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S1. Additional poofs.

S1.1. Proof of Theorem 1.4.

Proof. As g, g̃ ∈Mδ, (10) implies that there exist a1, . . . , am, ã1, . . . , ãm ∈
Am such that ∣∣∣ω>ai − ω̃>[A]i

∣∣∣ < ε for i = 1, . . . ,m,∣∣∣ω̃>ãi − ω>[A]i

∣∣∣ < ε for i = 1, . . . ,m,
(44)

with A as in (8).
First, we show by induction that (44) implies 1..
W.l.o.g. let ω̃1 > ω1. Assume that ω̃>ã1 < ω̃>[A]1 = a1 + (a2 − a1)ω̃1, i.e.,

m∑
i=2

ω̃i(ã
1
i − a1) < ω̃1(a2 − ã1

1). (45)

As ω̃1 denotes the smallest mixing weight (recall ω̃1 ≤ . . . ≤ ω̃m in (3)) and
a1 and a2 denote the smallest and second smallest, respectively, alphabet
values (recall a1 < . . . < ak in (1)), it holds for any alphabet value e ∈
A \ {a1} = {a2, . . . , ak} and i = 1, . . . ,m that

ω̃i(e− a1) ≥ ω̃1(a2 − a1) ≥ ω̃1(a2 − ã1
1). (46)

(45) and (46) imply that ã1 = (a1, . . . , a1)>, i.e., ω̃>ã1 = a1. In partic-
ular, (44) yields

∣∣a1 − ω>[A]1
∣∣ < ε < δ, which contradicts ASB(ω) ≥ δ.

Consequently,

ω̃>ã1 ≥ ω̃>[A]1 = a1 + (a2 − a1)ω̃1 > a1 + (a2 − a1)ω1 = ω>[A]1

and therefore, by (44)

(a2 − a1) |ω̃1 − ω1| =
∣∣∣ω̃>[A]1 − ω>[A]1

∣∣∣ < ε.
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Now, assume that (a2 − a1) |ω̃i − ωi| < ε for i = 1, . . . , l − 1.
W.l.o.g., let ω̃l > ωl. Assume that ω̃>ãl < ω̃>[A]l = a1 + (a2 − a1)ω̃l, i.e.,

m∑
i=1, i 6=l

ω̃i(ã
l
i − a1) < ω̃l(a2 − ãll). (47)

Again, as ω̃1 ≤ . . . ≤ ω̃m and a1 < . . . < ak, it holds for any alphabet value
e ∈ A \ {a1} = {a2, . . . , ak} and i ≥ l that

ω̃i(e− a1) ≥ ω̃l(a2 − a1) ≥ ω̃l(a2 − ãll). (48)

(47) and (48) imply that ãll = . . . = ãlm = a1 and therefore,∣∣∣ω>[A]l − ω>ãl
∣∣∣ ≤ ∣∣∣ω>[A]l − ω̃>ãl

∣∣∣+
∣∣∣ω̃>ãl − ω>ãl∣∣∣

< ε+

∣∣∣∣∣
l−1∑
i=1

(ãli − a1)(ω̃i − ωi)

∣∣∣∣∣
≤ ε+ (m− 1)

ak − a1

a2 − a1
ε ≤ mak − a1

a2 − a1
ε < δ,

which contradicts ASB(ω) ≥ δ. Consequently, ω̃>ãl ≥ ω̃>[A]l > ω>[A]l and
therefore,

(a2 − a1) |ω̃l − ωl| =
∣∣∣ω̃>[A]l − ω>[A]l

∣∣∣ < ε.

By induction 1. follows.
To prove 2., assume the contrary. Then there exist a 6= ã ∈ Am such that

ε >
∣∣∣ω>a− ω̃>ã∣∣∣ ≥ ∣∣∣ω>a− ω>ã∣∣∣− ∣∣∣ω>ã− ω̃>ã∣∣∣

and by 1.

∣∣∣ω>ã− ω̃>ã∣∣∣ =

∣∣∣∣∣
m∑
i=1

(ωi(ãi − a1)− ω̃i(ãi − a1))

∣∣∣∣∣ ≤ mak − a1

a2 − a1
ε.

The last two inequalities give ε > δ−mε(ak−a1)/(a2−a1), which contradicts
2m(ak − a1)ε < δ(a2 − a1) as m(ak − a1) > (a2 − a1).
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S1.2. Proof of Theorem 2.7. The following Theorem is needed for the proof
of Theorem 2.7 and shows that SLAM admits a solution with probability
converging to one at a superpolynomial rate.
Let N?

1 be such that

δ

σ
ln(N?

1 ) ≥ 139

(
1 + 2m

ak − a1

a2 − a1

)√
2 ln(e/λ?) + 70 (49)

and λ? ≥ λ as in R4. Analog to Mδ
λ in (39) define

S(A)mλ := {f ∈ S(A)m separable : min
j∈{0,,...,K(f)}

|τj+1 − τj | ≥ λ}, (50)

where τj denote the change points of f , that is, at least one of the f i’s jumps,
and K(f) the number of change points of f .

Theorem S1.1. Consider the SBSSR-model with g ∈ Mδ
λ. Let αn and βn

be as in (23). Further, let C1−α(Y ) be as in (20) and let ω̂ be any weight
vector in C1−αn(Y ). Then for all n ≥ N?

1 in (49)

P

(
min

f̃∈S(A)mλ

Tn(Y, ω̂>f̃) ≤ qn(βn)

∣∣∣∣∣ Tn(Y, g) ≤ qn(αn)

)
= 1.

