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APPENDIX A: SURFACE FINITE ELEMENT DISCRETIZATION

A.1. Well-posedness of the estimation problem (3.8).

Proof. Proposition 1. We exploit a characterization theorem [Braess
(2007), chapter 2] which states that if G is a symmetric, positive definite,
bilinear form on a vector space L, and F is a linear functional on L, then v
is the unique minimizer of

G(v, v)− 2F (v)

in V if and only if

(A.1) G(v, ϕ) = F (ϕ) for all ϕ ∈ L.

Moreover, there is at most one solution to problem A.1.
The desired result follows from application of the above theorem consid-

ering the vector space L = H2(M), the symmetric, positive definite, bilinear
form G(f, ϕ) :=

∑p
j=1 ϕ(pj)f(pj) + λ

∫
M∆ϕ∆f and the linear functional

F (f) =
∑p

j=1 f(pj)
∑n

i=1 xi(pj)ui. Positive definitiveness of the form G, in

H2(M), is shown by the following argument. Suppose that G(f, f) = 0 for
some f ∈ H2(M); then

∫
M∆2

Mf = 0 and
∑p

j=1 f(pj)
2 = 0. Each element

f ∈ H2(M) can be written such that, for any p ∈ M, f(p) = f̃(p) + c,
with f̃ ∈ U = {f̃ ∈ H2(M) :

∫
M f̃ = 0} and c a constant. The solution

of ∆Mf̃ = 0 in U exists unique and is f̃ = 0 [Dziuk and Elliott (2013)].
Thus

∫
M∆2

Mf = 0 for f ∈ H2(M) implies that f(p) = c, for any p ∈ M,
then

∑p
j=1 f(pj)

2 = pc2. But pc2 = 0 if and only if c = 0, so f(·) = 0.

Consequently, G is positive definite on H2(M).
The estimator f̂ is thus

(A.2)

p∑
j=1

ϕ(pj)f̂(pj) + λ

∫
M

∆Mϕ∆Mf̂ =

p∑
j=1

ϕ(pj)

n∑
i=1

xi(pj)ui
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for every ϕ ∈ H2(M).

A.2. Reformulation of the estimation problem. The problem of
finding f ∈ H2(M) that satisfies condition (A.2) for every ϕ ∈ H2(M)
can be rewritten as the problem of finding (f̂ , g) ∈ H2(M) × L2(M) that
satisfies:{∑p

j=1 ϕ(pj)f̂(pj) + λ
∫
M(∆ϕ)g =

∑p
j=1 ϕ(pj)

∑n
i=1 xi(pj)ui∫

M vg −
∫
M v(∆f̂) = 0

(A.3)

for all (ϕ, v) ∈ H2(M) × L2(M). In fact, if the pair of functions (f̂ , g) ∈
H2(M)×L2(M) satisfies condition (A.3) for all (ϕ, v) ∈ H2(M)×L2(M),
then f̂ also satisfies problem (A.2). In contrast, if f̂ ∈ H2(M) satisfies prob-
lem (A.2), then the pair (f̂ ,∆f̂) automatically satisfies the two equations in
problem (A.3). Owing to integration by part and to the fact thatM has no
boundaries, we get:∫

M
(∆Mϕ)g = −

∫
M
∇Mϕ∇Mg∫

M
v(∆Mf̂) = −

∫
M
∇Mv∇Mf̂

Now, asking the auxiliary function g and of the test functions v to be such
that g, v ∈ H1(M), the problem of finding f̂ ∈ H2(M) that satisfies (A.2)
for each ϕ ∈ H2(M) can be reformulated as finding (f̂ , g) ∈ (H1(M) ∩
C0(M))×H1(M){∑p

j=1 ϕ(pj)f̂(pj) + λ
∫
M∇ϕ∇g =

∑p
j=1 ϕ(pj)

∑n
i=1 xi(pj)ui∫

M vg −
∫
M∇v∇f̂ = 0

(A.4)

for all (ϕ, v) ∈ (H1(M)∩C0(M))×H1(M); Moreover, the theory of prob-
lems of elliptic regularity ensure that such f̂ still belongs to H2(M) [Dziuk
and Elliott (2013) and reference therein]. Finally the discrete estimators
f̂h, ĝh ∈ V ⊂ H1(M) are obtained solving

