G. Indeed, from the definition of monotone MLE, we have

s∑
i=1

∫ b

a
log f̂i,n(x)dFi,ni(x) ≥

s∑
i=1

∫ b

a
log

f̂i,n(x) + fi(x)

2
dFi,ni(x).

Hence, by noting the tangent line of the concave logarithm curve at u = 1,
we have log u ≤ u− 1 for u > 0, and so

0 ≤
s∑
i=1

∫ b

a
log

2f̂i,n(x)

f̂i,n(x) + fi(x)
dFi,ni(x)

≤
s∑
i=1

∫ b

a

(
2f̂i,n(x)

f̂i,n(x) + fi(x)
− 1

)
dFi,ni(x)

=
s∑
i=1

∫ b

a

(
2f̂i,n(x)

f̂i,n(x) + fi(x)
− 1

)
d(Fi,ni − Fi)(x)

+
s∑
i=1

∫ b

a

(
2f̂i,n(x)

f̂i,n(x) + fi(x)
− 1

)
dFi(x)

=
s∑
i=1

∫ b

a

2f̂i,n(x)

f̂i,n(x) + fi(x)
d(Fi,ni − Fi)(x)

−
s∑
i=1

∫ b

a

fi(x)− f̂i,n(x)

f̂i,n(x) + fi(x)
dFi(x).
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On the other hand,

s∑
i=1

∫ b

a

fi(x)− f̂i,n(x)

f̂i,n(x) + fi(x)
dFi(x) =

s∑
i=1

∫ b

a

fi(x)− f̂i,n(x)

f̂i,n(x) + fi(x)
fi(x)dx

=
1

2

s∑
i=1

∫ b

a

fi(x)− f̂i,n(x)

f̂i,n(x) + fi(x)
(fi(x) + f̂i,n(x))dx

+
1

2

s∑
i=1

∫ b

a

fi(x)− f̂i,n(x)

f̂i,n(x) + fi(x)
(fi(x)− f̂i,n(x))dx

=
1

2

s∑
i=1

(1− 1) +
1

2

s∑
i=1

∫ b

a

(f̂i,n(x)− fi(x))2

f̂i,n(x) + fi(x)
dx

=
1

2

s∑
i=1

∫ b

a

(√
f̂i,n(x)−

√
fi(x)

)2 (√f̂i,n(x) +
√
fi(x)

)2
f̂i,n(x) + fi(x)

dx

≥
s∑
i=1

h2(f̂i,n, fi).

Therefore, (9.1) follows. Define, for each i = 1, . . . , s, the classes

(9.2) Hi ,
{

2f̃i

f̃i + fi
=

2g̃∫
wig̃

g̃∫
wig̃

+ g0∫
wig0

: g̃ ∈ G and f̃i ,
wig̃∫
wig̃

}
,

and

H̃i ,
{ 2 g̃∫

wig̃
g0∫
wig0

g̃∫
wig̃

+ g0∫
wig0

: g̃ ∈ G
}
.

Note that for any measurable functions h1 and h2 that are Fi-integrable,∫
|h1(x)−h2(x)|dFi(x) =

∫
|h1(x)−h2(x)| g0(x)∫

wig0

∥∥∥∥∫ wig0

g0

∥∥∥∥
1,Fi

dQi(x),

where dQi ,
∥∥∥∫

wig0
g0

∥∥∥−1

1,Fi

∫
wig0
g0

dFi. Hence,

(9.3) H1,B(δ,Hi, Fi) = H1,B

(
δ

∥∥∥∥∫ wig0

g0

∥∥∥∥−1

1,Fi

, H̃i, Qi

)
.

For any g̃ ∈ G, let q1 , g̃∫
wig̃

and q0 , g0∫
wig0

. Note that q1q0
q1+q0

= ( 1
q0

+ 1
q1

)−1.
Thus, q1q0

q1+q0
is a decreasing function. Moreover, since q1

q1+q0
≤ 1, it is clear
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that H̃i is uniformly bounded by
2 supx∈[a,b] |g0(x)|∫

wig0
. Therefore, H̃i is a class of

decreasing functions which are uniformly bounded by
2 supx∈[a,b] |g0(x)|∫

wig0
. Thus,

by Theorem 2.7.5 in van der Vaart and Wellner (1996),

(9.4) H1,B

(
δ

∥∥∥∥∫ wig0

g0

∥∥∥∥−1

1,Fi

, H̃i, Qi

)
≤
A
∥∥∥∫

wig0
g0

∥∥∥
1,Fi

δ
,

for any δ > 0, where A is a universal constant. Hence, Hi is a Glivenko-
Cantelli class by Lemma 3.1 in van de Geer (2000) and so h(f̂i,n, fi) → 0,
for i = 1, . . . , s, a.s. in view of (9.1) and (9.3).

(ii) By definition of f̂i,n = wiĝn∫
wiĝn

and fi = wig0∫
wig0

, since
∫
ĝn =

∫
g0 = 1,∣∣∣∣ 1∫

wiĝn
− 1∫

wig0

∣∣∣∣
=

∣∣∣∣ ∫ f̂i,n(x)

wi(x)
dx−

∫
fi(x)

wi(x)
dx

∣∣∣∣
=

∣∣∣∣ ∫ b

a

1

wi
(

√
f̂i,n(x)−

√
fi(x))(

√
f̂i,n(x) +

√
fi(x))dx

∣∣∣∣
≤ 1

m

∫ b

a
(

√
f̂i,n(x) +

√
fi(x))

∣∣∣∣√f̂i,n(x)−
√
fi(x)

∣∣∣∣dx
≤ 1

m

(∫ b

a
(

√
f̂i,n(x) +

√
fi(x))2dx

)1/2(∫ b

a
(

√
f̂i,n(x)−

√
fi(x))2dx

)1/2

≤ 2

m

(∫ b

a
(

√
f̂i,n(x)−

√
fi(x)dx)2

)1/2

=
2

m
h(f̂i,n, fi)→ 0, a.s.,

where the first inequality follows from the boundedness from below of wi
and the triangle inequality; the second inequality follows from the Cauchy-
Schwartz inequality; and the third inequality follows from the inequality (a+

b)2 ≤ 2a2 + 2b2 for any a, b ∈ R and note that
∫ b
a f̂i,n(x)dx =

∫ b
a fi(x)dx =

1.
(iii) By considering the fact that ĝn is a density function, for any 0 < δ < b − a,

ĝn(a+δ)δ ≤ 1 (see Figure 1 for an illustration). Hence, lim supn ĝn(a+δ) ≤
1
δ . To establish the second claim, denote φn(z) , logLn(z), that is:

φn(z) =

n∑
i=1

log zi −
s∑
j=1

nj log

( n∑
k=1

zkcjk

)
.



8 CHAN ET AL.

Also denote żi , g0(Ti) and ż = (ż1, . . . , żn); note that ẑ is defined as the
monotone MLE (ĝn(T1), . . . , ĝn(Tn)). For each ε ∈ (0, 1), (1 − ε)ẑi + εżi
is decreasing in i. Let Σε ,

∑n
i=1[(1− ε)ẑi + εżi](Ti − Ti−1). We have, by

the definition and its globally maximizing nature of the monotone MLE ẑ,
for any ε ∈ (0, 1),

{[φn(((1− ε)ẑ + εż)/Σε)− φn(ẑ)]ε−1} ≤ 0.

The homogeneity of degree 0 of φn gives

φn(((1− ε)ẑ + εż)/Σε) = φn((1− ε)ẑ + εż).

Hence, we have

lim
ε↓0
{[φn((1− ε)ẑ + εż)− φn(ẑ)]ε−1} ≤ 0.

To evaluate this limit, note that

d

dε
φn((1−ε)ẑ+εż) =

n∑
i=1

żi − ẑi
ẑi + ε(żi − ẑi)

−
s∑
j=1

nj
∑n

k=1(żk − ẑk)cjk∑n
k=1(ẑk + ε(żk − ẑk))cjk

;

taking ε = 0, we deduce that

lim
ε↓0
{[φn((1− ε)ẑ + εż)− φn(ẑ)]ε−1} =

n∑
i=1

żi
ẑi
−

s∑
j=1

nj
∑n

k=1 żkcjk∑n
k=1 ẑkcjk

;

or equivalently,

1

n

n∑
i=1

g0(Ti)

ĝn(Ti)
−

s∑
j=1

nj
n

∑n
k=1 g0(Tk)cjk∑n
k=1 ĝn(Tk)cjk

≤ 0.

Rewrite the first term on the left hand side of the above inequality in terms of
the empirical measures Fi,ni’s, we obtain

s∑
i=1

ni
n

∫ b

a

g0(x)

ĝn(x)
dFi,ni(x) ≤

s∑
j=1

nj
n

∑n
k=1 g0(Tk)cjk∑n
k=1 ĝn(Tk)cjk

.

Note that
∑n

k=1 ĝn(Tk)cjk ≥ m
∑n

k=1 ĝn(Tk)(Tk−Tk−1) = m by the lower
boundedness ofwi and the fact that

∑n
k=1 ĝn(Tk)(Tk−Tk−1) = 1. Moreover,∑n

k=1 g0(Tk)cjk ≤M2(Tn − T0) ≤M2(b− a). Thus,

s∑
i=1

ni
n

∫ b

a

g0(x)

ĝn(x)
dFi,ni(x) ≤ M2(b− a)

m
.
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Hence, for any 0 < δ < b− a,

s∑
i=1

ni
n

∫ b

b−δ

g0(x)

ĝn(x)
dFi,ni(x) ≤ M2(b− a)

m
.

Note that, by the monotonicity of ĝn,

1

ĝn(b− δ)

s∑
i=1

ni
n

∫ b

b−δ
g0(x)Fi,ni(x) ≤

s∑
i=1

ni
n

∫ b

b−δ

g0(x)

ĝn(x)
dFi,ni(x).