Proof. Let ω̃ ∈ Ω(m) and α ∈ (0, 1) be fixed. Define the set

N (ω̃) :=

{
ω̌>a : a ∈ Am and ‖ω̌ − ω̃‖∞ ≤ 2σ

qn(α) +
√

2 ln(e/λ?)√
nλ?(a2 − a1)

}
and, analog to S(A)mλ in (50),

S(N (ω̃))λ :={
g ∈ S(N (ω̃)) : min

j∈{0,,...,K(g)}
|τj+1 − τj | ≥ λ and a1 + (a2 − a1)ω̃i ∈ Im(g)

}
,

where Im(g) := {g(x) : x ∈ [0, 1)} denotes the image of g. Then it follows
from R1, R3, R4, (16), and Remark 2.2 that conditioned on {ω̃ ∈ C1−α(Y )}
and {Tn(Y, g) ≤ qn(α)}

inf
g̃∈S(N (ω̃))λ

Tn(Y, g̃) ≤ qn(α) a.s.. (51)

Further, for εn := 2mσ ak−a1a2−a1

(
qn(α) +

√
2 ln(e/λ?)

)
/
√
nλ? we have that

sup
g̃∈S(N (ω̃))λ

min
f̃∈S(A)mλ

‖g̃ − ω̃>f̃‖∞ ≤ εn. (52)
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Let (yn)n∈N be a fixed sequence in R, and denote yn := (y1, . . . , yn). Let
ε > 0, and g, g′ ∈Mλ be such that supx∈[0,1) |g(x)− g′(x)| ≤ ε. Then by the
reverse triangle inequality

∣∣Tn(yn, g)− Tn(yn, g′)
∣∣ ≤ max

1≤i≤j≤n
j−i+1≥nλ

∣∣∣∣∣∣
∣∣∣∑j

l=i yl − g(xl)
∣∣∣− ∣∣∣∑j

l=i yl − g
′(xl)

∣∣∣
σ
√
j − i+ 1

∣∣∣∣∣∣
≤ max

1≤i≤j≤n
j−i+1≥nλ

∣∣∣∑j
l=i g(xl)− g′(xl)

∣∣∣
σ
√
j − i+ 1

≤
√
nλ

σ
ε.

This, together with (51) and (52), implies that conditioned on {ω̃ ∈ C1−α(Y )}
and {Tn(Y, g) ≤ qn(α)}

inf
ω̃∈Ω(m)

P

(
min

f̃∈S(A)mλ

Tn(Y, ω̃>f̃) ≤ qn(α) +

√
nλ

σ
εn

)

≥ inf
ω̃∈Ω(m)

P

(
inf

g̃∈S(N (ω̃))λ
Tn(Y, g̃) ≤ qn(α)

)
= 1,

(53)

where the inequality results from

min
f̃∈S(A)mλ

Tn(Y, ω̃>f̃)

= inf
g̃∈S(N (ω̃))λ

Tn(Y, g̃) +

(
min

f̃∈S(A)mλ

Tn(Y, ω̃>f̃)− inf
g̃∈S(N (ω̃))λ

Tn(Y, g̃)

)
≤ inf
g̃∈S(N (ω̃))λ

Tn(Y, g̃) + sup
g̃∈S(N (ω̃))λ

min
f̃∈S(A)mλ

∣∣∣Tn(Y, ω̃>f̃)− Tn(Y, g̃)
∣∣∣ .

It remains to show that for all n ≥ N?
1

qn(αn) +

√
nλ

σ
εn ≤ qn(βn). (54)

To this end, we need some results about the quantile function of the mul-
tiscale statistic Tn from (14). Easy calculations and Mill’s ratio give for all
n ∈ N

P(Tn > q) ≥
√

2

π

(
1

q̃
− 1

q̃3

)
exp

(
−q̃2/2

)
, with q̃ := q +

√
2 ln(e/λ?),

which implies

qn(α) ≥
√∣∣∣− ln(α

√
π/2)

∣∣∣−√2 ln(e/λ?). (55)
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Further, a slight modification of [2, Corollary 4] gives for all n ∈ N and
q > C, for some constant C <∞, that

P(Tn > q) ≤ exp(−q2/8), (56)

which implies

qn(α) ≤
√
−8 ln(α). (57)

From (57) and (23) we follow that

qn(αn) +

√
nλ

σ
εn = qn(αn) + 2m

ak − a1

a2 − a1

(
qn(αn) +

√
2 ln(e/λ?

)
≤
(√

8c1 + 2m
ak − a1

a2 − a1

√
8c1

)
ln(n) + 2m

ak − a1

a2 − a1

√
2 ln(e/λ?)

(58)

and from (55) and (23) that

qn(βn) ≥

√
75m2

(
ak − a1

a2 − a1

)2

c1 ln(n)−
√

ln(
√
π/2)−

√
2 ln(e/λ?). (59)

(49) yields that the right hand side of (58) is smaller than the right hand
side of (59) for all n ≥ N?

1 , which yields (54) and, thus, together with (53),
that conditioned on {ω̃ ∈ C1−αn(Y )} and {Tn(Y, g) ≤ qn(αn)}

inf
ω̃∈Ω(m)

P

(
min

f̃∈S(A)mλ

Tn(Y, ω̃>f̃) ≤ qn(βn)

)
= 1.

As ω̂ ∈ C1−αn a.s., this yields the assertion.

The following theorem is a slight variation of Theorem 2.7, from which,
together with Theorem S1.1, Theorem 2.7 will follow easily.

