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In the Appendix, we provide proofs of non-trivial lemmas, propositions,
and theorems in [1] as well as some more technical and yet less informative
lemmas that are used in the proofs.

Appendix: proofs.

Proof of Lemma 1. (⇒) Suppose that there is a c-connecting walk π
between i and j given C. Consider the shortest subpath ρ0 of the section ρ
of π between k and l. If ρ is a collider then a node of ρ is in C, and since
all the nodes on ρ (including those on ρ0) are connected by lines, they are
all in C ∪ ant(C). If ρ is a non-collider then all the nodes on ρ (including
those on ρ0) are outside C. Hence, by replacing all such ρ by ρ0 we obtain
the desired walk.

(⇐) Suppose that there is a walk π between i and j whose sections are all
paths and nodes of every collider section are in C ∪ant(C), and non-collider
sections are outside C. We keep all non-collider sections of π intact. For a
collider section ρ between k and l, if there is a node of ρ in C, we keep it
intact. Otherwise we replace ρ with ρ4 = 〈k, ρ1, ρ2, c, ρ

r
2, ρ3, l〉, where ρ1 is

a subpath of ρ between k and h , ρ2 is a semi-directed path from h to a
member c of C, ρr2 is ρ2 in the reverse direction, and ρ3 is a subpath of ρ
between h and l. It is easy to observe that ρ4 is c-connecting given C. (If
there is an arrow on ρ2 then ρ4 consists of non-collider sections containing
ρ1 and ρ3, and a collider section containing c; otherwise ρ4 is a collider
section containing c.) In addition, ρ and ρ4 are endpoint-identical. Hence,
by this replacement for all such ρ on π, we obtain a c-connecting walk given
C between i and j.

Finally, from the construction of walks that we have in both directions of
the proof, it is seen that the walks are endpoint-identical.

Proof of Proposition 1. The resulting graphs have obviously the three
desired types of edges, thus it is enough to prove that there is no semi-
directed cycle that contains an arrow in the graph. Suppose, for contradic-
tion, that there exists such a cycle. It is easy to observe that by replacing
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2 K. SADEGHI

a generated line or arrow with the generating tripaths (cases 1, 2, 6, and 7
of Table 1) or trislide (case 8), a semi-directed path remains semi-directed.
Therefore, it is implied inductively that there is a semi-directed path in
the original chain graph. This also contains an arrow since an arrow can
only be replaced by a tripath or a trislide that contains an arrow. This is a
contradiction.

Proof of Lemma 2. (⇐) Suppose that there exists a walk π between
i and j in the graph generated after applying step 1 of Algorithm 1 to G
whose inner sections are all non-collider and whose inner nodes are all in
M . By Algorithm 1, for a section between k and l, a line between k and
l is generated, and then, for a tripath 〈h, q, r〉 consisting of a line hq with
q ∈ M , the same edge as qr is generated. Therefore, a walk is generated
between i and j whose inner nodes are in M , and on which lines may only
be adjacent to i and j, and every section is a non-collider. By applying steps
of Table 1, we trivially obtain an endpoint-identical edge between i and j.

(⇒) Suppose that there is an edge between i and j in αCMG(G;M,∅). We
are only interested in the case where this edge does not exist after applying
step 1 of Algorithm 1. In this case, this edge is generated by step 2 by one of
the tripaths in steps 1 to 7 of Table 1 in an iteration of step 2. Each edge in
the tripath may have now been generated by a tripath with the inner node
in M . By an inductive argument, we imply that in the graph generated after
applying step 1 of Algorithm 1 to G, there is a walk π (because of possible
self-intersections) between i and j whose inner nodes are in M . We show
that there is no collider section on π: If, for contradiction, there is a collider
section ρ with endpoints 〈k, ρ, l〉 then it is easy to observe that, in some
iteration of the algorithm, we obtain a collider tripath with endpoints k and
l, but no edge can be generated between k and l by the algorithm. Hence,
there is no edge between i and j in αCMG(G;M,∅), a contradiction. Since
in every iteration of the algorithm, the existence of an arrowhead at sections
containing i and j does not change, π remains endpoint-identical to the ij
edge.

Lemma 12. Let G be a CMG and M a subset of its node set. If there

is a path i · · · k≺ j or i · · · k≺ ≻j in G, and there is

a semi-directed path of form m1 ≻m2 . . . mr i with ms ∈ M ,

1 ≤ s ≤ r then Algorithm 1 generates an arrow from j to i or an arc between

i and j, respectively.

Proof. Consider the section between k, i, and m2. By step 1 of Algo-
rithm 1, an arrow from j to m2 or a jm2 arc is generated. Now by Lemma
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2, when we apply step 2 of the algorithm, an arrow from j to i or an ij arc
is generated.

Lemma 13. Let G be a CMG and M a subset of its node set. There is

a walk π in G with sections {ρ1, . . . , ρr} if and only if there is an endpoint-

identical walk π′ in the graph generated after applying step 1 of Algorithm

1 for M with sections {ρ′1, . . . , ρ
′

r} such that ρ′q is a subsection of ρq for

1 ≤ q ≤ r. In addition, every node on π that is not on π′ is on a subsection

of π with endpoints l and k such that l exists on π′ and is a child of a member

of M , and there is an arrowhead to k on π.

Proof. The result follows from the fact that by replacing arrows and
arcs on π′ by paths in cases 8 and 9 of Table 1 (the replacements that
have occurred in step 1 of Algorithm 1), sections become larger and no new
section is generated; and vice versa.

Proof of Theorem 1. (⇒) Suppose that in αCMG(αCMG(G;M,∅);M1,∅),
there is an edge between i and j. Notice that i, j /∈ M ∪M1. We prove that
there is the same edge in αCMG(G;M ∪M1,∅). Starting from an edge be-
tween i and j, we discuss the type of path or walk that exists between i and
j in every graph generated by different steps of Algorithm 1:

In the graph generated before applying step 2 of Algorithm 1
to αCMG(G;M,∅) for M1: By Lemma 2, there exists an endpoint-identical
walk π between i and j whose inner sections are all non-collider and inner
nodes are all in M1.

In αCMG(G;M,∅): By Lemma 13, there is a new walk, denoted by π1.
Define l also as defined in the lemma, and notice that in this case l is both
in M1 and a child of m1 ∈ M1.

In the graph generated before applying step 2 of Algorithm 1 to
G for M : For every edge of π1, again by Lemma 2, there exists an endpoint-
identical walk between its endpoints, but with inner nodes in M . Denote the
new walk generated by replacing all edges of π1 by endpoint-identical walks
at this stage by π2. Notice that, because of endpoint-identicality, all nodes
on π1 remain non-collider on π2. In addition, the m1l arrow might turn into
a walk that contains a subwalk of from m ≻m2 . . . mr l with
m ∈ M ∪M1 and ms ∈ M , 2 ≤ s ≤ r.