This implies that, for almost every ω,

lim sup
n→∞

1

ĝn(b− δ;ω)

≤ lim sup
n→∞

M2(b− a)

m
∑s

i=1
ni
n

∫ b
b−δ g0(x)dFi,ni(x;ω)

= C2(δ),

where C2(δ) , M2(b−a)

m
∑s
i=1 λi

∫ b
b−δ g0(x)dFi(x)

<∞.
(iv) Fix δ > 0 such that a + δ < σ. Fix a sample point ω such that (i),(ii) and

(iii) hold. By (iii), the sequence ĝn is uniformly bounded on [a+ δ, b] by the
constant 1/δ. In the rest of this proof, for the sake of simplicity, we suppress
the dependence of ω. We first claim that for any converging subsequence ĝnk
of ĝn on (a+ δ, b), the limit must be g0. Then by Helly’s selection principle,
since ĝn is monotone by definition, we can conclude the whole sequence ĝn
converges to g0 on (a+ δ, b).
We next prove our claim. Consider any converging subsequence gnk , by (ii),

limk→∞
(√

f̂i,nk(x)−
√
fi(x)

)2
= limk→∞(

√
wi(x)ĝnk (x)∫

wiĝnk
−
√
fi(x))2 ex-

ists. By boundedness of wi and g0; and the uniform boundedness of ĝn on
[a+ δ, b], we can apply bounded convergence theorem to obtain∫ b

a+δ
lim
k→∞

(√
f̂i,nk(x)−

√
fi(x)

)2
dx = lim

k→∞

∫ b

a+δ

(√
f̂i,nk(x)−

√
fi(x)

)2
dx

≤ lim
k→∞

2h2(f̂i,nk , fi) = 0,

where the last equality follows from (i). This implies that limk→∞(
√
f̂i,nk(x)−√

fi(x))2 = 0 for Lebesgue-a.e. x ∈ [a+ δ, b]. As wi(x) > 0, we have

f̂i,nk(x)

wi(x)
=

ĝnk(x)∫
wiĝnk

→ fi(x)

wi(x)
=

g0(x)∫
wig0

for Lebesgue-a.e. x ∈ [a+δ, b];
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by (ii) again, we know ĝnk(x) → g0(x) for Lebesgue-a.e. x ∈ [a + δ, b]. As
ĝnk ’s are decreasing and g0 is continuous, we have ĝnk(x) → g0(x) for all
x ∈ (a + δ, b). Indeed, for an arbitrary ε > 0 and x0 ∈ (a + δ, b), choose
x′ < x0 < x′′ such that ĝnk(x′)→ g0(x′) and ĝnk(x′′)→ g0(x′′) as k →∞,
g0(x′) > g0(x0) > g0(x′′), and |g0(x′′) − g0(x′)| < ε. Then, there exists N
such that for all k ≥ N ,

|ĝnk(x0)− g0(x0)|
≤ |ĝnk(x0)− ĝnk(x′′)|+ |ĝnk(x′′)− g0(x′′)|+ |g0(x′′)− g0(x0)|
≤ |ĝnk(x′)− ĝnk(x′′)|+ |ĝnk(x′′)− g0(x′′)|+ |g0(x′′)− g0(x0)|
≤ |ĝnk(x′)− g0(x′)|+ |g0(x′)− g0(x′′)|+ 2|ĝnk(x′′)− g0(x′′)|

+|g0(x′′)− g0(x′)|,

that implies that lim supk→∞ |ĝnk(x0) − g0(x0)| ≤ 2ε. Thus, ĝnk(x) →
g0(x) for all x ∈ (a+ δ, b) and the claim follows.
The uniform convergence on compacta, that is, supx∈[σ,τ ] |ĝn(x)− g0(x)| →
0 for [σ, τ ] ⊂ (a+ δ, b), follows from the fact that ĝn’s, g0 are decreasing and
g0 is continuous; also see, for example, page 1 in Resnick (2013).

FIG 1. A graphical illustration that ĝ(a+ δ)δ ≤ 1 because of the fact that ĝn is a density function.
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10. Appendix for Section 5.

PROOF OF LEMMA 5.1. (i) Let Ui , F (Wi), for i = 1, . . . , n, and thus

Ui
iid∼ Unif[0, 1]. Let U(h) be the h-th order statistic of U1, . . . , Un. The in-

verse of F is well-defined; especially there is no jump of F . Note that, using
the mean value theorem or otherwise,

0 < W(h) − c = F−1(U(h))− F−1(0)

≤ sup
x∈[c,d]

1

f(x)
(U(h) − 0) ≤ 1

mf
U(h).(10.1)

Note that we can represent U(h) as

U(h)
d
=

∑h
i=1Ei∑n+1
i=1 Ei

,

where Ei
iid∼ Exp(1), for i = 1, . . . , n; see for example p.335 in Shorack and

Wellner (2009). Hence, we have

(10.2) max
h=1,...,n

nU(h)

h

d
=

n∑n+1
i=1 Ei

max
h=1,...,n

∑h
i=1Ei
h

.

By the strong law of large numbers, n∑n+1
i=1 Ei

→ 1 a.s.. For the second fac-

tor on the RHS of (10.2), we first note that
∑h

i=1Ei ∼ Gamma(h, 1) and the
fourth central moment of a Gamma(h, 1) random variable is 3h(2+h). There-

fore,
∑∞

h=1 E(
∑h
i=1 Ei
h − 1)4 =

∑∞
h=1

3h(2+h)
h4

< ∞. For any K > 1, note

that {maxh=1,...,n(
∑h
i=1 Ei
h −1) > K−1} ⊂ {maxh=1,...,n(

∑h
i=1 Ei
h −1)4 ≥

(K − 1)4} as maxh=1,...,n(
∑h
i=1 Ei
h − 1)4 ≥ (maxh=1,...,n(

∑h
i=1 Ei
h − 1))4 ≥

(K − 1)4. Therefore, by Markov’s inequality, for any n,

P
(

max
h=1,...,n

∑h
i=1Ei
h

> K

)
≤ P

(
max

h=1,...,n

(∑h
i=1Ei
h

− 1

)4

> (K − 1)4

)

≤
E
(

maxh=1,...,n

(∑h
i=1 Ei
h − 1

)4)
(K − 1)4

≤

∑∞
h=1 E

(∑h
i=1 Ei
h − 1

)4

(K − 1)4
,

Hence, maxh=1,...,n

∑h
i=1 Ei
h = Op(1). Therefore, maxh=1,...,n

nU(h)

h = Op(1),

and so is maxh=1,...,n
n(W(h)−c)

h in view of (10.1).
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(ii) Again, let Ui , F (Wi), for i = 1, . . . , n, and thus Ui
iid∼ Unif[0, 1]. Let U(h)

be the h-th order statistic of U1, . . . , Un. Note that in accordance to the mean
value theorem or otherwise, we have

W(h) − c = F−1(U(h))− F−1(0) ≥ inf
x∈[c,d]

1

f(x)
(U(h) − 0) ≥ 1

Mf
U(h).

Hence,

(10.3) Mf

(
min

h=1,...,n

nU(h)

h

)−1

≥
(

min
h=1,...,n

n(W(h) − c)
h

)−1

.

As in (a), we represent U(h) as U(h)
d
=

∑h
i=1 Ei∑n+1
i=1 Ei

, where Ei
iid∼ Exp(1), for

i = 1, . . . , n. Hence, we have

(10.4) min
h=1,...,n

nU(h)

h

d
=

n∑n+1
i=1 Ei

min
h=1,...,n

∑h
i=1Ei
h

.

By the strong law of large numbers, n∑n+1
i=1 Ei

→ 1 a.s.. We first claim that(
minh=1,...,n

∑h
i=1 Ei
h

)−1
= Op(1). With this claim, the lemma statement

follows in view of (10.3) and (10.4). On the other hand, for the claim, for

any ε > 0, since
∑∞

h=1 E
(∑h

i=1 Ei
h − 1

)4
< ∞, there exists N such that∑∞

h=N E
(∑h

i=1 Ei
h −1

)4
< ε. Next, we choose δ ∈ (0, 1

2) such that
∑N

h=1 P
(∑h

i=1 Ei
h <

δ
)
< ε, which is possible as there are only finitely many of these probabilities

of continuous random variables. Note that

P
((

min
h=1,...,n

∑h
i=1Ei
h

)−1

>
1

δ

)
= P

(
min

h=1,...,n

∑h
i=1Ei
h

< δ

)
= P

( ⋃
h=1,...,n

{∑h
i=1Ei
h

< δ

})
≤
∞∑
h=1

P
(∑h

i=1Ei
h

< δ

)

≤ ε+

∞∑
h=N

P
((

1−
∑h

i=1Ei
h

)4

> (1− δ)4

)

≤ ε+
∞∑
h=N

E(1−
∑h
i=1 Ei
h )4

(1− δ)4

≤ ε+
ε

(1− δ)4
≤ ε+ 24ε = 17ε,

where the second inequality follows from the choice of N and note that

whenever δ < 1, {0 <
∑h
i=1 Ei
h < δ} = {

∑h
i=1 Ei
h − 1 < δ − 1 < 0} ⊂
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{(1 −
∑h
i=1
h )4 > (1 − δ)4}; the third inequality follows from Markov’s in-

equality; the fourth inequality follows from the choice of N ; and the last
inequality follows as δ < 1

2 .

PROOF OF COROLLARY 5.2. (i) Let Yij , −Xij for i = 1, . . . , s, j =
1, . . . , ni so that the distribution functions of Yij’s are FYi(x) = 1− Fi(−x)
and Yij’s are supported on [−b,−a]. Let S1 ≤ S2 ≤ . . . ≤ Sn be the order
statistics of all the Yij’s, i = 1, . . . , s, j = 1, . . . , ni. Clearly, by definition, as
a mirror image, Tn−Tn−h = Sh+1−S1 for all h = 1, 2, . . . , n−1. Consider
only those h ∈ {n1 + 1, . . . , n}, note that we have an immediate result:

n(Sh+1 − S1)

h
≤ n(b− a)

n1
→ b− a

λ1
.

Therefore, for large enough n,

max
h=1,...,n

n(Tn − Tn−h)

h
= max

h=1,...,n

n(Sh+1 − S1)

h

≤ 2(b− a)

λ1
+ max
h=1,...,n1

n(Sh+1 − S1)

h

≤ 2(b− a)

λ1
+ max
h=1,...,n1

n(Y1(h+1) − (−b))
h

≤ 2(b− a)

λ1
+ max
h=1,...,n1

2n(Y1(h+1) − (−b))
h+ 1

,

where Y1(j) is the j-th order statistics of Y11, . . . , Y1n1 . Since the density of
Y1, fY1(y) = f1(−y) ≥ m for y ∈ [−b,−a], the result follows by applying
Lemma 5.1.

(ii) LetUij , Fj(Xij) for i = 1, . . . , s, j = 1, . . . , ni. Note thatUij
iid∼ Unif[0, 1].

Let Fmax(x) , maxi=1,...,s Fi(x). Clearly, Fmax is a distribution function on
[a, b] with a density function fmax that satisfies 0 < m ≤ fmax ≤ M . Note
that Uij ≤ Fmax(Xij). Hence, for any h = 1, . . . , n, U(h) ≤ Fmax(Th).

Therefore, F−1
max(U(h)) ≤ Th. As a result, minh=1,...,n

n(F−1
max(U(h))−a)

h ≤
minh=1,...,n

n(Th−a)
h , and so(

min
h=1,...,n

n(Th − a)

h

)−1

≤
(

min
h=1,...,n

n(F−1
max(U(h))− a)

h

)−1

= Op(1),

where the tightness follows from Lemma 5.1 with Wi , F−1
max(Ui) ∼ Fmax.