Theorem S1.2. Consider the SBSSR-model with g ∈Mδ
λ. Let qn(α) be as

in (17), αn as in (23), and βn such that

qn(αn) < qn(βn) <
δ

9σ
ln(n). (60)

Let ĝ = ω̂>f̂ ∈ M be the SLAM estimator of g with α = αn, β = βn, and
Tn(Y, ĝ) ≤ qn(βn). Further, let τ̂ and τ be the vectors of all change points of
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ĝ and g, respectively. Define

An :=
{

max
j
|τ̂j − τj | ≤ 2

ln(n)2

n

}
∩
{
K(ĝ) = K(g)

}
∩
{

max
j

max
i

∣∣∣f̂ i|[τ̂j ,τ̂j+1) − f i|[τj ,τj+1)

∣∣∣ = 0
}

∩
{

max
i
|ω̂i − ωi| <

δ +
√

2σ2 ln(e/λ)√
λ(a2 − a1)

ln(n)√
n

}
.

Then for all n > N? in (41) and (42) P (An| Tn(Y, g) ≤ qn(αn)) = 1.

Proof. Let dn := ln2(n)/n and

I := {[xi, xj ] : 1 ≤ i ≤ j ≤ n and j − i+ 1 ≥ nλ}.

We define a partition I = I1 ∪ I2 ∪ I3 as follows.

I1 := {I ∈ I : I contains more than two change points of g},
I2 := {I ∈ I : g|I = gI11I1 + gI21I2 + gI31I3 , with |I1| ≥ |I2| ≥ |I3| ,
|I2| ≤ dn, and gI1 , g

I
2 , g

I
3 ∈ Im(g) pairwise different}

I3 := {I ∈ I : g|I = gI11I1 + gI21I2 + gI31I3 , with |I1| ≥ |I2| ≥ |I3| ,
|I2| > dn, and gI1 , g

I
2 , g

I
3 ∈ Im(g) pairwise different}.

Moreover, let B := {B(I) = B(i, j) : I = [xi, xj ] ∈ I} be as in (16) with
q = qn(βn) and define ‖B(I)‖ := b − b with B(I) = [b, b]. Furthermore, let
Bnc be as in (32) and define

εn :=
δ +

√
2σ2 ln(e/λ)√
λ

ln(n)√
n

(61)

and

E1 :=
⋂

I∈I1∪I3

{B(I) ∈ Bnc},

E2 :=
⋂
I∈I2

{B(I) ⊂ [gI1 − εn, gI1 + εn]},

E3 := {K(ĝ) = K(g)} ∩ {max
j
|τ̂j − τj | ≤ 2dn} ∩ {max

j
|ĝ(τ̂j)− g(τj)| < εn}.

First, we show that

E1 ∩ E2 ⊂ E3. (62)
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To this end, consider Figure S1.1 and note that (conditioned on {Tn(Y, g) ≤
qn(αn)}) by Theorem S1.1 and (24) ĝ has minimal scale λ for all n > N?.
If B(I) ∈ Bnc, then ĝ is not constant on I. Therefore, it follows from E1

that ĝ is constant only on intervals I ∈ I2.
Conversely, if ĝ is constant on I ∈ I2 then ĝ|I ∈ B(I) (see orange bars in
Figure S1.1) as Tn(Y, ĝ) ≤ qn(βn) by assumption.
Now, consider a change point of ĝ. Let I, I ′ ∈ I2 be the constant parts of
ĝ left and right of this change point and I1, I

′
1 be those sub-intervals which

include the largest constant piece of g (see green lines in Figure S1.1), with
g|I1 ≡ gI1 and g|I′1 ≡ g

I′
1 .

As εn < δ/2 for all n > N? (see (42))
∣∣∣gI1 − gI′1 ∣∣∣ > 0 (see the vertical distance

between the left and the right green line in Figure S1.1), such that g has at
least one jump in a 2dn-neighborhood of a jump of ĝ. Conversely, as 2dn < λ
for all n > N? (see (42)) g has at most one jump in a 2dn-neighborhood of
a jump of ĝ. Consequently, (62) follows.

Fig S1.1. The key argument underlying E1 ∩ E2 ⊂ E3.

Furthermore, as εn < δ(a2 − a1)/(2m(ak − a1)) for all n > N? (see (42)),
Theorem 1.4 implies that

E3 ⊂ An. (63)

In the following we write qn := qn(βn).
(62) and (63) implies that for all n > N?

P (An| Tn(Y, g) ≤ qn(αn)) ≥ P (E1 ∩ E2| Tn(Y, g) ≤ qn(αn)) .

First, consider E1 conditioned on {Tn(Y, g) ≤ qn(αn)}:
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Every interval I ∈ I1 includes a sub-interval I ′, which is the union of two
constant pieces of g and, as 2dn < λ for all n > N? (see (42)), I ′ ∈ I3.
Consequently, conditioned on {Tn(Y, g) ≤ qn(αn)} we have that for all n >
N?

E1 ⊇
⋂
I∈I3

{B(I) ∈ Bnc} ⊇
⋂
I∈I3

{δ > ‖B(I1)‖+ ‖B(I2)‖},

where I1 and I2 are the sub-intervals of I ∈ I3 such that g|Ii ≡ gIi for i = 1, 2
(as in the definition of I3).
By the definition of I3 it follows that |I1| ≥ λ − 2dn ≥ λ/3 for all n > N?

and |I2| > dn and hence, (16) implies

‖B(I1)‖+ ‖B(I2)‖ ≤ 2

(
qn +

√
2 ln(3e/λ)√
nλ/3/σ

+
qn +

√
2 ln(e/dn)√
ndnσ

)

=
2σ√
n

(√
3

λ

(
qn +

√
2 ln(3e/λ)

)
+

√
1

dn

(
qn +

√
2 ln(e/dn)

))
.