In G: Again by Lemma 13, there is a new walk, denoted by π3. Notice
that the arrow from m to m2 might be replaced by a path, but nevertheless,
by possibly changing the node m to m′, there is the same type of walk
from m′ to l with m′ ∈ M ∪M1. In addition, l ∈ M1 remains the same as
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4 K. SADEGHI

an endpoint of subsections on which there are nodes on π3 that are not in
M ∪M1.

In αCMG(G;M ∪ M1,∅): By Lemma 12, all subpaths of π3 of form π′

are replaced by the k′l arrows or arcs respectively. Therefore, there is an
endpoint-identical walk whose inner sections are all non-collider and whose
inner nodes are all in M ∪M1. By Lemma 2, we conclude that there is an
endpoint-identical (i.e. the same type of) edge between i and j.

(⇐) Suppose that there is an edge between i and j in αCMG(G;M ∪
M1,∅). Starting from this edge, we discuss the type of path or walk that
exists between i and j in every graph generated by different steps of Algo-
rithm 1:

In the graph generated before applying step 2 of Algorithm 1
to G for M ∪M1: By Lemma 2, there exists an endpoint-identical walk π
between i and j whose inner sections are all non-collider and inner nodes
are all in M ∪M1.

In G: By Lemma 13, there is a new walk, denoted by π1. Define l also as
defined in the lemma, and notice that in this case l is both in M ∪M1 and
a child of m1 ∈ M ∪M1.

In the graph generated after applying step 1 of Algorithm 1 to
G for M : All subpaths of π1 of the mentioned form and properties π′ where
l is a child of M can be replaced by kl arrows or lines respectively.

In αCMG(G;M,∅): Now the generated walk can be partitioned into sub-
walks with endpoints in outside M and all inner nodes in M (there might
be single edges in the partition). All these subwalks with lengths more than
two satisfy the conditions of Lemma 2 for M . Hence, there exist endpoint-
identical edges between the endpoints of the subwalks. These edges form a
walk, which is denoted by π2.

In the graph generated after applying step 1 of Algorithm 1
to αCMG(G;M,∅) for M1: Since there are no collider sections on π1, and
because of endpoint-identicality, there are no collider sections on π2. In ad-
dition, the endpoints l (as defined) of subpaths of π2 whose members may
not be in M1, are children of M1. Therefore, again by applying step 1 of the
algorithm for M1 we obtain a walk with all inner nodes in M1.

In αCMG(αCMG(G;M,∅);M1,∅): Now by applying Lemma 2 to the gen-
erated walk, we obtain an endpoint-identical (and hence the same type ij
edge as the original ij edge).

Proof of Proposition 2. First, we prove that every CG G is
mapped into H: By proposition 1, we know that the generated graphs are
CMGs. We consider each case separately:
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Suppose that there is a collider trislide of form k≺ ≻i . . . j≺ l
in the generated graph αCMG(G;M,∅). We go through how this trislide has
been generated by steps of Algorithm 1.

In the graph generated before applying step 2 of Algorithm 1: Since by step
2 of Algorithm 1 only case 7 of Table 1 can generate lines, by an inductive
argument it is clear that between i and j there is a section. By Lemma 2,
instead of the arrow from l to j, there is a walk with non-collider sections and
inner nodes in M such that there is an arrowhead at the endpoint section
containing j (say from node r, which may be l).

In addition, notice that G is a CG and by step 1 of Algorithm 1, no arc
is generated from trislides that do not contain arcs. This fact together with
Lemma 2 implies that there is a walk between i and k that only contains
lines and arrows, and, on this walk, there is an arrowhead at the endpoint
section containing i (say at node o, which may be i and has a parent in M).

By considering the path between r and o, we conclude that by step 1 of
Algorithm 1 (case 8 of Table 1), an arrow from r to o is generated.

In αCMG(G;M,∅): Now by Lemma 2, and considering the walk with
non-collider sections and inner node in M that connects l, r, o, and i, an
arrow from l to i is generated.

Suppose that there is a collider trislide of form k≺ ≻i . . . j≺ ≻l
in the generated graph: r and o can be defined in the same way as in the
previous case. Notice that in this case on the walk (obtained by Lemma 2)
there is an arrowhead at the section containing l. By a similar argument
to that in the previous case, we conclude that there is an arc generated
between l and i in the generated graph. By the symmetry in the path, one
can similarly obtain an arc between k and j. Furthermore, by Lemma 2, and
considering the walk with non-collider sections and inner node in M that
connects j, r, o, and i, there exists an arc between i and j in the generated
graph, since, on this walk, there are arrowheads at both sections that contain
i an j.

Now we prove that the function is surjective: Consider an arbitrary
chain mixed graph H in H. Define a chain graph G from H as follows: keep
all arrows and lines of H in G and replace arcs ij with i≺ m ≻j; and
define a subset M of the node set of G as the set of all such m.

We first prove that G is a CG: It only contains the two desired types of
edges. In addition, it does not contain semi-directed cycles that contains an
arrow since if, for contradiction, it does then it must contain the tripath
i≺ m ≻j, which is impossible.

We now prove that αCMG(G;M,∅) = H: The changes that might oc-
cur by step 1 of Algorithm 1 are only when, in H, there are the two types
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of collider trislides in properties 1 and 2, which correspond to the walks
k≺ m ≻i . . . j≺ l and k≺ m1 ≻i . . . j≺ m2 ≻l
in G. In the former case, the generated arrow from l to i exists in H. In the
latter case, an arrow from m2 to i is generated, but since m2 is only adjacent
to j and l, in the next step of the algorithm, it can only generate il and ij
arcs, both of which exist in H; the same argument also works for the gener-
ated arrow from m1 to j. In addition, step 9 is not applied since there are
no arcs in G. By step 2 of the algorithm, the only type of tripath with inner
node in M is case 4 of Table 1 (except those that are already discussed).
These tripaths obviously turn into the arcs existing in H, and no other edge
is generated.

Proof of Theorem 2. We need to prove that A⊥ cB |C1 in G ⇐⇒
A⊥ cB |C1 in αCMG(G;M,∅).

(⇒) Suppose that there is a c-connecting walk π given C1 between i and
j in G. Consider all maximal subwalks of π whose inner sections are all
non-collider, endpoints are not in M , and inner nodes are all in M . Notice
that all nodes of π that are in M are included in these subwalks since no
collider section on π1 has all nodes in M . Denote such a subwalk by ̟.