14 CHAN ET AL.

PROOF OF (5.2). Let ∆i , Ti − Ti−1 for i = 1, . . . , n and Cj ,
∑n

k=1 cjk =∫ Tn
a wj(x)dx; the dependences on n of ∆i and Cj are suppressed in the notation

for simplicity. Suppose that z∗ maximizes Ln(z) subject to z1 ≥ . . . ≥ zn ≥ 0.
Then, by the homogeneity of degree 0 of Ln(z), we can normalize z∗ to obtain the
maximizer of Ln(z) subject to z1 ≥ . . . zn ≥ 0 and

∑n
i=1 zi∆i = 1 simultane-

ously. Also recall that all the components of the maximizer should be positive, i.e.,
ẑ > 0. Therefore, we can ignore the equality constraint and also consider the ratio
zi
zn

for i = 1, . . . , n− 1 instead. Then we can write Ln(z) as

Ln(z) =
z1
zn

z2
zn
· · · zn−1

zn∏s
j=1(

∑n−1
k=1 cjk

zk
zn

+ cjn)nj
=

z1
zn

z2
zn
· · · zn−1

zn∏s
j=1(

∑n−1
k=1 cjk(

zk
zn
− 1) + Cj)nj

.

Define yi , zi
zn
− 1. The original optimization problem is equivalent to maximize

the following alternative objective function:

Ln(y) ,

∏n−1
i=1 (1 + yi)∏s

j=1(Cj +
∑n−1

k=1 cjkyk)
nj
,

subject to y1 ≥ y2 ≥ . . . ≥ yn−1 ≥ 0, without bothering the equality constraint.
Define µ̃0 , 0, Karush-Kuhn-Tucker (KKT) conditions for minimizing− logLn

subject to y1 ≥ y2 ≥ . . . yn−1 ≥ 0 imply that there exist µ̃1, . . . , µ̃n−1 such that
the optimal solution ŷ satisfies

(10.5)

− 1

1 + ŷl
+

s∑
j=1

njcjl

Cj +
∑n−1

k=1 cjkŷk
− µ̃l + µ̃l−1 = 0, for l = 1, 2, . . . , n− 1,

such that

µ̃l(ŷl+1 − ŷl) = 0, for l = 1, 2, . . . , n− 2,(10.6)

−µ̃n−1ŷn−1 = 0(10.7)

µ̃1, µ̃2, . . . , µ̃n−1 ≥ 0,(10.8)

where µ̃1, . . . , µ̃n−1 are the KKT multipliers. We can have two scenarios:

Case 1: ŷ1 = . . . = ŷn−1. Clearly, we have ẑ1 = . . . = ẑn−1 and the equality
constraint

∑n
i=1 ẑi∆i = 1 implies that

ẑ1 =
1− ẑn∆n∑n−1

i=1 ∆i

≤ 1

Tn−1 − a
.
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Case 2: there exists a j∗ ∈ {1, . . . , n − 1} such that ŷ1 = . . . = ŷj∗ > ŷj∗+1, where
ŷn , 0. The strict inequality implies µ̃j∗ = 0; next adding up the equations
from (10.5) for l = 1 to l = j∗, we obtain

− j∗

1 + ŷ1
+

s∑
j=1

nj
∑j∗

l=1 cjl

Cj +
∑n−1

k=1 cjkŷk
= 0,

where the first term in the LHS is obtained from the fact that ŷ1 = . . . = ŷj∗ .
Using the boundedness assumptions on wj’s, we obtain

j∗

1 + ŷ1
≥ m

M

s∑
j=1

nj(Tj∗ − a)

(Tn − a) +
∑n−1

k=1 ∆kŷk
.

Hence, we have

(10.9) 1 + ŷ1 ≤
M

m

(Tn − a) +
∑n−1

k=1 ∆kŷk

n
Tj∗−a
j∗

.

It is noted that by what times the equality constraints are active among the
components of the optimal ŷ may not be explicitly known. Nevertheless, we
can still provide a sensible bound for 1 + ŷ1 based on (10.9), which is

1 + ŷ1 ≤
M

m

(Tn − a) +
∑n−1

k=1 ∆kŷk

nminj=1,...,n
Tj−a
j

.

Combining Case 1 and Case 2, we obtain a uniform bound for ẑ1 as

(10.10) ẑ1 ≤ ẑn
M

m

(Tn − a) +
∑n−1

k=1 ∆kŷk

nminj=1,...,n
Tj−a
j

+
1

Tn−1 − a
.

In view of (10.10), we shall now provide an upper bound for the term (Tn − a) +∑n−1
k=1 ∆kŷk. To this end, for each h = 1, . . . , n− 1, we consider maximizing

(10.11) Lhn(y1, . . . , yn−h) ,

∏n−h
i=1 (1 + yi)∏s

j=1(Cj +
∑n−h

k=1 cjkyk)
nj

subject to y1 ≥ . . . yn−h ≥ 0. Define µ̃h0 , 0. As in (10.5) to (10.8), there exist
µ̃h1 , . . . , µ̃

h
n−h such that the optimal solution ŷh satisfies

(10.12)

− 1

1 + ŷhl
+

s∑
j=1

njcjl

Cj +
∑n−h

k=1 cjkŷ
h
k

− µ̃hl + µ̃hl−1 = 0, for l = 1, 2, . . . , n− h,
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such that

µ̃hl (ŷhl+1 − ŷhl ) = 0, for l = 1, 2, . . . , n− h− 1,(10.13)

−µ̃hn−hŷhn−h = 0(10.14)

µ̃h1 , µ̃
h
2 , . . . , µ̃

h
n−h ≥ 0.(10.15)

Observe that if we multiply (1+ŷhl ) on both sides of (10.12) for each l = 1, . . . , n−
h, and add up all the resulting equations, we obtain

(10.16)
n−h∑
l=1

s∑
j=1

njcjl(1 + ŷhl )

Cj +
∑n−h

k=1 cjkŷ
h
k

− (n− h) = µ̃hn−h,

by using (10.13) and (10.14). Note that we can simplify the expression on the LHS
of (10.16),

n−h∑
l=1

s∑
j=1

njcjl(1 + ŷhl )

Cj +
∑n−h

k=1 cjkŷ
h
k

− (n− h)

=
s∑
j=1

nj

∑n−h
l=1 cjl +

∑n−h
l=1 cjlŷ

h
l

Cj +
∑n−h

k=1 cjkŷ
h
k

− (n− h)

=
s∑
j=1

nj

(
1−

∑n
l=n−h+1 cjl

Cj +
∑n−h

k=1 cjkŷ
h
k

)
− (n− h)

= h−
s∑
j=1

nj
∑n

l=n−h+1 cjl

Cj +
∑n−h

k=1 cjkŷ
h
k

= µ̃hn−h.(10.17)

Returning to the maximizer ŷ, we have again two scenarios:

Case 1’: ŷ1 = . . . = ŷn−1 = 0. Then (Tn − a) +
∑n−1

k=1 ∆kŷk = Tn − a.
Case 2’: there exists a h ∈ {1, . . . , n − 1} such that ŷn−1 = . . . = ŷn−h+1 = 0 and

ŷn−h > 0. To find the optimal solution ŷ in this case, it suffices to maximize
the reduced objective function Lhn(y1, . . . , yn−h) defined in (10.11) subject to
y1 ≥ . . . yn−h ≥ 0. Note that the optimal value of Lhn and that of the original
objective function Ln are the same; meanwhile, the optimal points ŷhi for Lhn
are also the same as that of the original objective function ŷi, i.e., ŷhi = ŷi for
i = 1, . . . , n− h. Hence, we get from (10.17) that

h−
s∑
j=1

nj
∑n

l=n−h+1 cjl

Cj +
∑n−h

k=1 cjkŷk
= µ̃hn−h = 0,
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as ŷhn−h = ŷn−h > 0 implies µ̃hn−h = 0. Using the boundedness assumptions
on wj’s, we have

M

m

s∑
j=1

nj(Tn − Tn−h)

(Tn − a) +
∑n−h

k=1 ∆kŷk
≥ h.

Hence, we obtain

(Tn − a) +
n−h∑
k=1

∆kŷk ≤
M

m

n(Tn − Tn−h)

h
.

As before, by what components of the optimal ŷ vanish may not be explicitly
known. Nevertheless, based on the above arguments, we can still provide a
bound for (Tn − a) +

∑n−1
k=1 ∆kŷk, which is

(Tn − a) +

n−1∑
k=1

∆kŷk ≤
M

m
max

h=1,...,n−1

n(Tn − Tn−h)

h
.

Combining Case 1’ and Case 2’, we have a uniform bound

(10.18) (Tn − a) +
n−1∑
k=1

∆kŷk ≤
M

m
max

h=1,...,n

n(Tn − Tn−h)

h
.

From (10.10) and (10.18), we establish (5.2).

PROOF OF LEMMA 5.4. (i) From equation (9.1), we know
s∑
i=1

h2(f̂i,n, fi) ≤
s∑
i=1

∫ b

a

2f̂i,n(xi)

f̂i,n(xi) + fi(xi)
d(Fi − Fi)(xi).

and the class of functions f̂i,n

f̂i,n+fi,n
is also a subset of a Donsker class in

view of (9.2), (9.3) and (9.4). Hence, the RHS of the inequality is of order
Op(n

−1/2) , and the claim follows.
(ii) This is a direct consequence of Lemma 5.4 (i); by using the expression in the

proof in Proposition 4.1 (ii) and
∫
wiĝn = Op(1) in light of Proposition 4.1

(ii) again.
(iii) By Lemma 5.3,∫ b

a
(f̂i,n(x)− fi(x))2dx

=

∫ b

a
(

√
f̂i,n(x)−

√
fi(x))2(

√
f̂i,n(x) +

√
fi(x))2dx

≤ Op(1)

∫ b

a
(

√
f̂i,n(x)−

√
fi(x))2dx = Op(n

−1/2).
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(iv) Using Lemma 5.3 again, Lemma 5.4 (ii) and (iii),∫ b

a
(ĝn(x)− g0(x))2dx =

∫ b

a

(
f̂i,n(x)

∫
wiĝn

wi(x)
−
fi(x)

∫
wig0

wi(x)

)2

dx

≤ 1

m2

∫ b

a

(
f̂i,n(x)

∫
wiĝn − fi(x)

∫
wig0

)2

dx

≤ 2

m2

∫ b

a
(f̂i,n(x)− fi(x))2dx ·

(∫
wiĝn

)2

+

2

m2

∫ b

a
f2
i (x)dx ·

(∫
wig0 −

∫
wiĝn

)2

= Op(n
−1/2).

PROOF OF LEMMA 5.5. The proof follows from the Karush-Kuhn-Tucker con-
ditions. Recall that in the proof of Proposition 3.2, we have for all i = 1, . . . , n−1,

µi =
i∑

j=1

∂ψn
∂zj

(ẑ) ≥ 0,

n∑
j=1

∂ψn
∂zj

(ẑ) = 0, µi(ẑi+1 − ẑi) = 0.