∫
MT
∇MT f̂h∇MT ϕh −

∫
MT

ĝhϕh = 0

λ
∫
MT
∇MT ĝh∇MT vh +

s∑
j=1

f̂h(pj)vh(pj) =
s∑
j=1

vh(pj)
n∑
i=1

xi(pj)ui

for all ϕh, vh ∈ V . A generic function in V can be written as the linear
combination of the finite number of basis spanning V . This allows the solu-
tion f̂h(p) = ψ(p)T f̂ to be characterized by the linear system (3.12) in the
original paper.
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APPENDIX B: SIMULATION ON THE SPHERE

Here we present some further simulation studies on a domain M that is
a sphere centered on the origin and with radius r = 1, approximated by the
triangulated surface MT in Figure 1.

Fig 1. The triangulated surface approximating the sphere with 488 points.

B.1. Noisy obervations. We generate n = 50 smooth functions x1, . . . , x50
on MT by

xi = ui1v1 + ui2v2, i = 1, . . . , n

where v1 and v2 represent the two PC functions with expressionsv1(x, y, z) = 1
2

√
15
π
xy
r2

v2(x, y, z) = 3
4

√
35
π
xy(x2−y2)

r4

and ui1, ui2 represent the PC scores, generated independently and dis-
tributed as ui1 ∼ N(0, σ21), ui2 ∼ N(0, σ22) with σ1 = 4, σ2 = 2. The PC
functions are two components of the Spherical Harmonics basis set, so they
are orthonormal on the sphere, i.e.

∫
M v2i = 1 for i ∈ {1, 2} and

∫
M vivk = 0

for i 6= k with i, k ∈ {1, 2}. The PC functions are plotted in Figure 2.
The functions xi are sampled at locations coinciding with the nodes of the
mesh in Figure 1. At these locations, a Gaussian white noise with standard
deviation σ = 0.1 has been added to the true function xi. We are then in-
terested in recovering the smooth PC functions v1 and v2 from these noisy
observations.
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First PC
function

Second PC
function

Fig 2. From the left to the right, two views of the true first and second PC functions.

We apply the proposed SM-FPCA method, choosing the optimal smooth-
ing parameter λ, both with the K-fold and with GCV. We compare to the
approach based on pre-smoothing followed by MV-PCA on the denoised
evaluations of the functions at the locations pj , j = 1, . . . , p. In this case,
the smoothing techniques used is Spherical Splines [Wahba (1981)], using the
implementation in the R package mgcv. The smoothing parameter choice is
based on the GCV criterion. We will refer to this approach as SSpline-PCA.
The results are summarized in Figure 3.



SMOOTH PCA OVER TWO-DIMENSIONAL MANIFOLDS 5

0.00000

0.00005

0.00010

0.00015

0.00020

SSpline−PCA SM−FPCA
GCV

SM−FPCA
Kfold

M
S

E
s

First PC function

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

SSpline−PCA SM−FPCA
GCV

SM−FPCA
Kfold

M
S

E
s

First PC scores

0.00005

0.00010

0.00015

0.00020

SSpline−PCA SM−FPCA
GCV

SM−FPCA
Kfold

M
S

E
s

Second PC function

0.000

0.002

0.004

0.006

SSpline−PCA SM−FPCA
GCV

SM−FPCA
Kfold

M
S

E
s

Second PC scores

0.05

0.10

0.15

SSpline−PCA SM−FPCA
GCV

SM−FPCA
Kfold

M
S

E
s

Signal reconstruction

0.100

0.125

0.150

SSpline−PCA SM−FPCA
GCV

SM−FPCA
Kfold

P
rin

ci
pa

l A
ng

le
s

Subspace reconstruction

Fig 3. Boxplots summarizing the performance of SSpline-PCA and SM-FPCA. For the
SM-FPCA both GCV and K-fold has been applied for the selection of the smoothing pa-
rameter.