In the generated graph after applying step 1 of Algorithm 1: First
consider the case where the endpoints of ̟ are the same node l. Sections on
̟ are non-collider, and hence, the edge between l and an endpoint of ̟ (call
it m) is an arrow from m to l. We can easily obtain a shorter c-connecting
walk by removing ̟ from π if, by doing so, l is on a collider section or on
a non-collider section with no node in C1. If that is not the case then there
exists l≺ m ≻l · · · ◦ ≺ k or l≺ m ≻l · · · ◦ ≺ ≻k,
where l 6∈ C1 but an inner node of the section containing l is in C1. (Notice
that if l is i or j then one can easily removem from the walk.) By step 1, there
is a generated lk edge. We replace all these walks with the generated edge
and call the resulting walk π1. Because the generated edges are endpoint-
identical to the subwalks, π1 is c-connecting.

In the generated graph after applying step 2 of Algorithm 1: The
subwalks of π1 with the property mentioned above now have distinct end-
points. By Lemma 2, instead of these subwalks, there are endpoint-identical
edges in αCMG(G;M,∅). By replacing all the subpaths with these edges,
we obtain a walk π2. Walk π2 exists in αCMG(G;M,∅) since there are no
members of M on π2. In addition, π2 is c-connecting given C1 since, because
of endpoint-identicality of the generated edges to the subwalks, every node
that is an inner node of a collider or a non-collider section on π2 is an inner
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node of a collider or a non-collider section on π1, and no node in C1 on π1
has been taken out.

(⇐) Suppose that there is a c-connecting walk π given C1 between i and
j in αCMG(G;M,∅). We show what types of walks generated π at each step
of Algorithm 1.

In the graph before applying step 2 of Algorithm 1: By Lemma
2, for every edge kl on π, there is an endpoint-identical walk π′ between
k and l with the stated properties in the lemma. By replacing every edge
on π by such π′, we obtain a walk π1. We prove that π1 is c-connecting
given C1: Notice that π′ is obviously c-connecting. In addition, because of
endpoint-identicality, for a replaced edge kl, if l is an inner node of a collider
or a non-collider section, after the replacement, it remains an inner node of
a collider or non-collider section respectively, and all added nodes are in M .

In G, before applying step 1 of Algorithm 1: Now a uv edge on
π1 might have been replaced by a path by step 1 of the algorithm, where
u is a child of m ∈ M . By all such replacements, we obtain a larger walk
π2. Again, because of endpoint-identicality, if u is on a collider section or a
non-collider section ρ1 on π1 then it remains on a (possibly larger) collider
section or a non-collider section ρ2 on π2 respectively. If ρ2 is non-collider
and all inner nodes of the new path are outside C1 then it is clearly open
on π2. If ρ2 is non-collider with a node in C1 then we modify π2 by adding
the subwalk 〈u,m, u〉 (i.e. the arrow from m to u in both directions) to π2.
Now the subpath of ρ2 between v and u becomes a collider section and open
on π2, and the rest of ρ2 (with an arrow pointing to it from m) remains a
non-collider section and open. If ρ2 is a collider, it is clearly open since there
is already a node in C1 on ρ1. Therefore, by an inductive argument, π2 is a
c-connecting walk.

Proof of Lemma 3. (⇐) Suppose that there exists a walk π between i
and j in the generated graph after step 2 whose inner sections are all collider
and in C ∪ ant(C), and endpoint sections contain a single node. We prove
the result by induction on the number of edges of π. If it is 1 then we are
clearly done. If it is n > 1 then consider the trislide τ = 〈iρk〉 on π, where
ρ is a section. By step 3 of the algorithm, an endpoint-identical edge ik is
generated. Notice that ik is either an arrow or an arc unless possibly k = j.
Now by replacing τ by the ik edge, we obtain a shorter walk with the same
properties. By the induction hypothesis, we obtain the result.

(⇒) Suppose that there is an edge between i and j in the graph generated
after step 3 of Algorithm 2. If this edge were generated by step 3 of Algorithm
2 then it would be generated by one of the first three trislides in Table 2 in an
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iteration of step 3 of the algorithm. Each arrow or arc on the trislide may now
have been generated by a trislide with inner nodes in C ∪ ant(C) (since no
generated line can be used in the iterations). Since the trislides are endpoint-
identical to the generated edge, it is implied that all sections remain collider.
By an inductive argument, we imply that, in the graph generated after
applying step 2 of the algorithm, there is an endpoint-identical walk between
i and j whose inner nodes are in C ∪ ant(C) and all sections are collider. In
addition, i and j are clearly not adjacent to a line on this walk, i.e., endpoint
sections contain a single node.

Proof of Lemma 4. The first result for step 4 is trivial, and for step 3
follows directly from Lemma 3. This implies that if a generated line lies on
a collider section after step 3 then since j ∈ S, by step 4, all arrowheads at
the section will be removed.

Proof of Lemma 5. One direction of the proof is obvious since steps 1,
2, and 3 of Algorithm 2 do not remove or replace any edges, and by removing
an arrowhead at an arrow pointing to i by step 4, no new node can become
an anterior of i. Thus, suppose that i ∈ ant(C) after step 4 of the algorithm.
We go back on the steps of the algorithm in order to show that i has been
in ant(C).

Before applying step 4 of Algorithm 2: Suppose that there is a
node k on the semi-directed path π from i to C such that, on π, there is an
arrowhead at k on the opposite direction of π. In addition, suppose that this
arrowhead has been removed by step 4. It then holds that k ∈ C ∪ ant(C).
By considering the closest of such nodes to i on π, i is an anterior of k, and
consequently C.

Before applying step 3 of Algorithm 2: Consider the closest arrow
to i on π that is generated by step 3. The result then follows from Lemma
4.

Before applying step 2 of Algorithm 2: The only possible arrow on π
(say from k to l) can be generated by step 2 (case 4 of Table 2). This implies
that k ∈ ant(l). By an inductive argument, this implies the result.

Proof of Proposition 3. Graphs generated by Algorithm 2 have the
three desired types of edges. We prove that there is no semi-directed cycle
with an arrow in a generated chain mixed graph from G. Suppose, for con-
tradiction, that a generated graph does contain a semi-directed cycle π with
an arrow. Since π does not exist in G, at least one arrow, say from j to i, or
a line, say between k and l has been generated by Algorithm 2. If ij or lk has
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been generated by steps 3 or 4 of the algorithm then by Lemma 4, j, k, l ∈ S
in G. This implies that there should be no arrow on π, a contradiction.

Thus, the only option that is left is that ij has been generated by step 2,
case 4 of Table 2. In this case j ∈ ant(i) in G with an arrow existing on the
directed path from j to i. By considering all arrows generated by this step
of the algorithm on π, we conclude that there is a semi-directed cycle with
an arrow in G, a contradiction.

Proof of Lemma 6. We first prove that there is an ij edge in
αCMG(G;∅, C) if and only if there is a walk as described in the
lemma in G:

(⇒) Suppose that in αCMG(G;∅, C) there is an edge between i and j.
We will follow how this edge might have been generated by the steps of
Algorithm 2.