Therefore, whenever ẑk+1 > ẑk for some k, µk =
∑k

j=1
∂ψn
∂zj

(ẑ) = 0. Now, denote

τ1, . . . , τm to be the jump points of ĝn for some m + 1 ≤ n. Define also τ0 , T1

and τm+1 , Tn; note that τm can be equal to τm+1. We then have∑
i:τj≤Ti<τj+1

∂ψn
∂zi

(ẑ) =
∑

i:Ti<τj+1

∂ψn
∂zi

(ẑ)−
∑

i:Ti<τj

∂ψn
∂zi

(ẑ) = 0, j = 0, . . . ,m.

Hence, for any function γ and for j = 0, . . . ,m, as there is no change of value of
ĝn on [τj , τj+1),

0 = γ(ĝn(τj))
∑

i:τj≤Ti<τj+1

∂ψn
∂zi

(ẑ) =
∑

i:τj≤Ti<τj+1

(
∂ψn
∂zi

(ẑ)γ(ĝn(Ti))

)
.

Summing the above equation from j = 0 to j = m completes the proof.

PROOF OF LEMMA 5.9. Let T 1
j , j = 1, . . . , n1, be the order statistics from the

first sample X1j , j = 1, . . . , n1, and F̂1 be the empirical distribution of F1 from
X11, . . . , X1n1 . We first claim that

(10.19) sup
j=1,...,n

(Tj − Tj−1) = Op(n
−1/2),
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and

(10.20)
∫ b

Tn

g0(x)wi(x)dx = Op(n
−1).

Indeed, by the mean value theorem, for some ηj ∈ (T 1
j−1, T

1
j ),

T 1
j − T 1

j−1 =
1

F ′1(ηj)

[
F1(T 1

j )− F̂1(T 1
j ) + F̂1(T 1

j−1)− F1(T 1
j−1) + F̂1(T 1

j )− F̂1(T 1
j−1)

]
≤ 1

f1(ηj)

[
|F̂1(T 1

j )− F1(T 1
j )|+ |F̂1(T 1

j−1)− F1(T 1
j−1)|+ 1

n1

]
.

Hence, under Assumptions 2.1 (C) and by applying the Dvoretzky-Kiefer-Wolfowitz
inequality,

sup
j=1,...,n

(Tj − Tj−1) ≤ sup
j=1,...,n1

(T 1
j − T 1

j−1)

≤ 2 sup
t∈[a,b]

(
1

f1(t)

)
sup
x∈[a,b]

|F̂1(x)− F1(x)|+O(n−1)

= Op(n
−1/2) +O(n−1) = Op(n

−1/2).

On the other hand, for establishing (10.20), note that under Assumptions 2.1 (C),∫ b
Tn
g0(x)wi(x)dx ≤M2(b− Tn) ≤M2(b− T 1

n1
) = Op(n

−1); see also the proof
of Lemma 5.6. Using (10.19), (10.20) and Assumptions 2.1 (B),

n∑
i=1

g0(Tj)

∫ Tj

Tj−1

wi(x)dx−
∫ b

a
g0(x)wi(x)dx

=
n∑
i=1

g0(Tj)

∫ Tj

Tj−1

wi(x)dx−
n∑
i=1

∫ Tj

Tj−1

g0(x)wi(x)dx−
∫ b

Tn

g0(x)wi(x)dx

=

n∑
i=1

∫ Tj

Tj−1

wi(x)g′0(ξj,x)(Tj − x)dx+Op(n
−1)

≤ sup
t∈(a,b)

|g′0(t)| sup
j=1,...,n

(Tj − Tj−1)

∫ b

a
wi(x)dx+Op(n

−1) = Op(n
−1/2),

for some ξj,y ∈ [Tj−1, Tj ] for each y ∈ [a, b] in light of the mean value theorem.

PROOF OF LEMMA 5.11. Denote Ji(t) ,
∑

j:t≤Xij<t0

(
− 1
nig0(t0)+

∑
j:t≤Tj<t0

cij∫
wiĝn

)
.

Then, for any t < t0,∑
j:t≤Tj<t0

(
− 1

ng0(t0)
+

s∑
i=1

ni
n

cij∫
wiĝn

)
=

s∑
i=1

ni
n
Ji(t).
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We first claim that P(supt∈In Ji(t) ≥ 0) ≤ ε for all i = 1, . . . , s. The claim of our
present lemma then follows as P(supt∈In

∑s
i=1

ni
n Ji(t) ≥ 0) ≤ P(

∑s
i=1

ni
n supt∈In Ji(t) ≥

0) ≤
∑s

i=1 P(supt∈In Ji(t) ≥ 0) ≤ sε. Next, we verify the first claim. For the ease
of notation, we suppress the subscript i if there is no ambiguity. Define

A(t) , −
∫

1

g0(t0)
1(t ≤ x < t0)dF (x) +

∫ t0
t w(x)dx∫

wg0
,

B(t) , −
∫

1

g0(t0)
1(t ≤ x < t0)d(Fni − F )(x),

C(t) ,

∫ t
TL
w(x)dx∫
wĝn

−
∫ t0
TU
w(x)dx∫
wĝn

,

D(t) ,

∫ t0
t w(x)dx∫

wĝn
−
∫ t0
t w(x)dx∫

wg0
,

where TL and TU denote the maxima of Xij less than t and t0 respectively. Tele-
scoping the terms, we obtain J(t) = A(t) + B(t) + C(t) +D(t).

(i) Note that, since g′0(t0) < 0,

A(t) = −
∫ t0

t

g0(x)− g0(t0)

g0(t0)
· w(t0)∫

wg0
dx−

∫ t0

t

g0(x)− g0(t0)

g0(t0)
· w(x)− w(t0)∫

wg0
dx

=

(
−
∫ t0

t

g′0(t0)(x− t0)

g0(t0)
· w(t0)∫

wg0
dx+ o(|t− t0|2)

)
+O(|t− t0|3)

= −w(t0)|g′0(t0)|
g0(t0)

∫
wg0

(t− t0)2

2
+ o(|t− t0|2).

Hence, there exists R0 such that for all t ∈ (t0 − R0, t0), we have A(t) ≤
−α(t− t0)2, where α , 1

4
|g′0(t0)|w(t0)

g0(t0)
∫
wg0

> 0.
(ii) For B(t), by the same argument as used in the proof of Lemma 4.1 of Kim

and Pollard (1990), for any δ > 0, there exists a tight sequence of random
variables {Mn} such that for any t ∈ (t0 −R0, t0),∣∣∣∣− ∫ 1

g0(t0)
1(t ≤ x < t0)d(Fni − F )(x)

∣∣∣∣ ≤ δ(t0 − t)2 + n−2/3M2
n.

(iii) For C(t), it is clear that the terms
∫ t
TL

w(x)dx∫
wĝn

and
∫ t0
TU

w(x)dx∫
wĝn

are of order

Op(n
−1), which are also independent of the choice of t ∈ (t0 − R0, t0);

see also the proof of Lemma 5.6.
(iv) For D(t), by Proposition 5.8,∫ t0

t w(x)dx∫
wĝn

−
∫ t0
t w(x)dx∫

wg0
= Op(n

−1/2)O(|t0 − t|) = Op(n
−1/2)|t0 − t|.
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Now, for t ∈ (t0 −R0, t0), by choosing δ = α/2 > 0,

J(t) ≤ −α(t− t0)2 + δ(t0 − t)2 + n−2/3M2
n +Op(n

−1/2)|t0 − t|

=

(
− α

2
+Op(n

−1/2)|t0 − t|−1

)
(t0 − t)2 + n−2/3M2

n;

as a consequence, with probability more than 1− ε/2, there exists D > 0 such that
for any C > 0, any t ∈ (t0 −R0, t0 − Cn−1/3], and all sufficiently large n,

J(t) ≤ n−2/3

(
− α

2
C2 + n−1/6DC +M2

n

)
.

By choosing a C0 > 0 large enough, we can guarantee that with probability more
than 1− ε

2 , −α
2C

2 + n−1/6DC +M2
n < 0 for all C ≥ C0 as M2

n = Op(1). Since
the above bound for J(t) is independent of t, we know that there exists C0 such
that for all C ≥ C0, R ≤ R0, large enough n,

P
(

sup
t∈(t0−R,t0−Cn−1/3]

J(t) < 0

)
≥ 1− ε,

and our claim follows.

PROOF OF LEMMA 5.12. Fix C > 0 and define tn = t0 − 2Cn−1/3. Denote

J̃i(t) ,
∑

j:tn≤Xij<t

(
− 1

nig0(tn) +

∑
j:tn≤Tj<t

cij∫
wiĝn

)
. Then, for t > tn,

∑
j:tn≤Tj<t

(
− 1

ng0(tn)
+

s∑
i=1

ni
n

cij∫
wiĝn

)
=

s∑
i=1

ni
n
J̃i(t).

Following the same argument as that in Lemma 5.11, it suffices to show that
P(inft∈Ĩn J̃i(t) ≤ 0) ≤ ε. For the notational simplicity, we suppress the subscript
i if there is no ambiguity. Define

Ã(t) , −
∫

1

g0(tn)
1(tn ≤ x < t)dF (x) +

∫ t
tn
w(x)dx∫
wg0

,

B̃(t) , −
∫

1

g0(tn)
1(tn ≤ x < t)d(Fni − F )(x),

C̃(t) ,

∫ tn
TL
w(x)dx∫
wĝn

−
∫ t
TU
w(x)dx∫
wĝn

,

D̃(t) ,

∫ t
tn
w(x)dx∫
wĝn

−
∫ t
tn
w(x)dx∫
wg0

,

where TL and TU denote the maxima of Xij less than tn and t respectively. Tele-
scoping the terms, we obtain J̃(t) = Ã(t) + B̃(t) + C̃(t) + D̃(t).
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(i) Note that, since g′0(tn) < 0,

Ã(t) =

∫ t

tn

g0(tn)− g0(x)

g0(tn)
· w(tn)∫

wg0
dx

+

∫ t

tn

g0(tn)− g0(x)

g0(tn)
· w(x)− w(tn)∫

wg0
dx

=

∫ t

tn

|g′0(tn)|(x− tn)

g0(tn)
· w(tn)∫

wg0
dx+ o(|t− tn|2)

+O(|t− tn|3)

=
|g′0(tn)|w(tn)

g0(tn)
∫
wg0

(t− tn)2

2
+ o(|t− tn|2).

Note that tn converges to t0 as n goes to infinity. Therefore, there exists
R1 > 0 such that for large enough n and t ∈ [tn, t0 +R1), Ã(t) ≥ α̃(t− tn)2

for α̃ , 1
4 sup

t∈[
t0
2
,t0]

|g′0(t)|w(t)

g0(t)
∫
wg0

> 0 under Assumptions 2.1 (B) and (C).