In summary we obtain that conditioned on {Tn(Y, g) ≤ qn(αn)} for all n >
N?

E1 ⊇

{
δ >

2σ√
n

(√
3

λ

(
qn +

√
2 ln(3e/λ)

)
+

√
1

dn

(
qn +

√
2 ln(e/(dn))

))}

=

qn <
√nδ

2σ
−
√

6 ln(3e/λ)

λ
−

√
2 ln(e/(dn))

dn

(√ 3

λ
+

√
1

dn

)−1


⊇

qn <
√
nδ

4σ

(√
3

λ
+

√
n

ln(n)

)−1


⊇
{
qn <

δ

9σ
ln(n)

}
,

(64)

where the second inclusion results from (41) and the last inclusion from
2dn < λ for all n > N? (see (42)).
In particular, (64) and (60) yield P(E1|Tn(Y, g) ≤ qn(αn)) = 1 for all n >
N?.
Second, consider E2 conditioned on {Tn(Y, g) ≤ qn(αn)}:
By (60), (61), and (40) it holds for all I = [xi, xj ] ∈ I that

‖B(I)‖ = 2σ
qn +

√
2 ln( en

j−i+1)
√
j − i+ 1

≤ 2σ
δ

9σ ln(n) +
√

2 ln( eλ)
√
nλ

< εn/2
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and as ḡI :=
∑

l∈I g(xl)/(n |I|) ∈ B(I),

E2 ⊇
⋂
I∈I2

{|ḡI − gI1 | ≤ εn − ‖B(I)‖}

⊇
⋂
I∈I2

{|ḡI − gI1 | ≤ εn/2}.

Moreover, for I ∈ I2∣∣ḡI − gI1∣∣ =

∣∣∣∣(gI2 − gI1)
|I2|
|I|

+ (gI3 − gI1)
|I3|
|I|

∣∣∣∣
≤ |I2|+ |I3|

|I|
(ak − a1) ≤ 2dn

λ
(ak − a1).

(65)

Summarizing, conditioned on {Tn(Y, g) ≤ qn(αn)}

E2 ⊇
{2dn
λ

(ak − a1) ≤
δ +

√
2σ2 ln(e/λ)

2
√
λ

ln(n)√
n

}
(66)

=
{ ln(n)√

n
≤
√
λ
δ +

√
2σ2 ln(e/λ)

4(ak − a1)

}
. (67)

(42) implies that the right hand side of (66) holds for all n ≥ N? and in
particular, P(E2|Tn(Y, g) ≤ qn(αn)) = 1 for all n ≥ N?.
Together with (64) this gives P(E1 ∩ E2|Tn(Y, g) ≤ qn(αn)) = 1 for all
n > N?. This proves the assertion.

With Theorem S1.2 and Theorem S1.1 the proof of Theorem 2.7 is straight
forward.

Proof of Theorem 2.7. Let An be as in Theorem S1.2,

Tα := {Tn(Y, g) ≤ qn(α)}, and T̂α := {Tn(Y, ĝ) ≤ qn(α)}.

Theorem S1.1 implies that

P
(
T̂βn

∣∣∣ Tαn) = 1. (68)

From (56) we deduce that for βn as in (23) qn(βn) < δ/(9σ) ln(n). Thus,
Theorem S1.2 yields

P
(
An

∣∣∣ Tαn ∩ T̂βn

)
= 1. (69)
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(68) and (69) give

P (An) ≥ P
(
An

∣∣∣ Tαn ∩ T̂βn

)
P
(
Tαn ∩ T̂βn

)
≥ P

(
Tαn ∩ T̂βn

)
= P(Tαn) ≥ 1− αn.

Finally, remember that the identfiability condition ASB(ω) ≥ δ > 0 implies
that g jumps if and only if f jumps. Hence, when f i and f̂ i take the same
function values on constant pieces, results about change points of g directly
translate to results about change points of f1, . . . , fm.

S1.3. Proof of Theorem 2.5.

Proof. It follows from the proof of Theorem S1.2 that conditioned on
{Tn(Y, g) ≤ qn(αn)}

max
a∈Im(f)

∣∣∣ω>a− ω̂>a∣∣∣ ≤ (δ ln(n)√
n

+

√
8σ2 ln(e/λ)

nλ

)
(70)

and

K(ω̂>f) = K(ĝ). (71)

Let B(i, j) = [bij , bij ] be as in (16) and

B̃(i, j) :=

[
bij −

(
δ

ln(n)√
n

+

√
8σ2 ln(e/λ)

nλ

)
, bij +

(
δ

ln(n)√
n

+

√
8σ2 ln(e/λ)

nλ

)]
,

with q = qn(β) as in (23), then

P
(
f = (f1, ..., fm)> ∈ H̃(β)

)

=P

 ⋂
1≤i≤j≤n

(ω̂>f)|[i,j]≡(ω̂>f)ij

(ω̂>f)ij ∈ B̃(i, j) and K
(
ω̂>f

)
= K(ĝ)



≥P

 ⋂
1≤i≤j≤n
g|[ij]≡gij

gij ∈ B(i, j) and Tn(Y, g) ≤ qn(αn)


=P (Tn(Y, g) ≤ qn(β)) + O(1),

where the inequality in the third line follows from (70) and (71). Finally,
the assertion follows from the fact that δ ≤ (a2 − a1)/m.
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S2. Algorithms.