In the graph generated before applying step 4: It is clear that there
is an ij edge.

In the graph generated before applying step 3: Now, by Lemma
3, there exists an endpoint-identical walk π between i and j to the edge ij
whose inner sections are all collider and in S, and whose endpoint sections
contain a single node. Notice that this means that all edges on π are either
lines or arcs except possibly those containing i and j.

In G: By replacing arcs or arrows on π by endpoint-identical paths (pro-
vided in cases 4 and 5 of Table 2), only collider sections on π become larger.
The newly added nodes to the sections will obviously be in S since they
are anteriors of the rest of the section, which is in S – the only exception
is when there is an arrowhead at i (or j) and the section containing i gets
larger. In this case, i ∈ sp(k), for k ∈ S.

(⇐) Suppose that in G, there exists a walk π as described in the lemma.
The edges of π are all arcs and lines except possibly those including i and
j. We will go through how this walk changes by the steps of Algorithm 2.

In the graph generated after applying step 2: The endpoint sections
turn into single nodes, and other sections may get shortened, but since the
generated edges are endpoint-identical to the generating paths (provided in
cases 4 and 5 of Table 2), inner sections of the resulting walk are still collider.
Lemma 5 implies that the inner sections stay in S.

In αCMG(G;∅, C): The generated walk in the previous step satisfies the
conditions of Lemma 3. Hence, there is an ij edge generated by step 3, which
keeps existing after step 4.

We now prove the second claim in the lemma: Since all generated
edges by steps 2 and 3 of the algorithm (all cases of Table 2) are endpoint
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identical to their generating paths, the generated edge after step 3 and the
walk in G are endpoint-identical. Step 4 changes endpoint-identicality only
when it removes the arrowhead at i, which always and only happens when
i ∈ ant(C).

Proof of Theorem 3. Notice that i, j /∈ C∪C1. We first prove that
there is an ij edge in αCMG(αCMG(G;∅, C);∅, C1) if and only if there
is an ij edge in αCMG(G;∅, C ∪ C1):

By Lemma 6, there is an edge between i and j in αCMG(αCMG(G;∅, C);∅, C1)
if and only if there is a walk π as described in the lemma between i and j
in αCMG(G;∅, C) with inner sections in S1 = C1 ∪ ant(C1).

Notice that by Lemma 4, lines on the inner sections of π exist in G. In
addition, there at most two arrows might exist on π, which are from the
endpoints i and j. Now again by Lemma 6, instead of a kl arc on π, in G,
there is an endpoint-identical walk π′ as described in the lemma between k
and l with inner sections in S = C∪ant(C). By replacing kl by π′, one obtains
a walk with the same properties as in Lemma 6 for S ∪ S1. Inductively, we
replace all such kl arcs. We also replace a possible arrow (say from i to h)
by a walk with properties as described in Lemma 6, where there might be
an arrowhead at i with i ∈ ant(C). By all these replacements, one obtains a
walk π1 in G. Since conditions of Lemma 6 are both necessary and sufficient,
it holds that there is the walk π in αCMG(G;∅, C) if and only if there is the
walk π1 in G.

Walk π1 satisfies the properties in Lemma 6 for S∪S1. Again by Lemma 6,
there is the walk π1 in G if and only if there is an ij edge in αCMG(G;∅, C∪
C1).

We now prove that the ij edge is the same in both graphs:
We only need to show that there is an arrowhead at i on the ij edge in
αCMG(αCMG(G;∅, C);∅, C1) if and only if there is an arrowhead at i on the
ij edge in αCMG(G;∅, C ∪C1). This follows from the second part of Lemma
6 and the fact that if i ∈ ant(C)∪ant(C1) in G then there is no arrowhead at
the ij edge in αCMG(αCMG(G;∅, C);∅, C1) or αCMG(G;∅, C ∪C1). Below
we prove the latter claim:

The result for αCMG(G;∅, C ∪ C1) is again clear by Lemma 6. We now
condider αCMG(αCMG(G;∅, C);∅, C1). If i ∈ ant(C) then there is no ar-
rowhead at i on π in αCMG(G;∅, C). If i ∈ ant(C1) \ ant(C) then consider
the semi-directed path from i to a member of C1 in G. This path remains
intact in αCMG(G;∅, C) since i /∈ ant(C). Hence, the arrowhead at i on the
ij edge will be removed in αCMG(αCMG(G;∅, C);∅, C1).
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Proof of Theorem 4. We prove that A⊥ cB |C ∪C1 in G if and only
if A⊥ cB |C1 in αCMG(G;∅, C).

(⇐) Suppose that there is a c-connecting walk π given C ∪ C1 between
i and j in G. We apply the steps of Algorithm 2 to this walk. Consider all
maximal subwalks of π whose inner sections are all collider and in C, and
endpoints are single nodes and not in C. Notice that all nodes of π that are
in C are included in these subwalks since no non-collider section on π has a
node in C. Denote such a subwalk by ̟.

After applying step 2: First consider the case where the endpoints of ̟
are the same node l. Sections on ̟ are collider, and hence, the edge between
l and an endpoint of ̟ (call it c) has an arrowhead at c. We can easily obtain
a shorter c-connecting walk by removing ̟ from π if, by doing so, l is on a
collider section or on a non-collider section with no node in C∪C1. First, this
implies that the cl edge is an arc. In addition, if that is not the case then there
exists l≺ ≻c≺ ≻l · · · ◦ ≺ k or l≺ ≻c≺ ≻l · · · ◦ ≺ ≻k,
where l 6∈ C ∪ C1 but an inner node of the section containing l is in C1.
(Notice that if l is i or j then one can easily remove c from the walk.) By
step 2, there is a generated lk edge. We replace all these walks with the
generated edge and call the resulting walk π1. Because the generated edges
are endpoint-identical to the subwalks, π1 is c-connecting.

After applying step 3: By Lemma 1, there is an alternative c-connecting
walk π′

1 to π1, where all sections are paths and inner nodes of collider sections
are in C∪C1∪(ant(C)∪ant(C1)). Consider all maximal subwalks of π′

1 whose
inner sections are all collider and in C ∪ ant(C), and endpoints are single
nodes and not in C. Because of the previous step, the endpoints of such
subwalks are distinct nodes. Now, by Lemma 3, instead of these subwalks,
there are endpoint-identical edges. By replacing all the subwalks with these
edges, we obtain a walk π2. Walk π2 is c-connecting given C1 since generated
edges on π2 are endpoint-identical to the subpaths on π′

1 that have been
replaced.

After applying step 4: By this step, no collider sections turn into a
non-collider one on π2 since if an arrowhead on a node k is removed then
k ∈ ant(C) in G and so are all inner nodes of the section that contains
k. Hence, k cannot be on π2 by how π2 is generated. Therefore, π2 is a
c-connecting walk given C1 in αCMG(G;∅, C).