(ii) For B̃(t), by the same argument as used in the proof of Lemma 4.1 of Kim
and Pollard (1990), for all δ > 0, there exists a tight sequence of random
variables {M̃n} such that for all t ∈ (tn, t0 +R1),∣∣∣∣− ∫ 1

g0(tn)
1(tn ≤ x < t)d(F− F )(x)

∣∣∣∣ ≤ δ(t− tn)2 + n−2/3M̃2
n.

(iii) For C̃(t), it is clear that the terms
∫ tn
TL

w(x)dx∫
wĝn

and
∫ t
TU

w(x)dx∫
wĝn

are Op(n−1), not
depending on t; see also the proof of Lemma 5.6.

(iv) For D̃(t), by Proposition 5.8,∫ t
tn
w(x)dx∫
wĝn

−
∫ t
tn
w(x)dx∫
wg0

= Op(n
−1/2)|t− tn|.

Now, for any t ∈ [t0 − Cn−1/3, t0 +R1), by choosing δ = α̃/2 > 0,

J̃(t) ≥ α̃(t− tn)2 − δ(t− tn)2 − n−2/3M̃2
n +Op(n

−1/2)|t− tn|

=

(
α̃

2
+Op(n

−1/2)|t− tn|−1

)
(t− tn)2 − n−2/3M̃2

n;

as a consequence, with probability more than 1− ε/2, there exists D̃ > 0 such that
for any C > 0, any t ∈ [t0 − Cn−1/3, t0 +R1), and all large enough n,

J̃(t) ≥ n−2/3

(
α̃

2
C2 − D̃Cn−1/6 − M̃2

n

)
.
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Hence, with probability more than 1 − ε
2 , there exists a sufficiently large C1 such

that α̃2C
2− D̃Cn−1/6− M̃2

n > 0 for all C ≥ C1 as M̃2
n = Op(1). Since the above

bound for J̃(t) is not depending on t, we conclude that there exists C1 > 0 such
that for all C ≥ C1, R ≤ R1, large enough n,

P
(

inf
t∈[t0−Cn−1/3,t0+R)

J̃(t) > 0

)
≥ 1− ε,

and our claim follows.

PROOF OF PROPOSITION 5.13. Fix ε > 0. Using the notation in Lemma 5.11
and Lemma 5.12, choose C ≥ max{C0, C1,M} and 0 < R ≤ min{R0, R1}. We
first claim that

(10.21) P
(
ĝn(t0 − Cn−1/3) ≤ g0(t0)

)
≤ 2ε,

and

(10.22) P
(
ĝn(t0 − Cn−1/3) ≥ g0(t0 − 2Cn−1/3)

)
≤ 2ε.

These together imply that with the probability more than 1− 4ε,

g0(t0 − 2Cn−1/3) > ĝn(t0 − Cn−1/3) > g0(t0).

Similarly, we have with the probability more than 1− 4ε,

g0(t0) > ĝn(t0 + Cn−1/3) > g0(t0 + 2Cn−1/3).

Hence, with the probability more than 1− 8ε,

n1/3(g0(t0 − 2Cn−1/3)− g0(t0)) ≥ n1/3(ĝn(t0 − Cn−1/3)− g0(t0)) ≥ 0,

and

n1/3(g0(t0 + 2Cn−1/3)− g0(t0)) ≤ n1/3(ĝn(t0 + Cn−1/3)− g0(t0)) ≤ 0.

Together with the fact that C ≥ M , we know that with the probability more than
1− 8ε,

sup
|h|≤M

n1/3

∣∣∣∣ĝn(t0+hn−1/3)−g0(t0)

∣∣∣∣ ≤ max
K∈{−C,C}

n1/3

∣∣∣∣g0(t0+2Kn−1/3)−g0(t0)

∣∣∣∣.
The right hand side of the above inequality is eventually bounded by a positive
constant in light of Assumptions 2.1 (B).
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To verify (10.21), define Ln , {ĝn(t0 − Cn−1/3) ≤ g0(t0)}. Note that for
large enough n, g0(t0 − R) > g0(t0 − Cn−1/3) as g′0(t0) is strictly negative. By
Proposition 4.1 (iv), we see that with the probability more than 1 − ε, for large
enough n, ĝn(t0 − R) > ĝn(t0 − Cn−1/3), implying that ĝn has a jump in In =
(t0 − R, t0 − Cn−1/3]. Define Un to be the event that ĝn has a jump point in In.
Then, P (Un) ≥ 1 − ε for large enough n. Now, fix a sample point ω ∈ Ln ∩ Un.
Denote τn , τn(ω) the last jump point of ĝn in In, we have, from Karush-Kuhn-
Tucker conditions,

0 ≤
∑

j:0<Tj<t0

∂ψn
∂zj

(ẑ) =
∑

j:0<Tj<τn

∂ψn
∂zj

(ẑ) +
∑

j:τn≤Tj<t0

∂ψn
∂zj

(ẑ)

and ∑
j:0<Tj<τn

∂ψn
∂zj

(ẑ) = 0.

Therefore, ∑
j:τn≤Tj<t0

∂ψn
∂zj

(ẑ) ≥ 0.

Note that if t ≥ τn, by the monotonicity of ĝn, the fact that τn is the last jump point
and ω ∈ Ln ∩ Un, we have ĝn(t) ≤ ĝn(τn) = ĝn(t0 − Cn−1/3) ≤ g0(t0). Hence,
(10.23)

0 ≤
∑

j:τn≤Tj<t0

(
− 1

ĝn(Tj)
+

s∑
i=1

nicij∫
wiĝn

)
≤

∑
j:τn≤Tj<t0

(
− 1

g0(t0)
+

s∑
i=1

nicij∫
wiĝn

)
.

Since τn ∈ In, we have

(10.24) 0 ≤ sup
t∈In

∑
j:t≤Tj<t0

(
− 1

ng0(t0)
+

s∑
i=1

ni
n

cij∫
wiĝn

)
.

However, from Lemma 5.11, for large enough n, we know that (10.24) happens
with the probability at most ε, implying that P(Ln) = P(Ln∩Un)+P(Ln∩U cn) ≤
ε+P(U cn) ≤ 2ε. The verification of (10.22) is similar and see the details in Section
9 of the supplementary materials.

PROOF OF THE CLAIM (10.22). Using the notation in Lemma 5.11 and Lemma
5.12, choose C ≥ max{C0, C1,M} and 0 < R ≤ min{R0, R1}. Define L̃n ,
{ĝn(t0 − Cn−1/3) ≥ g0(t0 − 2Cn−1/3)}. Note that for large enough n, g0(t0 −
Cn−1/3) > g0(t0+R) as g′0(t0) is strictly negative. By Proposition 4.1 (iv), we see
that with the probability more than 1− ε, for large enough n, ĝn(t0 − Cn−1/3) >
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ĝn(t0 + R), implying that ĝn has a jump in Ĩn = [t0 − Cn−1/3, t0 + R). Define
Ũn to be the event that ĝn has a jump in Ĩn. Thus, P(Ũn) ≥ 1− ε for large enough
n. Now, fix a sample point ω ∈ L̃n ∩ Ũn. Denote τ̃n ≡ τ̃(ω) the first jump point of
ĝn in Ĩn. Note that from Karush-Kuhn-Tucker conditions,

0 =
∑

j:0<Tj<τ̃n

∂ψn
∂zj

(ẑ) =
∑

j:0<Tj<t0−2Cn−1/3

∂ψn
∂zj

(ẑ)+
∑

j:t0−2Cn−1/3≤Tj<τn

∂ψn
∂zj

(ẑ)

and ∑
j:0<Tj<t0−2Cn−1/3

∂ψn
∂zj

(ẑ) ≥ 0.

Therefore, ∑
j:t0−2Cn−1/3≤Tj<τ̃n

∂ψn
∂zj

(ẑ) ≤ 0.

If t ∈ [t0 − 2Cn−1/3, τ̃n), by the monotonicity of ĝn, the fact that τ̃n is the first
jump point and ω ∈ L̃n ∩ Ũn, we have ĝn(t) ≥ ĝn(τ̃n−) = ĝn(t0 − Cn−1/3) ≥
g0(t0 − 2Cn−1/3). Therefore,

∑
j:t0−2Cn−1/3≤Tj<τ̃n

(
− 1

g0(t0 − 2Cn−1/3)
+

s∑
i=1

nicij∫
wiĝn

)

≤
∑

j:t0−2Cn−1/3≤Tj<τ̃n

(
− 1

ĝn(Tj)
+

s∑
i=1

nicij∫
wiĝn

)
≤ 0.

Since τ̃n ∈ Ĩn, we have

(10.25) inf
t∈Ĩn

∑
j:t0−2Cn−1/3≤Tj<t

(
− 1

ng0(t0 − 2Cn−1/3)
+

s∑
i=1

ni
n

cij∫
wiĝn

)
≤ 0.

However, from Lemma (5.12), for large enough n, we know that (10.25) happens
with the probability at most ε, implying that P(L̃n) = P(L̃n∩Ũn)+P(L̃n∩Ũ cn) ≤
ε+ P(Ũ cn) ≤ 2ε.

PROOF OF LEMMA 5.14. Fix ε > 0 and C̃ > 0. Denote tn , t0 − 2C̃n−1/3.

Define J̄i(t) ,
∑

j:t≤Xij<tn

(
− 1

nig0(tn) +

∑
j:t≤Tj<tn

cij∫
wiĝn

)
. Then, for t < tn,

∑
j:t≤Tj<tn

(
− 1

ng0(tn)
+

s∑
i=1

ni
n

cij∫
wiĝn

)
=

s∑
i=1

ni
n
J̄i(t).
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Again, following the same argument leading to Lemma 5.11, it suffices to show that
P(supt∈Īn J̄i(t) ≥ 0) ≤ ε. For the notational simplicity, we suppress the subscript
i if there is no cause of ambiguity. Define

Ā(t) , −
∫

1

g0(tn)
1(t ≤ x < tn)dF (x) +

∫ tn
t w(x)dx∫

wg0
,

B̄(t) , −
∫

1

g0(tn)
1(t ≤ x < tn)d(Fni − F )(x),

C̄(t) ,

∫ t
TL
w(x)dx∫
wĝn

−
∫ tn
TU
w(x)dx∫
wĝn

,

D̄(t) ,

∫ tn
t w(x)dx∫

wĝn
−
∫ tn
t w(x)dx∫

wg0
,

where TL and TU denote the maxima of Xij less than t and tn respectively. Tele-
scoping the terms, we obtain J̄(t) = Ā(t) + B̄(t) + C̄(t) + D̄(t).

(i) Note that, since g′0(tn) < 0,

Ā(t) = −
∫ tn

t

g0(x)− g0(tn)

g0(tn)

w(tn)∫
wg0

dx

−
∫ tn

t

g0(x)− g0(tn)

g0(tn)

w(x)− w(tn)∫
wg0

dx

= −
∫ tn

t

g′0(tn)(x− tn)

g0(tn)

w(tn)∫
wg0

dx+ o(|tn − t|2) +O(|tn − t|3)

= −|g
′
0(tn)|
g0(tn)

w(tn)∫
wg0

(tn − t)2

2
+ o(|tn − t|2).