S2.1. Pseudocode for Algorithm CRW.

Algorithm CRW (Confidence region for weights)

Input: Y , m, A, α, λ, λ? . see the SBSSR-model and Remark 2.1
1: B← {B(i, j) ∈ B \Bnc : j − i+ 1 ≥ λ?n} . see R1 and R4
2: B? ← {[b, b] ∈ B : b ≥ a1 and b ≤ a1 + a2−a1

m
} . see R2

3: for i=2. . . m do
4: B? ← {

[b1, b1]× ...× [bi, bi] ∈ B? ×B :

a2 + (m− 1)a1 −
∑r−1
k=1 bk

m− r + 1
≥ br and br−1 ≤ br

}
. see R2

5: end for
6: B? ←

{
[b1, b1]× ...× [bm, bm] ∈ B? :

∑m
j=1 br ≥ a2 + (m− 1)a1

}
. see R2

7: B? ← R3 applied to B? . see Remark 2.1
8: return

⋃
B∈B? A

−1B

S2.2. Computation of (f̂1, . . . , f̂m). For a given β ∈ (0, 1) SLAM solves the
constrained optimization problem (25).
Note that f̂1, . . . , f̂m are the unique source functions such that

∑m
i=1 ω̂if̂

i =
ĝ for

ĝ := argmaxg̃∈H(β)

n∑
i=1

φg̃(xi)(Yi), (72)

with

H(β) := {g̃ ∈ S({ω̂>a : a ∈ Am}) : Tn (Y, g̃) ≤ qn(β) and K (g̃) = K̂} (73)

and K̂ as in (24). Frick et al. [1] provide a pruned dynamic programming
algorithm how to efficently solve (72) without the restriction that ĝ can
only attain values in {ω̂>a : a ∈ Am} as it is the case here, see (73). As
this restriction is crucial for SLAM we outline the details of the necessary
modifications below.
To this end, it is necessary for a finite set L = {l1, . . . , lk} of possible function
values to check finiteness of their minimal cost d?[i,j] = minθ∈R d[i,j] (see [1,

eq. 30]) with R replaced by L.
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In [1] finiteness of d?[i,j] = minθ∈R d[i,j] is examined by the relation

min
θ∈R

d[i,j] =∞ ⇔ max
i≤u≤v≤j

buv > min
i≤u≤v≤j

buv, (74)

with {B(i, j) = [bij , bij ] : 1 ≤ i ≤ j ≤ n} as in (16).
Let L be any number such that L > max(L) and define Q(i, j) =

[q
ij
, qij ] :=

{
[max(L ∩B(i, j)),min(L ∩B(i, j))] if L ∩B(i, j) 6= ∅
[L,L] else

.

(75)

Then we observe, as in (74), that

min
θ∈L

d[i,j] =∞ ⇔ max
i≤u≤v≤j

q
uv
> min

i≤u≤v≤j
quv. (76)

This allows to adapt the dynamic program from [1].
Again, in order to reduce computation time, one can only consider subin-
tervals, e.g., of dyadic length, possibly at the expense of deletion power.
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S3. Additional figures and tables.

S3.1. Additional tables and figure from Section 4.

Table S3.1
Weight vector ω for m = 2, 3, 4, 5 such that the ASB(ω) = 0.02.

m = 2 m = 3 m = 4 m = 5

ω (0.02, 0.98) (0.02, 0.04, 0.94) (0.04, 0.06, 0.12, 0.78) (0.06, 0.08, 0.12, 0.16, 0.58)

Table S3.2
Influence of the number of source functions m for m = 2, 3, 4, 5.

m = 2 m = 3 m = 4 m = 5

MAE(ω̂) [10−4] (1, 1) (11, 18, 24) (90, 154, 62, 69) (91, 68, 81, 196, 54)

dist(ω, C1−α) [10−3] 11 23 63 54
Mean(ω ∈ C1−α) [%] 100 99.99 99.96 100

ωi − ωi [10−3] (21, 21) (37, 33, 23) (68, 93, 35, 23) (40, 55, 84, 63, 23)

MIAE(f̂i) [10−3] (0.2, 0.0) (26, 9, 0.0) (115, 103, 67, 0.0) (315, 317, 49, 183, 0.0)

Mean(K̂)−K (0, 0) (0.22,−0.03, 0) (3.7, 2.6,−0.6, 0) (2.75, 2.28, 0.75,−1.61, 0)

Med(K̂)−K (0, 0) (0, 0, 0) (4, 2, 0, 0) (2, 2, 0,−2, 0)

Mean(K̂ = K)i [%] (99.8, 99.8) (88.5, 98, 100) (15.9, 31, 69.4, 100) (7.1, 30.4, 63.8, 12, 99.9)

Mean(K̂ = K) [%] 99.8 87.2 15.8 1
maximinj

∣∣τi − τ̂j ∣∣ (0.37, 0.02) (33.82, 4.77, 0.00) (245.49, 95.75, 2.52, 0.00) (374.38, 208.32, 40.12, 7.41, 0.02)
maxj mini

∣∣τi − τ̂j ∣∣ (0.03, 0.00) (18.59, 12.53, 0.000) (9.61, 18.66, 126.33, 0.00) (83.09, 117.17, 61.13, 348.89, 0.00)
V1 [%] (99.9, 100) (88.3, 96.2, 100) (60.9, 83.4, 68.6, 100) (37.5, 54.1, 82.8, 12.6, 100)
FPSLE (0.07, 0.00) (8.98, 6.05, 0.00) (51.52, 21.36, 78.23, 0.00) (110.3, 92.21, 34.98, 216.82, 0.00)
FNSLE (0.3, 0.02) (24.04, 3.22, 0.00) (168.04, 45.09, 62.15, 0.00) (205.75, 137.64, 41.29, 90.02, 0.02)