(⇒) Suppose that there is a c-connecting walk π given C1 between i and
j in αCMG(G;∅, C). In G, we obtain a walk π′ by replacing every edge on
π with the corresponding walks described in Lemma 6. All these generated
walks by edges of π are c-connecting given C∪C1 themselves. Hence, if their
endpoints are open then π′ would be c-connecting given C ∪ C1.
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12 K. SADEGHI

If a generated subwalk on π′ is endpoint-identical to the generating edge
on π with endpoint sections containing a single node then it is open. Hence,
we need to consider two cases where this does not happen for a generated
subwalk:

1) When the endpoint sections of the generated walks contain more than
a node, we know that there is an arrowhead at the section, and the endpoint
k is a spouse of s ∈ S. It is possible that the endpoint section ρ is not open
on π′ (but the corresponding edge is open on π) if it is a non-collider with
a node in C. In this case add 〈k, s, k〉 (i.e., repeating the ks edge twice)
instead of k to π′. This makes ρ collider and also adds a collider section s
(containing a single node) and one non-collider section containing k, which
are all open.

2) We know that the generated walks on π′ and the generating edges on
π are endpoint-identical except when there is an arrowhead at the endpoint
section ρ′ containing l and there is a semi-directed path ̟ from l to c ∈ C
in G. In this case, add 〈̟,̟r〉 instead of l to π′ (i.e. go from l to c and
come back to l on ̟). By this method, we split the collider ρ′ at l into two
subpaths, both of which are non-colliders, and obtain other open non-collider
sections along ̟ and a collider section c.

Proof of Proposition 4. The generated graphs obviously contain only
lines and arrows, thus it is enough to prove that they do not contain semi-
directed cycles with an arrow. Suppose, for contradiction, that a generated
graph does contain a semi-directed cycle π with an arrow. If a line ij on π
has been generated by step 4 then i, j ∈ S in G and, therefore, all nodes on
π are in S . This implies that there is no arrow on π, a contradiction. If a
line kl has been generated by step 3 then it is easy to see that both k, l ∈ S,
and again there is no arrow on π, a contradiction. Therefore, all lines on π
exist in the original graph, and no arrows are generated by the algorithm.
Hence, π exists in the original graph, a contradiction.

Proof of Lemma 7. We show that for any choice of C, i⊥ j |C dos not
hold: Suppose that there is an arrow from an inner node k to j. If any of
the inner nodes is in C then i and j are dependent given C. If no inner
node is in C then the subwalk between i and k in addition to the kj arrow
constitutes a connecting walk given C.

Proof of Lemma 8. We prove the first claim:
(⇒) Suppose that in αCMG(αCMG(G;∅, C);M,∅) there is an edge be-

tween i and j.
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In the graph generated before applying step 2 of Algorithm 1 to
αCMG(G;∅, C): By lemma 2, there exists a walk π between i and j whose
inner sections are all non-collider and inner nodes are all in M .

In αCMG(G;∅, C): By Lemma 13, there is a walk π0 between i and j with
the same non-collider sections. In addition, every node on π0 on section ρ
that is not in M is on a subsection with an endpoint that is the endpoint of
ρ as well with an arrowhead pointing to it from the other adjacent node on
π0. The other endpoint h is in M and a child of a member of M .

In G: For every edge kl on π0, by Lemma 6, there exists a walk π′ between
k and l whose inner sections are all collider and in C ∪ ant(C). We denote
the walk in this graph that consists of all such adjacent π′ of π0 by π1. Even
if the endpoint sections of π′ are not single elements or π′ is not endpoint-
identical to the kl edge, all the existing non-collider sections remain non-
collider (although some sections might become larger). It is then observed
that all non-collider sections on π1 have all inner nodes outside C, and all
collider sections have inner nodes in C ∪ ant(C). In addition, every node on
π1 on section ρ′ that is not in M is on a subsection with an endpoint that is
the endpoint of ρ′ as well with an arrowhead pointing to it from the other
adjacent node on π1. The other endpoint h is in M and either a child of a
member of M or a spouse of a member of C ∪ ant(C).

(⇐) Suppose that there is a walk between i and j in G with the two
mentioned properties. In place of this walk, we have the following walks in
the following graphs:

After applying step 1 of Algorithm 1 to G: By this step it can bee
seen that all subwalks containing non-collider sections outside M with an
endpoint that is a child of M get closed, and, therefore, we obtain a walk
on which (i) all nodes on collider sections are in C ∪ ant(C); (ii) (a) all
nodes on non-collider sections are in M or (b) on the non-collider section
one endpoint is in M and a spouse of a node in C ∪ ant(C), and the other
endpoint has an arrowhead at it from the adjacent node on the walk.

In αCMG(G;M,∅): By Lemma 2, we obtain a walk on which all sections
are collider and in C ∪ ant(C) ∪ ant(j). Notice that the spouses of the end-
points of non-collider sections in the previous walk, which are in C∪ant(C),
appear on the generated walk.

In αCMG(G;M,C): By Lemma 6, we obtain an edge.
We now prove the second claim: We go through the corresponding

walks in the intermediate graph, provided above. By lemma 6, the ij edge
in αCMG(G;M,C) and the corresponding walk in αCMG(G;M,∅) remain
endpoint-identical except when there is an arrowhead at the endpoint section
containing, say, i, and i ∈ ant(C) in αCMG(G;M,∅). This walk, by Lemma
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2, is endpoint-identical to the corresponding walk in the graph generated
after applying step 1 of Algorithm 1 to G. Since the anterior set does not
change at this step and the next step in G, and since step 1 of Algorithm 1
generates endpoint-identical edges, the result follows for the corresponding
walk in G.

Lemma 14. For a chain mixed graph G and M and C subsets of its node

set, if i ∈ ant(j) in αCMG(αCMG(G;∅, C);M,∅) then i ∈ ant(C ∪ {j}) in

G.

Proof. The proof follows from Lemma 8 by the following observations:
A line between k and l or an arrow from k to l on the semi-directed walk
from i to j in αCMG(αCMG(G;∅, C);M,∅) is not endpoint-identical to the
corresponding walk π in G if and only if k ∈ ant(C) in G. If they are
endpoint-identical then start from k and move towards l on π. At each step
we either reach a collider section and conclude that k ∈ ant(C), or we finally
reach l and conclude that k ∈ ant(l). By an inductive argument on the nodes
of π, we obtain the result.

Proof of Proposition 6. We first prove that there is an ij edge
in αCMG(αCMG(G;M,∅);∅, C) if and only if there is an ij edge in
αCMG(αCMG(G;∅, C);M,∅): We go through Algorithms 1 and 2 to follow
the types of walks corresponding to the ij edge in any of these graphs in
each step of the algorithms.

(⇒) Suppose that in αCMG(αCMG(G;M,∅);∅, C) there is an edge be-
tween i and j.