Note that tn converges to t0 as n goes to infinity. Therefore, there exists
R̃ > 0 such that for all sufficiently large n, for all t ∈ (t0 − R̃, tn), Ā(t) ≤
−ᾱ(tn − t)2, for some ᾱ > 0 by Assumptions 2.1 (B) and (C).

(ii) For B̄(t), using argument as the proof of Lemma 4.1 in Kim and Pollard
(1990), for any δ > 0, there exists a tight sequence of random variables M̄n

such that for all t ∈ (t0 − R̃, tn),∣∣∣∣− ∫ 1

g0(tn)
1(t ≤ x < tn)d(Fni − F )(x)

∣∣∣∣ ≤ δ(t− tn)2 + n−2/3M̄2
n.

(iii) For C̄(t), it is clear that the terms
∫ t
TL

w(x)dx∫
wĝn

and
∫ tn
TU

w(x)dx∫
wĝn

are of order

Op(n
−1), which are also independent of the choice of t ∈ (t0 − R̃, tn); see

also the proof of Lemma 5.6.
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(iv) For D̄(t), by Proposition 5.8,∫ tn
t w(x)dx∫

wĝn
−
∫ tn
t w(x)dx∫

wg0
= Op(n

−1/2)|t− tn|.

Now, for t ∈ (t0 − R̃, tn), by choosing δ = α/2,

J(t) ≤ −α
2

(t− tn)2 + n−2/3M̄2
n +Op(n

−1/2)|t− tn|

=

(
− α

2
+Op(n

−1/2)|t− tn|−1

)
(t− tn)2 + n−2/3M̄2

n;

as a consequence, with probability more than 1− ε/2, there exists E > 0 such that
for any D̃ > 0, any t ∈ Īn, and all large enough n,

J(t) ≤ n−2/3

(
− α

2
D̃2 + ED̃n−1/6 + M̄2

n

)
.

By choosing sufficiently large D̃, we can guarantee that with probability more than
1− ε, −α

2 D̃
2 +ED̃n−1/6 + M̄2

n < 0 as M̄2
n = Op(1). Since the above bound for

J(t) is independent of t ∈ Ĩn, P(supt∈In J̄(t) < 0) ≥ 1− ε and the desired result
follows.

PROOF OF LEMMA 5.15. We shall only prove that τ−n −t0 = Op(n
−1/3) using

Lemma 5.14; the proof for τ+
n − t0 = Op(n

−1/3) is similar, and therefore we omit
it. Now, in Lemma 5.14, set C̃ = max{C0, C1,K1,K2}, where C0 and C1 are
the constants chosen in the proof of Lemma 5.13 . Define L∗n , {ĝn(t0 − (2C̃ +
D̃)n−1/3) > g0(t0 − 2C̃n−1/3)}. We first claim that P(L∗n) ≥ 1 − 2ε for large
enough n. From (10.22), we know that P(ĝn(t0−C̃n−1/3) < g0(t0−2C̃n−1/3)) ≥
1−2ε for large enough n. Hence, from (10.21), for large enough n, with probability
more than 1− 4ε, we further have

{ĝn(t0 − C̃n−1/3) < g0(t0 − 2C̃n−1/3) < ĝn(t0 − (2C̃ + D̃)n−1/3)};

therefore, in particular, also by definition, with probability more than 1− 4ε,

ĝn(t0 −K2n
−1/3) ≤ ĝn(t0 − C̃n−1/3) < ĝn(t0 − (2C̃ + D̃)n−1/3),

implies that with probability more than 1 − 4ε, for large enough n, ĝn has a jump
in [t0 − (2C + D̃)n−1/3, t0 −K2n

−1/3] and hence |τ−n − t0| ≤ |t0 − (t0 − (2C̃ +
D̃)n−1/3)| = (2C̃ + D̃)n−1/3.

We now verify the claim that P(L∗n) ≥ 1 − 2ε for large enough n. Denote U∗n
the event that ĝn has a jump in (t0 − R̃, t0 − (2C̃ + D̃)n−1/3]. By Proposition 4.1
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(iv), we know that P(U∗n) ≥ 1 − ε. Fix ω ∈ (L∗n)c ∩ U∗n. Let τn , τn(ω) denote
the last jump point on (t0 − R̃, t0 − (2C̃ + D̃)n−1/3]. From Karush-Kuhn-Tucker
condition, we know that

0 ≤
∑

j:0<Tj<t0−2C̃n−1/3

∂ψn
∂zj

(ẑ) =
∑

j:0<Tj<τn

∂ψn
∂zj

(ẑ)+
∑

j:τn≤Tj<t0−2C̃n−1/3

∂ψn
∂zj

(ẑ)

and ∑
j:0<Tj<τn

∂ψn
∂zj

(ẑ) = 0.

Therefore, ∑
j:τn≤Tj<t0−2C̃n−1/3

∂ψn
∂zj

(ẑ) ≥ 0.

If t ≥ τn, then ĝn(t) ≤ ĝn(τn) = ĝn(t0 − (2C̃ + D̃)n−1/3) ≤ g0(t0 − 2C̃n−1/3).
Therefore,

0 ≤
∑

j:τn≤Tj<t0−2C̃n−1/3

(
− 1

ĝn(Tj)
+

s∑
i=1

ni
n

cij∫
wiĝn

)

≤
∑

j:τn≤Tj<t0−2C̃n−1/3

(
− 1

g0(t0 − 2Cn−1/3)
+

s∑
i=1

ni
n

cij∫
wiĝn

)
.

Since τn ∈ In, as is defined in Lemma 5.14, we have

(10.26) sup
t∈In

∑
j:t≤Tj<t0−2C̃n−1/3

(
− 1

ng0(t0 − 2C̃n−1/3)
+

s∑
i=1

ni
n

cij∫
wiĝn

)
≥ 0.

For large enough n, by Lemma 5.14, the event that the inequality (10.26) holds
has a probability less than ε, thus 1 − P(L∗n) = P((L∗n)c) = P((L∗n)c ∩ U∗n) +
P((U∗n)c) ≤ 2ε.

11. Appendix for Section 6.

PROOF OF LEMMA 6.1. We only write the proof for the case 0 ≤ t ≤ K, as
the proof for the case −K ≤ t ≤ 0 is similar. Let An , (t0, t0 + tn−1/3]. Note
that

G̃n,g0(t)− G̃n,ĝn(t) =
n1/3

λ

1

n

n∑
j=1

(
1

g2
0(Tj)

− 1

ĝ2
n(Tj)

)
1An(Tj).
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For Tj ∈ An, if ĝn(Tj) ≥ g0(Tj), by the monotonicity of ĝn and g0, we have
0 ≤ ĝn(Tj)− g0(Tj) ≤ ĝn(t0)− g0(t0 +Kn−1/3). Similarly, if ĝn(Tj) < g0(Tj),
ĝn(t0+Kn−1/3)−g0(t0) ≤ ĝn(Tj)−g0(Tj) < 0. Hence, by also using Proposition
5.13,

|ĝn(Tj)− g0(Tj)|
≤ max{|ĝn(t0)− g0(t0 +Kn−1/3)|, |ĝn(t0 +Kn−1/3)− g0(t0)|}
≤ |ĝn(t0)− g0(t0)|+ |g0(t0)− g0(t0 +Kn−1/3)|

+|ĝn(t0 +Kn−1/3)− g0(t0)| = Op(n
−1/3).

Note also that

1

n

n∑
j=1

1An(Tj) =

s∑
i=1

ni
n

1

ni

ni∑
j=1

1An(Xij)

=
s∑
i=1

ni
n

∫
1An(x)d(Fi,ni − Fi)(x) +

s∑
i=1

ni
n

∫
1An(x)dFi(x)

= Op(n
−1/2) +Op(n

−1/3) = Op(n
−1/3).

Now, note that t0 ∈ (a, b). For every δ1 ∈ (0, b−t02 ), if Tj ∈ An, then Tj ∈
(t0, b− δ1) for large enough n and therefore Proposition 4.1 (iii) implies that even-
tually 1

ĝ2n(Tj)
≤ 1

ĝ2n(b−δ1)
= Op(1). Similarly, Proposition 4.1 (iii) with δ2 = t0−a

2

implies that eventually ĝ2
n(Tj) ≤ ĝ2

n(a + δ2) = Op(1). These facts together with
the boundedness from below and above of g0 give

|G̃n,g0(t)− G̃n,ĝn(t)|

≤ n1/3

λ

1

n

n∑
j=1

∣∣ĝn(Tj)− g0(Tj)
∣∣ ĝn(Tj) + g0(Tj)

g2
0(Tj)ĝ2

n(Tj)
1An(Tj)

=
n1/3

λ

1

n

n∑
j=1

Op(n
−1/3)Op(1)1An(Tj)

=
n1/3

λ
Op(n

−1/3)Op(1)
1

n

n∑
j=1

1An(Tj) = Op(n
−1/3).

PROOF OF LEMMA 6.2. We shall only consider the case when 0 ≤ t ≤ K,
as the case −K ≤ t ≤ 0 can be done similarly. Again, we use the notation
An = (t0, t0 + tn−1/3]. With notation and derivation (11.1) as in Section 11 of
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the supplementary material, we first have

λ(Ũn,g0(t)− Ũn,ĝn(t))(11.1)

= n2/3 1

n

n∑
j=1

(ψ′n,j − ψ′0,j)1An(Tj) + n2/3 1

n

n∑
j=1

(ψ′′′0,j − ψ′′′n,j)1An(Tj)

−
[
n2/3 1

n

n∑
j=1

(ĝn(Tj)− g0(t0))

s∑
i=1

nic
2
ij

(
∫
wiĝn)2

1An(Tj)

−n2/3 1

n

n∑
j=1

(g0(Tj)− g0(t0))

s∑
i=1

nic
2
ij

(
∑n

k=1 g0(Tk)cik)2
1An(Tj)

]
.

First note that for j such that Tj ∈ An, ĝn(Tj) ≤ ĝn(0+) = Op(1) by Lemma
5.3 and g0(Tj) ≤ g0(t0) ≤ M . Also, from the proof of Lemma 5.9, we have
supj cij ≤M supj(Tj − Tj−1) = Op(n

−1/2) so that the order of cij is Op(n−1/2)
uniformly for all j at a time. For the first term in (11.1),

n2/3 1

n

n∑
j=1

((ψ′n,j − ψ′0,j)1An(Tj))

= n2/3 1

n

n∑
j=1

s∑
i=1

nicij

[
1∫

wiĝn + g0(t0)cij − ĝn(Tj)cij

· 1∑n
k=1 g0(Tk)cik + g0(t0)cij − g0(Tj)cij

·
( n∑
k=1

g0(Tk)cik −
∫
wiĝn − g0(Tj)cij + ĝn(Tj)cij

)
1An(Tj)

]
.

