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MULTIRESOLUTION ESTIMATION FOR THE AMERICAN

COMMUNITY SURVEY”∗

By Terrance D. Savitsky†

U.S. Bureau of Labor Statistics

1. Posterior Computation. We implement the posterior computations for the predictor-
indexed Dirichlet process mixture model (from which it is easy to derive the computations
for the predictor-assisted mixture model), in a sequential scan of parameter blocks from
their full conditional posterior distributions in the growfunctions2 package for R (R
Core Team 2014), which is written in C++ for fast computation and available from the
authors on request. The QCEW predictors used for this analysis, (X`), include by county-
month QCEW employment counts for all counties and municipal civil divisions (cmcds)
in the U.S. There are approximately 100 out of 4751 cmcds in our dataset that are not
publicly released by BLS due to privacy protection requirements for respondents. Our plan
is to examine the possibility for imputing the values for these 100 cmcds under a model
that excludes them. Further study within BLS will be required to assess privacy implica-
tions. The user may, alternatively, directly access QCEW values where published by BLS
and perform the imputation on their own. We intend to publish tables that link cmcds to
blocks and years to periods. These tables are used to construct label vectors input to the
estimation function in growfunctions2 to formulate the likelihood statement for each
f`j .

We briefly highlight aspects of our posterior sampling algorithm for the major sets of
parameters, below:

1. Model for Y = (ybq)

(a) Sample each block of P×T random effect coefficients, (B`), independently, using
the elliptical slice sampler (ESS) of Murray et al. (2010) for block-sampling
parameters under a multivariate Gaussian prior (that we generalized to matrix
variate Gaussian distributions). The ESS generates (P ×T ) proposals through a
convex combination of a draw from the prior and the previously sampled value.
The proposals lie on the ellipse parameterized with a phase angle. The ESS uses
a slice sampling algorithm (Neal 2000a) to draw proposals for the phase angle.
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Proposals are evaluated with the likelihood,

(1) L (B`) =
∏
b∈b(`)

∏
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where b(`) denotes the (usually multiple) blocks in which county ` is nested. Sim-
ilarly, q(b), denotes the often multiple (multi-year) periods, q, linked to block, b.
We define ỹbq,` = ybq−

∑
`′ 6=`∈b

∑
j∈q x

′

`′j
β`′j to subtract out estimated functions

for all other counties,
(
`
′
)
6= `, which are also linked to ybq.

(b) Sample the posterior distribution for locations of the GP covariance in by-cluster
groups, (κ∗dm)d=1,...,D, from the subset of counties, (B`), assigned to that cluster

because κ∗dm ⊥⊥ κ∗dm′ for m
′ 6= m, a posteriori, in a Metropolis-Hastings scheme

using the following log-posterior kernel,

logf
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)
∝ −1
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(2)

+(a− 1) log(κ∗dm)− bκ∗dm,

where (a, b) are shape and rate hyperparameters of a gamma prior, respec-
tively, which are both set equal to 1. This posterior representation is a relatively
straightforward Gaussian kernel of a non-conjugate probability model.

We adapt a Metropolis-Hastings algorithm of Wang & Neal (2013) for sam-
pling each κ∗dm that is designed to speed computation by introducing a lower-
dimensional temporary space where the likelihood (e.g. the T × T , Gaussian
process covariance matrix, C) is approximated using a subset of the T time-
points. We develop a transition / proposal distribution based on composing
moves in the lower dimensional, temporary space (using a slice sampler), where
computations of the lower-dimensional GP covariance matrix are fast. If the
lower dimensional approximations are relatively good, this approach will speed
chain convergence by producing draws of lower autocorrelation since each pro-
posal includes a sequence of moves generated in the temporary space for drawing
an equivalent effective sample size. See Savitsky (2015) for more details.

(c) Sample location, Λ∗y,m, from a P dimensional Wishart posterior with degrees of

freedom, nmT + (P + 1) and P × P inverse scale,
∑

`:s`=m
B`C(κ∗m)B

′
` + IP .