In αCMG(G;M,∅): By Lemma 6, there is a walk π between i an j with
the properties described in the lemma.

In the graph generated before applying step 2 of Algorithms 1
to G: For every edge kl on π, by Lemma 2, there exists an endpoint-identical
walk π′ between k and l whose inner sections are all non-collider and inner
nodes are all in M . We denote the walk that consists of all such adjacent
π′ by π0. It is easy to observe that all collider sections are in C ∪ ant(C).
In addition, either the endpoint sections of π0 still satisfy the conditions of
Lemma 6, or the endpoints that are not single elements become children of
members of M .

In G: By Lemma 13, there exists another walk π1, on which, all collider
sections are in C ∪ ant(C). In addition, collider and non-collider sections
remain intact. In addition, it can be seen that on π1, the conditions for
endpoint sections described in the previous paragraph still hold.
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In αCMG(αCMG(G;∅, C);M,∅): The walk described in the previous
paragraph in G satisfies the conditions of Lemma 8. Hence, by this lemma,
we obtain the result.

(⇐) Suppose that in αCMG(αCMG(G;∅, C);M,∅) there is an edge be-
tween i and j. By Lemma 8, there is a walk π1 as described in the lemma
in G. We now continue to check how this walk alters along the steps of the
relevant algorithms:

In the graph generated after applying step 1 of Algorithm 1
to G: All maximal subsections of non-collider sections whose nodes are
outside M , but an endpoint l is in M and a child of M can be replaced
by an endpoint-identical edge. By all such replacements, we obtain a walk
π2, which contains collider sections in C ∪ ant(C) and non-collider sections
outside C. In addition, every node on π2 on section ρ that is not in M is
on a subsection with an endpoint that is the endpoint of ρ as well with an
arrowhead pointing to it from the other adjacent node on π2. The other
endpoint h is in M and a spouse of a member of C ∪ ant(C).

In αCMG(G;M,∅): First consider a non-collider trislide 〈r, ρ′, q〉 where
ρ′ has members outside M . In addition, say r is the endpoint of ρ′ with an
arrowhead pointing to it from the other adjacent node on π2. Consider the
node h as defined in the above paragraph, which is a spouse of s ∈ C∪ant(C).
Denote the adjacent node to h closer to r by t and the adjacent node to h
closer to q by v. By this step, an edge between t and v as well as ts and sv
arcs are generated.

In addition, by using Lemma 2, we replace the maximal subwalks of π2
that contain only non-collider sections and in which all nodes are in M , but
endpoints are outside M , by the generated endpoint-identical edges. By all
these replacements, we obtain a walk π3 that contains collider sections with
nodes in C ∪ ant(C) and non-collider sections outside C. In particular, we
obtain an sq arc as well as an arrow from t to q.

In αCMG(αCMG(G;M,∅);∅, C): By Lemma 6, instead of all subwalks
of π3 that contain inner collider sections, there exists an edge. In addition,
for non-collider sections, the collider tripath 〈t, s, q〉 (described in the above
paragraph) generates a tq arc. Because of the arrow from t to q and the
subwalk of the trislide between r and t, and by Lemma 7, we conclude that
the graph is not maximal except when there is an endpoint-identical edge
between r and q. Therefore, by an inductive argument, there is an edge
between the endpoints of π3.

We now prove that the ij edge is of the same type in both
graphs: For every graph generated by a step of the algorithm, we discussed
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a walk between i and j in both directions of the proof above. We focus on
the arrowhead pointing to i on these walks:

By Lemma 6, there is no arrowhead pointing to i on the ij edge in
αCMG(αCMG(G;M,∅);∅, C) if and only if there is no arrowhead pointing
to i or there is an arrowhead at i and i ∈ ant(C) in αCMG(G;M,∅).

By Lemma 2 and the fact that the anterior sets do not change at this
step, the statement above is equivalent to no arrowhead pointing to i or an
arrowhead pointing to i only when i ∈ ant(C) in the graph generated before
applying step 2 of Algorithms 1 to G.

The result then follows from Lemma 8 for the corresponding walk in
αCMG(αCMG(G;∅, C);M,∅).

Proof of Proposition 7. We first prove that every CG G is mapped
into H: By propositions 1, 3, and 6, we conclude that the generated graphs
are CMGs. By Proposition 2, we know that H = αCMG(G;M,∅) is in H.
We need to prove that H is mapped into H by conditioning.

Suppose that there is a collider trislide π of form k≺ ≻i . . . j≺ l
in the generated graph αCMG(G;M,C). By Lemma 4, the lines on π exist in
H. By Lemma 6, instead of the lj arrow and the ki arc, there are walks π1
and π2, respectively, as described in the lemma, in H. Consider the node r
adjacent to the endpoint section containing j on π1, and the node h that is
the other endpoint of the endpoint section containing i on π2. (Notice that
r may be j and h may be i.)

Since H is in H, there is an arc (or an arrow if possibly h = l) between r
and h. Now the walk containing the subwalk of π1 between l and r, the rh
arc, and the subsection on π2 between h and i satisfies the conditions of the
walk described in Lemma 6. Hence, by this lemma, there is an arrow from l
to i in αCMG(G;M,C).

If there is a collider trislide of form k≺ ≻i . . . j≺ ≻l in the gen-
erated graph then by the same argument as that in the previous paragraph
(and considering the fact that k, l /∈ S), there are il and kj arcs in the
generated graph. In addition, this time the walk containing the subwalk of
π1 between j and r, the rh arc, and the subsection on π2 between h and i
satisfies the conditions of the walk described in Lemma 6. Hence, there is
an arc between j and i in αCMG(G;M,C).

We now prove that the function is surjective: by Proposition 2,
after marginalization, CGs are surjectively mapped onto H. Thus, by letting
C = ∅, Proposition 6, and the fact that αCMG(G;∅,∅) = G, CGs are
surjectively mapped onto H after marginalization and conditioning.
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Proof of Proposition 8. By Propositions 1 and 3, we know that, after
step 2 of Algorithm 3, we obtain a CMG. Steps 3 and 4 do not generate a
semi-directed cycle with an arrow by generating an arrow from j to i: This
is because if, for contradiction, that is the case then in the previous iteration
of step 4, j ∈ ant(k) and k ∈ ant(i) which imply that j ∈ ant(i), and, in
the previous iteration of step 3, j ∈ ant(i). This is a contradiction since it
means by induction that the semi-directed cycle with an arrow exists in the
generated graph after applying step 2.

Step 5 obviously removes all arcs with one endpoint that is an anterior
of the other endpoint. This step also does not generate semi-directed cycles
with an arrow by replacing an arc ij by an arrow from j to i or an ij
line: this is because if, for contradiction, that is the case then j ∈ ant(i) in
the generated graph after applying step 4, which is a contradiction since it
means by induction that the semi-directed cycle with an arrow exists in this
graph.