Mean(f ∈ H̃(β)) [%] 99.93 99.49 98.77 91.08

Fig S3.1. f1 and f2 from (43) in Section 4.2 for A = {0, 1}, {0, 1, 2}, and {0, 1, 2, 3}
(from top to bottom).
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Table S3.3
Influence of the number of alphabet values k for k = 2, 3, 4.

k = 2 k = 3 k = 4

MAE(ω̂) [10−3] (19, 12) (18, 12) (15, 11)

dist(ω, C1−α) [10−3] 51 51 47
Mean(ω ∈ C1−α) [%] 100 100 100

ωi − ωi [10−3] (71, 71) (71, 71) (67, 67)

MIAE(f̂ i) [10−2] (29, 0) (49, 0) (60, 0)

Mean(K̂)−K (−6.65, 0) (−7.42, 0) (−7.04, 0)

Med(K̂)−K (−6, 0) (−7, 0) (−7, 0)

Mean(K̂ = K)i [%] (0.39, 99.99) (0, 100) (0, 100)

Mean(K̂ = K) [%] 0.39 0 0
maxi minj |τi − τ̂j | (17.5, 0.0) (22.0, 0.0) (23.31, 0.00)
maxj mini |τi − τ̂j | (96.0, 0.0) (134.4, 0.0) (79.8, 0.0)

V1 [%] (81.7, 100) (78, 100) (81.5, 100)
FPSLE (0.4, 0.0) (58.3, 0.0) (37.2, 0.0)
FNSLE (25.7, 0.0) (29.3, 0.0) (25.2, 0.0)

Mean(f ∈ H̃(β)) [%] 94.60 98.49 98.60

Table S3.4
Influence of the confidence level α on ω̂ and C1−α for α = 0.01, 0.05, 0.1.

σ = 0.02

α = 0.01 α = 0.05 α = 0.1

MAE(ω̂) [10−3] (2, 2, 2) (1, 1, 1) (1, 1, 1)

dist(ω, C1−α) [10−3] 29 25 24
Mean(ω ∈ C1−α) [%] 100 100 100

ωi − ωi [10−3] (48, 46, 44) (43, 42, 42) (42, 42, 42)

σ = 0.05

α = 0.01 α = 0.05 α = 0.1

MAE(ω̂) [10−3] (22, 7, 16) (23, 7, 16) (22, 7, 16)

dist(ω, C1−α) [10−3] 109 105 102
Mean(ω ∈ C1−α) [%] 100 100 99

ωi − ωi [10−3] (168, 123, 115) (160, 112, 106) (155, 107, 102)

σ = 0.1

α = 0.01 α = 0.05 α = 0.1

MAE(ω̂) [10−3] (59, 51, 13) (45, 48, 13) (32, 43, 18)

dist(ω, C1−α) [10−3] 231 218 210
Mean(ω ∈ C1−α) [%] 100 100 100

ωi − ωi [10−3] (329, 344, 282) (305, 323, 226) (276, 312, 212)
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Table S3.5
Influence of the confidence levels α and β on f̂ and H̃(β) for each

(α, β) ∈ {0.01, 0.05, 0.1}2, for σ = 0.02, 0.05, 0.1. In the displayed matrices α increases
within a column and β increases within a row.

σ = 0.02

f1 f2 f3

MIAE(f̂i) [10−4]

0 2 10
0 2 10
0 2 10

  6 3 11
9 5 12
11 7 13

 3 1 4
5 2 4
6 3 5


Med(K̂)−K

0 0 0
0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0


Mean(K̂ = K)i [%]

100 100 100
100 100 100
100 100 100

 98 100 100
97 99 99
96 98 99

 99 100 100
98 99 99
97 99 99


Mean(K̂ = K) [%]

98 99 100
97 99 99
96 98 99


V1 [%]

100 100 100
100 100 100
100 100 100

 100 100 100
100 100 100
100 100 100

 100 100 100
100 100 100
100 100 100


Mean(f ∈ H̃(β)) [%]

95.8 93.3 92.3
99.0 97.7 97.0
99.2 98.6 98.1


Mean(fi ∈ H̃(β)i) [%]

99.90 99.74 99.34
99.94 99.78 99.64
99.90 99.70 99.68

 99.84 99.60 99.38
99.92 99.84 99.74
99.90 99.82 99.74

 96.68 95.46 94.92
99.18 98.34 98.10
99.42 99.02 98.64


σ = 0.05

f1 f2 f3

MIAE(f̂i) [10−3]

6 7 8
6 8 9
6 8 9

 160 161 160
164 165 164
160 161 161

 80 80 80
82 83 82
80 80 80


Med(K̂)−K

0 0 0
0 0 0
0 0 0

 2 2 2
2 2 2
2 2 2

 −2 −2 −2
−2 −2 −2
−2 −2 −2


Mean(K̂ = K)i [%]

96 90 85
93 86 80
93 85 80

 21 19 17
19 16 15
21 19 17

 24 25 27
21 23 24
24 25 26


Mean(K̂ = K) [%]

19 16 14
17 14 12
19 16 14


V1 [%]

99 99 99
99 99 99
99 99 99

 92 92 92
92 92 92
92 92 92

 91 91 91
91 91 91
91 91 91


Mean(f ∈ H̃(β)) [%]

83.1 76.7 74.0
81.3 75.6 73.4
81.7 76.4 74.5


Mean(fi ∈ H̃(β)i) [%]