Note that the denominators in the two fractions in the above equation satisfy∣∣∣∣ ∫ wiĝn + g0(t0)cij − ĝn(Tj)cij −
∫
wig0

∣∣∣∣(11.2)

≤
∣∣∣∣ ∫ wiĝn −

∫
wig0

∣∣∣∣+ g0(t0)cij + ĝn(Tj)cij

= Op(n
−1/2) +Op(n

−1/2) +Op(1)Op(n
−1/2) = Op(n

−1/2),
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by Proposition 5.8, where the order does not depend on j; in addition,

|
n∑
k=1

g0(Tk)cik + g0(t0)cij − g0(Tj)cij −
∫
wig0|(11.3)

≤ |
n∑
k=1

g0(Tk)cik −
∫
wig0|+ g0(t0)cij + g0(Tj)cij

= Op(n
−1/2) +Op(n

−1/2) +O(1)Op(n
−1/2) = Op(n

−1/2),

by Lemma 5.9, where the order also does not depend on j. Thirdly,∣∣∣∣ n∑
k=1

g0(Tk)cik −
∫
wiĝn − g0(Tj)cij + ĝn(Tj)cij

∣∣∣∣
≤

∣∣∣∣ n∑
k=1

g0(Tk)cik −
∫
wiĝn

∣∣∣∣+ g0(Tj)cij + ĝn(Tj)cij

= Op(n
−1/2) +Op(n

−1/2) +Op(1)Op(n
−1/2) = Op(n

−1/2),

by Corollary 5.10, independent of j. Hence,

n2/3 1

n

n∑
j=1

((ψ′n,j − ψ′0,j)1An(Tj))

= n2/3

[ s∑
i=1

ni
n

( n∑
j=1

cij1An(Tj)

)]
Op(1)Op(1)Op(n

−1/2)

= n2/3
s∑
i=1

ni
n
Op(n

−1/3)Op(n
−1/2) = Op(n

−1/6),

where the second equality holds as

n∑
j=1

cij1An(Tj) =

n∑
j=1

∫ Ti

Ti−1

wi(x)1(t0,t0+n−1/3](Ti)dx

≤
n∑
j=1

∫ Ti

Ti−1

wi(x)1(t0−Op(n−1/2),t0+Op(n−1/2)+n−1/3](x)dx

≤
∫ b

a
wi(x)1(t0−Op(n−1/2),t0+Op(n−1/2)+n−1/3](x)dx = Op(n

−1/3).
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For the second term in (11.1), note that for j such that Tj ∈ An,

ψ′′′0,j =

(
− 1

g∗0(Tj)3
+

s∑
i=1

nic
3
ij

(
∑n

i=1 g0(Tk)cik + g∗0(Tj)cij − g0(Tj)cij)3

)
·(g0(Tj)− g0(t0))2

= (O(1) +O(n)Op(n
−3/2)Op(1))O(n−2/3) = Op(n

−2/3),

where the second equality follows from the facts that 1
g∗0(Tj)

≤ 1
g0(t0+Kn−1/3)

,

supj cij = Op(n
−1/2), (g0(Tj) − g0(t0))2 ≤ (g0(t0 + Kn−1/3) − g0(t0))2 =

O(n−2/3), and the denominator in the fraction satisfies∣∣∣∣ n∑
i=1

g0(Tk)cik + g∗0(Tj)cij − g0(Tj)cij −
∫
wig0

∣∣∣∣ = Op(n
−1/2),

where the order is independent of j and this follows from the similar arguments
used in deriving (11.3). Hence, the order Op(n−2/3) of ψ′′′0,j does not depend on j.
Similarly,

ψ′′′n,j =

(
− 1

ĝ∗n(Tj)3
+

s∑
i=1

nic
3
ij

(
∑n

i=1 ĝn(Tk)cik + ĝ∗n(Tj)cij − ĝn(Tj)cij)3

)
·(ĝn(Tj)− g0(t0))2

= (Op(1) +O(n)Op(n
−3/2)Op(1))Op(n

−2/3) = Op(n
−2/3),

where second equality follows as Proposition 4.1 (iii) implies that 1
ĝ∗n(Tj)

≤ 1
ĝn(Tj)

≤
1

ĝn(t0+Kn−1/3)
= Op(1), supj cij = Op(n

−1/2), Proposition 5.13 gives (ĝn(Tj)−
g0(t0))2 = Op(n

−2/3), and the denominator in the fraction satisfies∣∣∣∣ n∑
i=1

ĝn(Tk)cik + ĝ∗n(Tj)cij − ĝn(Tj)cij −
∫
wig0

∣∣∣∣ = Op(n
−1/2),

where the order is independent of j and this follows from the similar arguments
used in deriving (11.2). Hence, the order Op(n−2/3) of ψ′′′n,j does not depend on j
as well. Therefore,

n2/3 1

n

n∑
j=1

(ψ′′′0,j − ψ′′′n,j)1An(Tj) = n2/3Op(n
−2/3)

1

n

n∑
j=1

1An(Tj) = Op(n
−1/3),

since 1
n

∑n
j=1 1An(Tj) = Op(n

−1/3) as shown in the proof of Lemma 6.1.
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Finally, using the arguments as above, the last term in (11.1) can be shown sim-
ilarly to be of order Op(n−1/2). Indeed, note that∣∣∣∣n2/3 1

n

n∑
j=1

(ĝn(Tj)− g0(t0))

s∑
i=1

nic
2
ij

(
∫
wiĝn)2

1An(Tj)

∣∣∣∣
= n2/3 1

n

n∑
j=1

Op(n
−1/3)

s∑
i=1

niOp(n
−1/2)Op(1)cij1An(Tj)

= Op(n
−1/6)

s∑
i=1

ni
n

n∑
j=1

cij1An(Tj) = Op(n
−1/6)Op(n

−1/3) = Op(n
−1/2),

since
∑n

j=1 cij1An(Tj) = Op(n
−1/3); essentially the same, we also have,∣∣∣∣n2/3 1

n

n∑
j=1

(g0(Tj)− g0(t0))

s∑
i=1

nic
2
ij

(
∑n

k=1 g0(Tk)cik)2
1An(Tj)

∣∣∣∣
= n2/3 1

n

n∑
j=1

O(n−1/3)

s∑
i=1

niOp(n
−1/2)Op(1)cij1An(Tj)

= Op(n
−1/6)

s∑
i=1

ni
n

n∑
j=1

cij1An(Tj) = Op(n
−1/6)Op(n

−1/3) = Op(n
−1/2).

PROOF OF (11.1). By direct applications of Taylor’s theorem and simple rear-
rangements, we have

−ψ′n + ψ′′′n = (ĝn(Tj)− g0(t0))
∂2ψn
∂z2

j

(ẑ)− ∂ψn
∂zj

(ẑ);

−ψ′0 + ψ′′′0 = (g0(Tj)− g0(t0))
∂2ψn
∂z2

j

(z0)− ∂ψn
∂zj

(z0),

where

ψ′0 ,
∂ψn
∂zj

(g0(T1), . . . , g0(Tj−1), g0(t0), g0(Tj+1), . . . , g0(Tn)),

ψ′n ,
∂ψn
∂zj

(ĝn(T1), . . . , ĝn(Tj−1), g0(t0), ĝn(Tj+1), . . . , ĝn(Tn)),

ψ′′′0 ,
1

2

∂3ψn
∂z3

j

(g0(T1), . . . , g0(Tj−1), g∗0(Tj), g0(Tj+1), . . . , g0(Tn))(g0(Tj)− g0(t0))2,

ψ′′′n ,
1

2

∂3ψn
∂z3

j

(ĝn(T1), . . . , ĝn(Tj−1), ĝ∗n(Tj), ĝn(Tj+1), . . . , ĝn(Tn))(ĝn(Tj)− g0(t0))2,
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in which g∗0(Tj) is lying between g0(Tj) and g0(t0), ĝ∗n(Tj) is lying between
ĝn(Tj) and g0(t0), and

∂ψn
∂zj

(z0) ,
∂ψn
∂zj

(g0(T1), . . . , g0(Tj−1), g0(Tj), g0(Tj+1), . . . , g0(Tn)),

∂ψn
∂zj

(ẑ) ,
∂ψn
∂zj

(ĝn(T1), . . . , ĝn(Tj−1), ĝn(Tj), ĝn(Tj+1), . . . , ĝn(Tn)),

∂2ψn
∂z2

j

(z0) ,
∂2ψn
∂z2

j

(g0(T1), . . . , g0(Tj−1), g0(Tj), g0(Tj+1), . . . , g0(Tn)),

∂2ψn
∂z2

j

(ẑ) ,
∂2ψn
∂z2

j

(ĝn(T1), . . . , ĝn(Tj−1), ĝn(Tj), ĝn(Tj+1), . . . , ĝn(Tn)).

Hence, we can write Ũn,ĝn(t) as:

λŨn,ĝn(t) = n2/3 1

n

n∑
j=1

(
(ĝn(Tj)− g0(t0))

∂2ψn
∂z2

j

(ẑ)− ∂ψn
∂zj

(ẑ)

)
1An(Tj)

+n2/3 1

n

n∑
j=1

(ĝn(Tj)− g0(t0))
s∑
i=1

nic
2
ij

(
∫
wiĝn)2

1An(Tj)

= n2/3 1

n

n∑
j=1

(−ψ′n + ψ′′′n )1An(Tj)

+n2/3 1

n

n∑
j=1

(ĝn(Tj)− g0(t0))

s∑
i=1

nic
2
ij

(
∫
wiĝn)2

1An(Tj).(11.4)

Similarly,

λŨn,g0(t) = n2/3 1

n

n∑
j=1

(−ψ′0 + ψ′′′0 )1An(Tj)

+n2/3 1

n

n∑
j=1

(g0(Tj)− g0(t0))

s∑
i=1

nic
2
ij

(
∑n

k=1 g0(Tk)cik)2
1An(Tj).(11.5)

By subtracting (11.4) from (11.5), (11.1) follows.

PROOF OF LEMMA 6.3. Consider the case of 0 ≤ t ≤ K. Define An ,
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(t0, t0 + tn−1/3]. Note that

λG̃n,g0(t) =
s∑
i=1

ni
n
n1/3

∫
1

g2
0(x)

1An(x)d(Fi,ni − Fi)(x)

+
s∑
i=1

ni
n
n1/3

∫
1

g2
0(x)

1An(x)dFi(x)

= n1/3n−1/6Op(n
−1/2) +

s∑
i=1

ni
n
n1/3

∫ t0+tn−1/3

t0

fi(x)

g2
0(x)

dx

= Op(n
−1/3) +

s∑
i=1

ni
n

∫ t0+tn−1/3

0
fi(x)
g20(x)

dx−
∫ t0

0
fi(x)
g20(x)

dx

tn−1/3
t.