Proof of Lemma 9. We show that at every step of Algorithm 3, a semi-
directed path from i to j remain semi-directed and vice versa. For step 3 of
the algorithm, the result is clear since the generating path of an arrow from
h to l is semi-directed from h to l. For step 4, this is correct as well since
there is a node k on the generating path such that k ∈ ant(l), and, on the
generating path, h ∈ ant(k). This is also true for step 5 since if an arc turns
into an arrow from h to l then h is already an anterior of l.

Proof of Lemma 10. First, we prove the first claim:
(⇒) Suppose that there is an ij edge in αCMG.AnG(H). We see how this

edge changes by steps of Algorithm 3:
Before applying step 5: There is still an edge between i and j.
Before applying step 4: Instead of an arrow or an arc ij at some it-

eration of this step of the algorithm, there may be a path between i and j,
consisting of one inner collider section and with inner nodes, say, in ant(i).
By any other iteration, the arrow or the arc kl might be replaced by another
such path. By this replacement, we obtain a path (by discarding the inter-
section of lines) with all inner sections to be collider. Notice that by Lemma
9, at no iteration the anterior set of the endpoints changes. In addition, re-
gardless of whether inner nodes of the path between k and l are anteriors
of k or l, all inner nodes are anteriors of i. By an inductive argument, we
finally obtain a subprimitive inducing path from j to i.

In H: By replacements of the arrow and arcs in step 3 of the algorithm,
only sections become larger and inner nodes remain anteriors of an endpoint.
If an endpoint of the arrow or arc is i or j then an endpoint section of the
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generated walk is not a single element and there is a node h such that
h ∈ ant(i) ∩ sp(i) or h ∈ ant(j) ∩ sp(j) respectively; otherwise the endpoint
sections are single elements. In the former case, we add 〈i, h, i〉 to the walk;
and similarly for j.

(⇐) Suppose that there is a subprimitive inducing walk π from j to i in
H. Consider the trislide ρ containing i. First suppose that the endpoints of
ρ are a single element i (i.e. ρ = 〈i, l, i〉, where l ∈ ant(i)). Consider the path
〈k, ρ′〉, where i is an endpoint of the section ρ′ adjacent to ρ and there is an
arc between k and the other endpoint of ρ′ (or possibly an arrow if k = j).
By step 3 of Algorithm 3, we can replace this path by an arc (or an arrow).

By step 4 of the algorithm we obtain an arc instead of this trislide. By
considering the trislide containing i after the replacement, we have that inner
nodes of the trislide are in ant(i). By repeating this argument we obtain an
ij edge.

We now prove the second claim: If j ∈ ant(i) in H then, by step 5 of
the algorithm, there is no arrowhead at j on the ij edge in αCMG.AnG(H).
If j 6∈ ant(i) in H then, by Lemma 9, j 6∈ ant(i) after applying step 4 of the
algorithm. Hence, step 5 is not applicable. The result then follows from the
fact that steps 3 and 4 generate endpoint-identical edges.

Proof of Lemma 11. By Lemma 10, it is enough to prove that (1) there
is a subprimitive inducing walk from i to j in αCMG(αCMG.AnG(H);M,C)
with single-element endpoint sections if and only if there is an endpoint-
identical walk of the same type from i to j in αCMG(H;M,C); (2) j ∈ ant(i)
in αCMG(αCMG.AnG(H);M,C) if and only if j ∈ ant(i) in αCMG(H;M,C).

Proving (1): By Lemma 8, every edge on the subprimitive inducing walk
π from i to j in αCMG(H;M,C) can be replaced by the described walk in the
lemma. Denote the new walk by π′ in H. Notice that if a replaced subwalk
is not endpoint-identical to the original edge then an endpoint k of the edge
should be in ant(C) in H, which means that k is on a non-collider inner
section on π (or is an endpoint with no arrowheads pointing to it), but this
is impossible. Therefore, all such edge-replacements are endpoint identical.
In addition, by Lemma 14, if a node h is in ant(j) in αCMG(H;M,C) then
h ∈ ant(C ∪ {j}) in H.

These imply that there is a subprimitive inducing walk from i to j with
the mentioned properties in αCMG(H;M,C) if and only if in H there is
a walk between i and j on which (i) all nodes on collider sections are in
C ∪ ant(C)∪ {j}; (ii) (a) all nodes on non-collider sections are in M , or (b)
on non-collider sections, one endpoint is in M and also either a child of a
node in M or a spouse of a node in C ∪ ant(C), and the other endpoint
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has an arrowhead at it from the adjacent node on the walk. In addition, the
two walks are endpoint-identical except when there is an arrowhead at the
endpoint section containing i (or j), and i ∈ ant(C) (or j ∈ ant(C)) in H.

Now by using Lemma 9, we have that i ∈ ant(C) in H if and only if
i ∈ ant(C) in αCMG.AnG(H). Therefore, since the same statements as above
hold also for αCMG(αCMG.AnG(H);M,C) and αCMG.AnG(H), and in order
to complete the proof, we need to show that there is a walk between i and j
in H with the two mentioned properties if and only if there is an endpoint-
identical walk π0 of the same type between i and j in αCMG.AnG(H):

To prove this, it is enough to show that by placing the walks described
in Lemma 10 in place of the edges of π0, the form of π0 does not change:
Without loss of generality, suppose that π0 is a shortest walk of the described
form, and an rs edge on π0 has been replaced by a subprimitive inducing
walk ̟ from r to s. The newly added sections are all collider. Because of
transitivity of anteriors, and since the inner nodes of ̟ are anteriors of
s, they stay is ant(C ∪ {j}). It is now enough to only check the sections
containing r and s on π0. Firstly, it is easy to see by Lemma 10 that the
type of these sections do not change regardless of whether they are single
elements on ̟.

Secondly, if the rs edge and ̟ are endpoint-identical then theses sections
remain of the same type. This completes the proof by using Lemma 9.

If these are not endpoint-identical then s ∈ ant(r). A problem only may
arise when the section containing s is a non-collider in αCMG.AnG(H) but
a collider in H. If, for contradiction, this is the case then there is an arrow
to s from the other adjacent node q to s on π0. In addition, since all inner
nodes of ̟ are anteriors of s, they are anteriors of r, and hence in H, 〈̟, q〉
is a subprimitive inducing walk from q to r, and hence π0 is not a shortest
walk, a contradiction. This completes the proof of this section.

Proving (2):Consider a semi-directed walk π in αCMG(αCMG.AnG(H);M,C)
from j to i. Since every edge is a subprimitive inducing walk, lines on π re-
main the same, and instead of an arrow from k to l on π we may have a
subprimitive inducing walk from k to l. It is easy to observe that k ∈ ant(l),
and by an inductive argument, we obtain the result.