100 100 100
100 100 99.98
100 100 99.98

 89.34 84.78 82.82
86.60 83.04 83.18
87.24 84.16 83.18

 85.80 80.56 78.34
83.14 78.48 77.14
83.58 79.48 78.16


σ = 0.1

f1 f2 f3

MIAE(f̂i) [10−3]

327 327 327
297 296 296
255 254 253

 245 246 246
233 234 234
231 232 232

 90 91 91
67 68 68
75 76 76


Med(K̂)−K

2 3 3
1 2 2
1 1 1

 1 1 1
0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0


Mean(K̂ = K)i [%]

12 9 7
22 19 17
36 32 29

 15 12 11
24 22 21
35 33 32

 44 37 34
62 53 49
59 52 48


Mean(K̂ = K) [%]

4 2 1
7 5 4
8 7 6


V1 [%]

85 85 85
86 86 86
88 87 87

 74 74 75
73 74 74
75 76 76

 95 95 95
97 97 97
96 96 96


Mean(f ∈ H̃(β)) [%]

60.7 58.6 55.7
71.0 63.5 63.2
80.2 71.0 66.9


Mean(fi ∈ H̃(β)i) [%]

90.4 89.6 89.3
99.0 98.8 98.8
99.7 99.6 99.6

 96.7 91.5 86.0
97.8 95.0 94.3
97.9 95.2 92.9

 72.8 74.6 77.0
83.5 80.2 79.4
90.1 86.2 85.6


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Fig S3.2. Source functions f from Example 1.1 modified such they violate the separability
condition in (7) for r = 1 (solid line). The dotted lines indicate the removed jumps.

Table S3.6
Result illustrating robustness. (1): Setting as in Example 1.1 but with f modified such it
violates the separability condition in (7) (see Figure S3.2). (2): Setting as in Example
1.1, but with t-distributed errors with 3 degrees of freedom. (3): Setting as in Example

1.1, but with χ2-distributed errors with 3 degrees of freedom.

(1) (2) (3)

MAE(ω̂) [10−3] (73, 36, 39) (43, 58, 16) (42, 59, 17)

MIAE(f̂ i) [10−3] (123, 181, 84) (447, 435, 137) (563, 279, 99)

Med(K̂)−K (−4, 2, 0) (4, 1,−2) (11, 4,−2)

Mean(K̂ = K)i [%] (10, 10, 19) (5, 0, 33) (2, 1, 4)
V1 [%] (71, 85, 96) (84, 72, 88) (78, 82, 89)
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Table S3.7
Results illustrating the influence of the alphabet separation boundary ASB = ASB(ω) on

ω̂ with ω ∼ U(Ω(m)).

MAE(ω̂) [10−3] dist(ω, C1−α) [10−3]

0 ≤ ASB ≤ 0.0001 (6, 4, 5) 29
0.0001 ≤ ASB ≤ 0.01 (7, 4, 7) 34
0.01 ≤ ASB ≤ 0.02 (4, 4, 4) 30
0.02 ≤ ASB ≤ 0.03 (4, 4, 4) 29
0.03 ≤ ASB ≤ 0.04 (4, 3, 4) 31
0.04 ≤ ASB ≤ 0.05 (4, 3, 4) 31
0.05 ≤ ASB ≤ 0.06 (4, 3, 5) 31
0.06 ≤ ASB ≤ 0.07 (3, 3, 4) 31

Table S3.8
Influence of the alphabet separation boundary ASB = ASB(ω) on f̂ with ω ∼ U(Ω(m)).

MIAE(f̂ i) [10−4] |H̃x(0.1)|
mean median

0 ≤ ASB ≤ 0.0001 (1916, 1067, 483) 2.71 3 0 ≤ ASBx ≤ 0.001
0.0001 ≤ ASB ≤ 0.01 (1536, 923, 354) 2.68 3 0.001 ≤ ASBx ≤ 0.01
0.01 ≤ ASB ≤ 0.02 (671, 474, 147) 2.67 3 0.01 ≤ ASBx ≤ 0.02
0.02 ≤ ASB ≤ 0.03 (236, 164, 40) 2.66 3 0.02 ≤ ASBx ≤ 0.03
0.03 ≤ ASB ≤ 0.04 (96, 37, 7) 2.53 2 0.03 ≤ ASBx ≤ 0.04
0.04 ≤ ASB ≤ 0.05 (100, 7, 2) 2.49 2 0.04 ≤ ASBx ≤ 0.05
0.05 ≤ ASB ≤ 0.06 (42, 1, 0) 2.36 2 0.05 ≤ ASBx ≤ 0.1
0.06 ≤ ASB ≤ 0.07 (16, 4, 0) 1.97 1 0.1 ≤ ASBx

Table S3.9
Influence of prior information on λ for prior knowledge λ ≥ 0.05, 0.04, 0.025, 0.015, 0.005.