The best estimates of the first two PC functions and corresponding scores
are provided by the proposed SM-FPCA with selection of the smoothing
parameter based on the K-fold approach. SSpline-PCA does a comparable
job on the first principal component, but a significantly worst on the second.
A possible explanation for this is the fact that SSpline-PCA tends to over-
smooth the data, due to the low signal-to-noise setting of the simulations.
This results in good performances for the first PC, but causes a loss of
information that worsen the estimation of the second PC. Also the MSE
on the signal reconstructions, as well as the measure based on the principal
angle between the space spanned respectively by {vi}i=1,2 and the estimated
PC functions {v̂i}i=1,2, emphasize the good performance of the introduced
algorithm.

B.2. Spatial mismatching. In this section we complement the set of
simulations in the noisy setting by designing a simple simulation that shows
how SM-FPCA behaves when a spatial mismatching effect is introduced.
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In the motivating application to neuroimaging data, spatial mismatching is
introduced by the shape registration algorithm. In this simulation, we con-
sider a spherical domainMT and reproduce this spatial mismatching effect,
that results in misalignment of the signals on this domain, by including a
subject specific shift (in spherical coordinates) of the first PC function. In
detail, we generate n = 50 smooth functions x1, . . . , x50 on MT by

(B.1) xi = ui1vi1, i = 1, . . . , n

where ui1 represent the PC scores, generated independently and distributed
as ui1 ∼ N(0, σ2) with σ = 4, and the functions vi1 represent misaligned
realization of the PC function v1. Specifically, we parametrize v1 in spher-
ical coordinates (θ, φ) and set vi1(θ, φ) = v1(θ + θi, φ + φi), with θi and
φi generated independently with a discrete uniform distribution on the set
{0, 0.4}. In Figure 4 we show vi1 for the four possible realizations of shifting
coefficients (θi, φi).

Fig 4. A plot of the four different realizations of the misaligned PC function vi1.

The interest is to recover the structure of the only PC function v1, from
the misaligned realizations {xi}i=1,...,n, ignoring the effects introduced by
the shifts. To consider purely the misalignment’s effect, we do not add noise
to the sampled functions xi. In fact, while the benefits of SM-FPCA in
the noisy setting have already been extensively demonstrated, we aim now
at considering separately the effect of a spatial mismatching on the sam-
pled functions from the effect of the presence of noise. Pre-smoothing of
the signal, as performed in SSPline-PCA, is thus unnecessary, and we com-
pare directly MV-PCA to SM-FPCA. In fact, as already mentioned, the
proposed SM-FPCA model incorporates the smoothing penalty in a more
parsimonious way than the pre-smoothing approach, allowing a direct con-
trol of the smoothness of the estimated PC function. We would like to show
that SM-FPCA, combined with a cross-validation approach for the choice
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of the smoothing parameter λ, might help removing artefacts introduced by
the spatial mismatching.

MV-PCA SM-FPCA
GCV

SM-FPCA
K-fold

Fig 5. From top to bottom, plot of the estimates computed on 4 different generated datasets.
From left to right, plot of the estimate of the first PC function computed respectively with
MV-PCA, SM-FPCA GCV and SM-FPCA K-fold.
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In Figure 5 we show the estimates computed with MV-PCA, SM-FPCA
GCV and SM-FPCA K-fold (K = 5) for four different datasets generated as
in (B.1). In the top row we show a situation where the PC function estimated
with MV-PCA shows a satisfactory result. In this case also SM-FPCA GCV
and SM-FPCA K-fold show a similar behavior. However, in the bottom
three rows the estimates of the PC function computed with MV-PCA and
SM-FPCA GCV show some artefacts introduced by the misalignment, while
the estimate computed with SM-FPCA K-fold better preserves the shape
of the PC function, renouncing however to spatial localization. The results
obtained with SM-FPCA K-fold suggest to interpret the phenomena at a
more macroscopical scale, due to the high local variability introduced by the
spatial mismatching.

The different behavior of SM-FPCA, when the smoothing parameter is
chosen by GCV with respect to K-fold cross-validation, can be explained by
the fact that this first approach concerns with the choice of λ only in the
regression step (3.7), where the choice of λ is only driven by the presence
of noise on the vector XTu. On the contrary, SM-FPCA K-fold is based
on a direct comparison of the PC function estimated on the training and
validation sets, obtained partitioning the dataset.
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