The proof of other direction uses exactly the same argument (although,
in fact, edges remain edges in this case).

Proof of Proposition 9. First we prove that every CG G is
mapped into K: By Proposition 8, we know that αAnG maps CGs into
ANG. By Proposition 7, we know that after applying steps 1 and 2 of Al-
gorithm 3, a CG G is mapped into H, defined in Proposition 2. We need to
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prove that after applying steps 3, 4, and 5 of Algorithm 3, a CMG H ∈ H
is mapped into K.

Suppose that there is a trislide π = k≺ ≻i . . . j≺ l in
the generated graph: By Lemma 10, there is a subprimitive inducing walk
from l to j in H. Denote the node on this walk adjacent to j by q. The jq
edge is an arc unless l = q, in which case it is an arrow from q to j. Since
lines are not generated by Algorithm 3, and since H ∈ H, there is an iq arc
or an arrow from l to i.

In the generated graph, j ∈ ant(i), and there is a subprimitive inducing
walk from l to i that goes through the subprimitive inducing walk from l to
j, the section from j to i, the iq edge, the jq edge, and again the section
between j and i. Hence, again by Lemma 10, there is an edge between l
and i. This edge can only be an arrow from l to i since otherwise there is
a semi-directed cycle or an arc with one endpoint that is an anterior of the
other endpoint in the generated anterial graph.

Suppose that there is a trislide π = k≺ ≻i . . . j≺ ≻l in
the generated graph: It holds that l /∈ ant(i) since otherwise l ∈ ant(j),
which is impossible due to the existence of an arrowhead at l. This fact
together with the same argument as that in the previous paragraphs implies
that there is an il arc in the generated graph. By the symmetry on the
trislide we also conclude that there is a jk arc in the generated graph. In
addition, by what we proved in the previous paragraphs, there is a tripath
q′≺ ≻i . . . j≺ ≻q in H, which implies that there is an ij arc in H.
This arc turns into a line by step 5 since i and j are anteriors of one another.

We now prove that the function is surjective: Consider an arbi-
trary graph K ∈ K. We prove that there exists an H ∈ H such that
αCMG.AnG(H) = K, i.e. by applying steps 3, 4, and 5 of Algorithm 3 to
H, we obtain K. This completes the proof since αCMG is surjective onto H,
and αAnG = αCMG.AnG ◦ αCMG.

If K does not contain a trislide of form π = k≺ ≻i . . . j≺ ≻l
then K ∈ H, and we simply let H = K. Since αAnG does not change
anterial graphs, we are done.

If K does contain a trislide π of the mentioned form then there is the ij
line in K. Now let H be K, but with an arc between i and j instead of the
existing line. We have that H ∈ H. Denote also the section between i and j
by ρ.

By Lemma 10, the ij arc turns into a line and clearly no other edge
changes its type in αCMG.AnG(H). Hence, it is enough to show that no
other edge is generated. If the ij arc is part of any subprimitive inducing
walk except when i or j is an endpoint then it can be replaced by ρ to obtain
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another primitive inducing walk. If i or j is an endpoint then, by how H is
constructed, the possible arrows or lines that can be generated already exist
in H. This completes the proof.

Proof of Theorem 8. By Theorem 6, it is enough to prove that A⊥ cB |C1

in αAnG(G;M,C) if and only if A⊥ cB |C1 in αCMG(G;M,C).
Since Steps 1 and 2 of Algorithm 3 generate αCMG(G;M,C), we need to

prove that there is a c-connecting walk in a chain mixed graph H if and
only if there is a c-connecting walk after applying steps 3, 4, and 5 of the
algorithm to H.

(⇒) Suppose that there is a c-connecting walk π given C1 between i and
j in H. After applying steps 3 and 4, π is intact. If an arc kl is replaced by
an arrow from k to l or a kl line, in step 5 of the algorithm then we have
the two following cases:

1) If k is on a non-collider section on π by using the kl arrow or line
instead of arc, one obtains a c-connecting walk.

2) Suppose that k is an endpoint of a collider section ρ and there is
π1 = 〈h, ρ, l〉 on π. By Lemma 1, one can assume that ρ is a path. By Lemma
9, k ∈ ant(l). If h 6= l then by step 4, there is an endpoint-identical hl edge
to π1. One can now use the hl edge instead of π1 to obtain a c-connecting
walk. If h = l then ρ can be considered to be the single node k. Now if h is
on a non-collider section then we can easily skip k to obtain a c-connecting
path. If h is an endpoint of a collider section ρ′ then from π2 = 〈q, ρ′, k〉
and by using step 3 of the algorithm, we obtain an endpoint-identical qh
edge, which can be replaced by π2 to obtain a c-connecting path. This, by
an inductive argument, implies the result.

(⇐) Suppose that there is a c-connecting walk π given C1 between i and
j in αCMG.AnG(H), which is graph H after applying steps 3, 4, and 5 of
Algorithm 3.

For every edge on π, by Lemma 10, there exists a subprimitive inducing
walk in H between the same endpoints. We replace all the edges on π by
these walks and call the generated walk π′. Notice that it can be shown that
regardless of the choice of C, a subprimitive inducing walk is c-connecting
itself. Hence, if the replaced subwalk of π′ by an edge is endpoint-identical
to the original edge then it does not affect the c-connectivity of π′. We,
therefore, need to check the case where the generated walk is not endpoint-
identical to the edge.

Suppose that this is the case for the edge ij in αCMG.AnG(H) replaced
by a subprimitive inducing walk ̟ from j to i. By the lemma, we have that
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either j ∈ ant(i) or i ∈ ant(j) in H, in which cases there is no arrowhead at
j or i on the ij edge respectively.

Assume that j ∈ ant(i). We need to consider the case where ij is an
arrow from j to i, and j is not in C, but there is an arrowhead at j on ̟.
Denote the semi-directed walk from j to i by τ . If no node on τ is in C then
we replace ̟ by τ to obtain a c-connecting walk. Otherwise, consider the
closest node k ∈ C on τ to j. The walk consisting of the subwalk of τ from j
to k, the same subwalk in the reverse direction (from k to j), and ̟ is now
c-connecting since j is on non-collider sections, except when j and k are on
the same subsection of τ (which is still fine).

The case where i ∈ ant(j) follows the exact same argument.

References.

[1] Sadeghi, K. (2015). Marginalization and conditioning for LWF chain graphs. submit-

ted.

Statistical Laboratory

Centre for Mathematical Studies

Wilberforce Road

Cambridge, CB3 0WB

United Kingdom.

E-mail: k.sadeghi@statslab.cam.ac.uk

imsart-aos ver. 2011/05/20 file: mar-con-lwfc-sup.tex date: January 31, 2016

mailto:k.sadeghi@statslab.cam.ac.uk

	Appendix: proofs
	References
	Author's addresses