(d) Sample cluster assignments, s = (s1, . . . , sN ), from their full conditionals using
the Pólya urn representation, Blackwell & MacQueen (1973),

(3) f (s` = s|s−i,Θ∗s, α,B`,∆`) ∝

{
n−`,s

n−1+αL (B`,∆`) if 1 ≤ s ≤M−
α/c∗

n−1+αL (B`,∆`) if s = M− + h,
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where n−`,s =
∑

`′ 6=` I(s(`
′
) = s) is the number of counties, excluding unit

`, assigned to cluster s, so that units are assigned to an existing cluster with
probability proportional to its “popularity” and M− denotes the total number
of clusters when unit ` is removed (which is equal to M unless ` is a member of
singleton cluster). The posterior assigns a county (through s`) to a new cluster
with probability proportional to αd0 =

∫
N (B|κ, . . .)G0(dκ), that requires the

likelihood to be integrable in closed form with respect to the base distribution,
which is not the case under our non-conjugate parameterization through the
GP covariance matrix. So we utilize the auxiliary Gibbs sampler formulation
of Neal (2000b) and sample c∗ ∈ N (typically set equal to 2 or 3) locations
from base distribution, G0, ahead of any assigned observations, to define h =
M− + c∗ candidate clusters in an augmented space. We then draw s` from this
augmented space, where any location not assigned units (over a set of draws for
s) is dropped.

2. Model for X` = (x`j)

(a) Sample P × T, ∆`, independently, by stacking the transpose of the P , T × 1
rows of ∆` to form the PT × 1, δv,`, from which we perform a draw from the
following conjugate Gaussian posterior,

(4) f
(
δv,`|X`,Hx, s,Λ

∗
x,s`

,Q
(
τ∗x,s` , ρ

∗
x,s`

))
= NPT

(
hδ,φ

−1
δ

)
,

where we define PT × 1, eδ = Hx,Txv,`, with Hx,T = (Hx ⊗ IT ), while xv,` is
formed by stacking the transpose of the rows of X`. Posterior precision, φδ =
Hx,T +

(
Λ∗x,s` ⊗Q

(
τ∗x,s` , ρ

∗
x,s`

))
. Finally, compose hδ = φ−1δ eδ.

(b) Sample the location parameters,
(
τ∗x,m

)
, of the T ×T CAR precision matrix, Q,

from the Gamma distribution,

(5) f
(
τ∗x,m|(∆` : s` = m), ρ∗x,m

)
= Ga (a1, b1) ,

with shape, a1 = 0.5nmTP+a, and rate, b1 = 0.5tr
[∑

`:s(`)=m
R∗m∆

′
`Λ
∗
x,m∆` + b

]
,

where R∗m = (Dx − ρ∗mΩx).

Next, sample ρ∗x,m using a slice sampler with the following posterior evaluation
kernel,

log f
(
ρ∗x,m|(∆` : s` = m), τ∗x,m

)
∝ 0.5nmP log |R∗m|+ 0.5τ∗x,mρ

∗
x,mtr

 ∑
`:s`=m

Ωx∆
′
`Λ
∗
x,m∆`

 .(6)

2. Posterior Mixing. Figure 1 presents post-burnin MCMC trace plots for randomly-
selected (f`j) for counties of varying-sized populations. The mixing appears to be very good
and stable.
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Fig 1: Post-burnin trace plots for randomly selected latent functions, (f`j).

3. Simulation Study Results for 5− year Counties. Similarly to the 3− year
county result, Figure 2 presents typical results for a county with only a single, 5− year
estimate available in the case where that county is nested in a group relatively near to it
in size. As earlier mentioned, this situation is typical for MCD’s, which by construction
(in New England) are nested within counties. While we see that the fitted result expresses
more smoothness than the truth, it does generally follow local features in the true trend
and the credible interval is wider than those for counties with published 3− year period
estimates. We note that the bottom end of the credible interval in Figure 2 crosses below
zero. All of the posterior means and modes are greater than 0. In the ACS application,
10 of the 4751 counties express credible intervals that cross 0 for the smallest-sized, far-
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nested 5− year counties, though again all posterior means and modes are greater than 0.
It is generally more difficult to stably estimate tail quantiles of posterior distributions than
the mean, median or mode. Adding data for upcoming years will bring in additional 5−
year period estimates, which are expected to improve the quality of estimation for these
far-nested counties by borrowing strength over (overlapping) multi-year periods.
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Fig 2: Fitted versus Data values for simulated 5− year county linked to one or more groups
of similar size.
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