Note that the second equality holds because the class of functions { 1
g20

1An(·)} is

a subset of { 1
g20

(h1 − h2) : h1, h2 are increasing functions on R and||h||∞ ≤ 1},
which has a bracketing entropy of the order 1/δ (this follows from a similar argu-
ment as in Lemma 3.8 in van de Geer (2000)). Hence, this class possesses a finite
bracketing integral and is a Donsker class. Finally, note that the second term con-
verges uniformly on 0 ≤ t ≤ K to λt. For the case of −K ≤ t ≤ 0, the proof is
similar, and we omit it.

PROOF OF LEMMA 6.4. We need to show the desired convergence on l∞[−K,K]
for any K > 0. In particular, we only have to show the validity of the three items
in Condition (2.11.21) on P.220 and the entropy integral condition in Theorem
2.11.22 in van der Vaart and Wellner (1996). Then, by this theorem, each summand
ofA1(t), namely n1/2

∫
qn,t(x)d(Fi,ni−Fi)(x) for i = 1, . . . , s, is asymptotically

tight in l∞[−K,K] and converges in distribution to a Gaussian process with co-
variance function mKi(u, t) = limn→∞(EFi(qn,u · qn,t) − EFi(qn,u)EFi(qn,t)).
For each pair u, t such that ut > 0, i.e., they are of the same sign,

Ki(u, t) = lim
n→∞

(
n1/3

∫ t0+(u+∧t+)n−1/3

t0−(u−∧v−)n−1/3

(
1

g0(x)
+
g0(x)− g0(t0)

g2
0(x)

)2

fi(x)dx

)
− lim
n→∞

O

(
fi(t0)

gi(t0)
n−1/6

)
=

fi(t0)

g2
0(t0)

(|u| ∧ |t|).

Otherwise, such as when u and t are of opposite signs, we must have thatKi(u, t) =
0. Now, note that Ki has the same form as the covariance function of the Gaus-
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sian process
√
fi(t0)g−2

0 (t0)W (t). Hence, by the independence of different sam-

ples, as an independent sum,
∑s

i=1
ni
n n

1/2
∫
qn,t(x)d(Fi,ni − Fi)(x) converges in

l∞[−K,K] to the Gaussian process
√∑s

i=1 λifi(t0)g−2
0 (t0)W (t). It is clear that

qn,t(x) ≤ M

m2
n1/61(t0 −Kn−1/3 ≤ x ≤ t0 +Kn−1/3),

under Assumptions 2.1 (C). Hence, we can choose Qn(x) , M
m2n

1/61(x ∈ [t0 −
Kn−1/3, t0 +Kn−1/3]) as the envelope function of the classes of functionsQn ,
{qn,t : t ∈ [−K,K]}. We now verify that each item in Condition (2.11.21) in
van der Vaart and Wellner (1996) are satisfied in order:

(i) Clearly,

EFi(Q
2
n) =

∫ t0+Kn−1/3

t0−Kn−1/3

M2

m4
n1/3fi(x)dx = O(1).

(ii) Next, we clearly have that EFi(Q2
n1{Qn > η

√
n})→ 0 as n→∞ for every

η > 0; indeed, for large enough n, 1{Qn > η
√
n} = 1{ M

m2 > ηn1/3} = 0.
(iii) Now, we also have, for any diminishing sequence δn ↓ 0,

sup
|u−t|<δn,−K≤u,t≤K

EFi(qn,u − qn,t)2 → 0;

indeed, we illustrate the details for the case −K < t < 0 < u < K and
u− t < δn as other cases can be handled similarly. Note that

EFi(qn,u − qn,t)2 =

∫
(qn,u − qn,t)2fi(x)dx

≤ n1/3M
2

m4

∫ t0+un−1/3

t0+tn−1/3

fi(x)dx ≤ M4

m6(b− a)
(u− t) < M4

m6(b− a)
δn.

Finally, for the verification of the entropy integral condition, the argument is similar
to the proof of Lemma 2.3 in Banerjee (2007a), and we omit it.

PROOF OF LEMMA 6.5. Since λŨn,g0(t) = A1(t) +A2(t) +A3(t), in light of
Lemma 6.4, we understood the asymptotic behavior of A1(t), it remains to show
thatA2(t) converges uniformly to λg

′
0(t0)

2 t2 on [−K,K] andA3(t) = op(1), where
the op(1) is uniform on [−K,K]. Indeed, we have the following:
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(i) For any 0 ≤ t ≤ K, for each i = 1, . . . , s, each summand in A2(t),

n2/3

∫ t0+tn−1/3

t0

g0(x)− g0(t0)

g2
0(x)

dFi(x)

= n1/3

∫ t

0
(g0(t0 + un−1/3)− g0(t0))

fi(t0 + un−1/3)

g2
0(t0 + un−1/3)

du

=

∫ t

0
ug′0(t0)

fi(t0)

g2
0(ti)

du+

∫ t

0
g′0(t0)u

(
fi(t0 + un−1/3)

g2
i (t0 + un−1/3)

− fi(t0)

g2
0(t0)

)
du

+

∫ t

0
[n1/3(g0(t0 + un−1/3)− g0(t0))− g′0(t0)u]

fi(t0 + un−1/3)

g2
0(t0 + un−1/3)

du

= fi(t0)g−2
0 (t0)

g′0(t0)

2
t2 + o(1),

where the o(1) is uniform on 0 ≤ t ≤ K since

sup
0<u≤K

∣∣∣∣g0(t0 + un−1/3)− g0(t0)

un−1/3
− g′0(t0)

∣∣∣∣→ 0,

and

sup
0≤u≤K

∣∣∣∣ fi(t0 + un−1/3)

g2
i (t0 + un−1/3)

− fi(t0)

g2
0(t0)

∣∣∣∣→ 0,

as n → ∞. For −K ≤ t ≤ 0, the argument is similar. Hence, A2(t) con-
verges uniformly to −λ |g

′
0(t0)|

2 t2 on [−K,K].
(ii) For 0 ≤ t ≤ K, let TU and TL denote the maxima ofXij less than t0+tn−1/3

and t0 respectively. Then,

|A3(t)| =

∣∣∣∣ s∑
i=1

ni
n
n2/3

(∫ t0+tn−1/3

t0

wi(x)∫
wig0

dx−
∫ t0+tn−1/3

t0

wi(x)∑n
k=1 cikg0(Tk)

dx

+

∫ t0+tn−1/3

TU

wi(x)∑n
k=1 cikg0(Tk)

dx−
∫ t0

TL

wi(x)∑n
k=1 cikg0(Tk)

dx

)∣∣∣∣
≤

s∑
i=1

ni
n
n2/3

( ∫ t0+Kn−1/3

t0
wi(x)dx∫

wig0
∑n

k=1 cikg0(Tk)

∣∣∣∣ n∑
k=1

cikg0(Tk)−
∫
wig0

∣∣∣∣+Op(n
−1)

)
= n2/3[O(n−1/3)Op(1)Op(n

−1/2) +Op(n
−1)] = Op(n

−1/6),

which is independent of t ∈ [0,K]. Here, in the first inequality, it follows by
considering the orders of third and fourth terms in the line above because both∫ t0+tn−1/3

TU

wi(x)∑n
k=1 cikg0(Tk)

dx and
∫ t0
TL

wi(x)∑n
k=1 cikg0(Tk)

dx are of order Op(n−1)
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(see also the proof of Lemma 5.6), which are also independent of t ∈ [0,K].
The second last equality follows from Lemma 5.9. Similar argument holds
for the case of −K ≤ t ≤ 0.

The following lemma is adapted from Prakasa Rao (1969) and is used for prov-
ing Theorem 6.6.

LEMMA 11.1. Suppose that {Vnε}, {Vn} and {Vε} are three sets of random
vectors such that

(i) limε→0 lim supn→∞ P(Vnε 6= Vn) = 0;
(ii) limε→0 P(Vε 6= V ) = 0; and

(iii) For every ε > 0, Vnε
D→ Vε, as n→∞.

Then Vn
D→ V , as n→∞.

PROOF OF THEOREM 6.6. Clearly, by definition and Proposition 3.2, we have

{ĝn(Ti)− g0(t0)}ni=1 = slolcm{Gn,ĝn(Ti), Un,ĝn(Ti)− g0(t0)Gn,ĝn(Ti)}ni=0.

From the construction, it is clear that {Xn(ti) : i = 1, . . . , k} are equal to the
slopes of the LCM of {(G̃n,ĝn(t), Ũn,ĝn(t)) : t ∈ R} evaluated at points G̃n,ĝn(ti),
i = 1, . . . , k. Fix C > 0. We denote Xn,C(ω) and ga∗,b∗,C(w) the respective slopes
of the LCM of {(G̃n,ĝn(t), Ũn,ĝn(t)) : t ∈ [−C,C]} evaluated at G̃n,ĝn(w) and
that of{Xa∗,b∗(h) : h ∈ [−C,C]} evaluated at w, for |w| < C. Now, fix M > 0
such that the points t1, . . . , tk are in the interior of the set [−M,M ]. For any ε > 0,
by Lemma 5.15, there exists Mε > 0 such that with probability more than 1 − ε,
eventually, −Mε < τ̃−n ≤ −M < M ≤ τ̃+

n < Mε, where τ̃−n , n1/3(τ−n − t0)
and τ̃+

n , n1/3(τ+
n − t0). To apply Lemma 11.1, define

Vn,ε , {Xn,Mε(ti), i = 1, . . . , k},
Vn , {Xn(ti), i = 1, . . . , k},
Vε , {ga∗,b∗,Mε(ti), i = 1, . . . , k},
V , {ga∗,b∗(ti), i = 1, . . . , k}.

By Lemmas 6.1, 6.2, 6.3 and 6.5, the verification of Conditions (i)-(iii) in Lemma
11.1 is similar to that in Theorem 2.1 in Banerjee (2007b), and therefore is omitted.
By Lemma 11.1, Xn(t)

D→ ga∗,b∗(t). Finally, the convergence of Xn to ga∗,b∗ in
L2

loc(R) follows from the corresponding finite dimensional convergence and the
monotonicity of Xn; see Corollary 2 in Huang and Zhang (1994).
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PROOF OF THEOREM 1.1. From Theorem 6.6, we have Xn(0) = n1/3(ĝn(t0)−
g0(t0))

D→ ga∗,b∗(0). As in Equations (6.7)-(6.9) in Banerjee and Wellner (2001),
it is easy to see that

ga∗,b∗(t)
D
= a∗(b∗/a∗)1/3 · g1,1((b∗/a∗)2/3t),

as a processes indexed by t ∈ R. Using switch relationship, we also know that
g1,1(0)

D
= 2Y. Hence, we obtain n1/3(ĝn(t0) − g0(t0))

D→ 2(a∗)2/3(b∗)1/3Y. The
claim follows by rearranging the terms and using the definitions of a∗ and b∗.
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