Prior knowledge λ ≥ 0.05 0.04 0.025 0.015 0.005

MAE(ω̂) [10−3] (6, 5, 3) (2, 2, 1) (2, 2, 1) (5, 5, 6) (159, 126, 186)

dist(ω, C1−α) [10−3] 17 23 23 37 123
Mean(ω ∈ C1−α) [%] 100 100 100 100 100

ωi − ωi [10−3] (24, 25, 25) (42, 42, 42) (42, 42, 42) (65, 64, 63) (183, 171, 144)

MIAE(f̂i) [10−3] (3, 13, 6) (1, 4, 2) (1, 4, 2) (1, 23, 11) (40, 175, 88)

Mean(K̂)−K (0.1, 0.2, 0.0) (0.1, 0.1, 0.0) (0.1, 0.1, 0.0) (0.0, 0.3,−0.1) (2.4, 2.5,−0.2)

Med(K̂)−K (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0,−2,−2)

Mean(K̂ = K)i [%] (99, 93, 97) (100, 98, 99) (100, 98, 99) (99, 87, 93) (54, 24, 16)

Mean(K̂ = K) [%] 93 98 98 86 6

maximinj
∣∣τi − τ̂j ∣∣ [10−1] (13, 148, 4) (6, 40, 2) (6, 40, 2) (7, 299, 9) (508, 1794, 122)

maxj mini
∣∣τi − τ̂j ∣∣ [10−1] (2, 41, 50) (1, 11, 15) (1, 11, 15) (1, 45, 91) (223, 331, 1343)
V1 [%] (100, 99, 100) (100, 100, 100) (100, 100, 100) (100, 98, 99) (96, 89, 91)

FPSLE [10−2] (16, 246, 167) (8, 67, 51) (8, 67, 51) (5, 398, 304) (708, 1994, 4491)

FNSLE [10−2] (34, 407, 41) (17, 113, 14) (17, 113, 14) (16, 785, 71) (1610, 5786, 1168)

Mean(f ∈ H̃(β)) [%] 96.01 98.96 98.95 94.78 56.65
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S3.2. Additional figures from Section 5.

Fig S3.3. Raw whole genome sequencing data from cell line LS411

Fig S3.4. Preprocessed whole genome sequencing data from cell line LS411
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Fig S3.5. SLAM’s estimates (red lines) for qn(α) = −0.15 (selected with MVT-method
from Section 4.6) and qn(β) = 2.2. Top row: total copy-number estimates across the
genome. Rows 2-4: estimates of the CN profiles of the germline and clones.

S4. Data driven selection of qn(α). In the following we give further
details on the SST-method for selection of qn(α) introduced in Section 4.6.
To simplify notation let n be even. Then Y 1 := (Y1, Y3, . . . , Yn−1) and
Y 2 := (Y2, Y4, . . . , Yn) are both samples of size n/2 from the same underlying
mixture g, with corresponding estimates ω̂1

q := ω̂(Y 1, q) and ω̂2
q := ω̂(Y 2, q),

respectively. Let L be a loss function and h(q) := E[L(ω̂q−ω)] its correspond-
ing performance measure for estimating ω, e.g., the MSE with L = ‖ · ‖22,
which is to be minimized. As ω is unknown, h(q) has to be estimated. This
is done by

ĥ(q) :=
1

2

(
L(ω̂q − ω̂1

q ) + L(ω̂q − ω̂2
q )
)

and we estimate the minimizing q of h as

q̂ := argminq≤q0 ĥ(q). (77)

Bounding q from above by q0 is necessary as for q → ∞, i.e. α → 0, the
corresponding confidence region C1−α converges to the entire domain Ω(m),
hence h(q) → 0 as q → ∞. We found empirically that q0 := qn(0.01) serves
as a good bound (as statements with higher confidence as 0.99 are rarely
demanded), also to reduce computation time for the optimization of (77).
The performance of the selector in (77) is illustrated for the setting of Ex-
ample 1.1 (with n = 1280 and σ = 0.05) in Figure S4.1 for the MSE(q)
(L = ‖ · ‖22) and the MAE(q) (L = ‖ · ‖1), respectively. From this we find
that the optimal q (the minimizer of the black line) is quite well approxi-
mated by its estimate q̂ ≈ 0.5 (the minimizer of the red line). Simulations
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Fig S4.1. Pointwise mean of 1, 000 replications of ‖ω̂q − ω‖2, ‖ω̂q − ω‖1, respectively
(black) and of

(
‖ω̂1

q − ω̂q‖2 + ‖ω̂2
q − ω̂q‖2

)
,
(
‖ω̂1

q − ω̂q‖1 + ‖ω̂2
q − ω̂q‖1

)
, respectively (red)

(from left to right), for the setting as in Example 1.1 with n = 1280 and σ = 0.05. The
vertical lines indicate the corresponding minima.

Fig S4.2. MISE and MIAE of f̂1
q (black), f̂2

q (blue), and f̂3
q (red) observed from 1, 000

realizations for the setting as in Example 1.1 with n = 1280 and σ = 0.05. The vertical
dotted line indicates qn(0.01) = 2.07.

for different n and σ with σ/
√
n in the order of our application example (see

Section 4) show the same. Recall from the previous Section 4.3 that ω is es-
timated quite stable for a range of q. In Figure S4.1 q ≈ 0.5 corresponds to
α ≈ 0.69. The optimal q for the MSE is q ≈ 0.35, corresponding to α ≈ 0.81
and for the MAE q ≈ 0.1, corresponding to α ≈ 0.95.
For large noise levels, however, we found that the SST-selection method
is outperformed by the MVT-method from Section 4.6 illustrated for the
setting of Example 1.1 with n = 1280 and σ = 0.05, 0.08, 0.1, 0.2 in Table
S4.1.

Table S4.1
MSE and MAE for the SST-method and the MVT-method for the setting of Example 1.1

with n = 1280 and σ = 0.05, 0.08, 0.1, 0.2 obtained from 2, 000 replications.

MSE [10−4] MAE [10−3]

SST MVT SST MVT

σ = 0.05 4 4 27 18
σ = 0.08 26 34 73 81
σ = 0.1 56 30 110 78
σ = 0.2 166 44 206 95
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