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By Moritz Jirak†,∗, Alexander Meister‡ and Markus Reiß†

Humboldt Universität zu Berlin† and Universität Rostock‡

Additional proofs and technical results are presented.

In Section 7 of this supplement implementation details and further simula-
tion results are discussed. The proofs of the lower bounds are given in Section
8. Technical auxiliary results are provided in Section 9, and the estimation of
the critical values is analysed in Section 10.

7. Additional simulations. The aim of this section is to discuss imple-
mentation details an explore some additional features that were briefly men-
tioned in Section 5. The corresponding R code is available at [4]. We will
illustrate the following points:

(A) Comments on implementation details.
(B) Effect of high polynomial degree on the estimators.
(C) The effect of correct estimation of ax, bx and cx, and the induced bias

by the regression function.
(D) Comparison with oracle estimators.

We consider three different regression functions, displayed in black in Fig-
ures 1, 2 and 4b:

f1(x) = −2 · 1(x < 1/3)− 3 · 1(1/3 ≤ x < 2/3)− 1(2/3 < x), x ∈ [0, 1],

f2(x) = −2 + 2 cos(2πx) + 0.3 sin(19πx), x ∈ [0, 1],

f3(x) = −2 + 2 cos(2πx), x ∈ [0, 1].

A. Let us comment on some implementation details. The value β∗ of the
approximating polynomial was set to two in most of the simulations. In case
of function f1 (Figure 1), higher order polynomial approximations may lead to
a better resolution around the jump points, but also a more pronounced over-
shooting (Gibb’s phenomena). On the other hand, imposing a linear structure
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(β∗ = 1) also slightly improves upon the results. In case of function f2 (Figure
2), higher polynomial approximations may lead to better results. Even in case
of β∗ = 8, the resulting estimates are still remarkably accurate, despite the
comparatively small sample size of n = 200. A possible way to obtain smoother
results is to introduce weights in the spirit of the general local likelihood ap-
proach. For the estimation of ax, we use a simple ’robustification’, which in
essence consists in takeing the median of the neighbouring estimates according
to the number of the initial bandwidth (11 in most cases). The admissibility
of such an estimator in the sense of Definition 1 can be readily established,
exploiting the Hölder continuity of ax.

Concerning the estimation procedure itself, we have chosen the pointwise
quantiles in all simulations. The quantiles for Lq-adaptivity give, in general,
similar results. The initial minimum sample size was set to 15 (2h0 = 15/200),
and ρ was chosen as ρ = 20/19. In general, ρ should be chosen close to one,
otherwise the growth rate of the bandwidth might be too large. There is no
danger of choosing ρ too small as long as ρ > 1, this might only lead to a
slight increase on computation time in practice. A delicate issue for estimation
procedures in practice is the actual choice of otherwise “asymptotic” constants.
As is usually the case in practice, such asymptotic constants do not always
give the best performance in finite samples. In our case, this concerns the
constants c(β∗) and J(β∗) in Theorem 3.1. Further simulations show that the
estimation procedure is not that sensitive to different values 4c(β∗) and 4J(β∗).
In particular, simply setting 8c(β∗) = 4J(β∗) = 1 yields a good performance
of both the pointwise and Lq-adaptive estimator. One also needs to be careful

about estimates of b̂x. If they are too large, they may become the dominating
factor in finite samples, and even lead to non-monotone quantile estimates
(critical values), which is prohibited. We therefore use the truncation |b̂x| ≤
1/2, which seems to produce good results.

B. As was already mentioned above in Paragraph A, the regression estimate
f̂ can be rather stable under differing degrees of the underlying approximating
polynomial, provided that the regression function f itself permits such a local
approximation. In Figures 1 and 2, we compare a second order approxima-
tion with an approximation of order eight. Figure 1a reveals the well-known
Gibbs-phenomena of an overshoot at jump points and neighbouring points, the
remaining parts appear to similar as in Figure 1b. Note however that due to
the significantly higher polynomial degree, the resulting estimate f̂ has more
’peaks’ and ’steep valleys’, since the higher polynomial order allows for much
more local adaption to the data. If the order is too large - which seems to
be the case in Figure 1a - the result is an over-parameterised estimate. In
contrast, the estimate in Figure 2a does not yet show any significant signs of
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Fig 1: (a) Function f = f1, β∗ = 8, n = 200, εj ∼ Exp(1); (b) Function
f = f1, β∗ = 2, n = 200, εj ∼ Exp(1);

over-parametrisation. It is likely that this can be attributed to the much more
complicated underlying regression function f = f2, compared to the simpler
case f = f1 in Figure 1.

C. In this paragraph, we briefly discuss the interplay between the estima-
tion of the critical values and the total estimate of the regression function f
with respect to estimation accuracy. Figure 3 first reveals that the regression
function f itself can impose a considerable bias on âx (and thus the critical
values) if it fluctuates or changes directions often. The original random sample
in both simulations is identical, the sole difference is the regression function
f . As one consequence, we have a slight overestimation in the center of Figure
4a, and a rather precise estimate in Figure 4b. The (surprisingly) small devi-
ation in the center of Figure 4a is due to the fact that a lot of observations
are near the regression function, keeping the overall error small. The converse
effect is visible at the top left in Figures 4a and 4b, where the underestimation
of the critical values has a more visible impact on the estimation accuracy.
We also note that the static initial bandwidth selection appears to be too low
for large âx in Figure 4. This suggests that an adaptive (with respect to âx)
initial bandwidth selection might be an option. On the other hand, this can
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Fig 2: (a) Function f = f2, β∗ = 8, n = 200, εj ∼ Exp(1); (b) Function
f = f2, β∗ = 2, n = 200, εj ∼ Exp(1);
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Fig 3: (a) ax (black line) and âx (blue points), f = f2; (b) ax (black line) and
âx (blue points), f = f3;
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Fig 4: (a) Function f = f2, β∗ = 4, n = 600, εj ∼ Γ(ax, 1); (b) Function
f = f3, β∗ = 2, n = 600, εj ∼ Γ(ax, 1);

also backfire if the estimator âx is severely off target. As a final comment: if
one wonders about the two different estimation gaps in Figures 4a and 4b at
the top left corners, note the different scaling.

D. This paragraph is devoted to the comparison with oracle estimators. As
comparison, we consider the situation where a, b, c and hence the exact critical
values are known. The corresponding oracle estimator is then constructed in
exactly the same way, based on the true critical values. In addition, we consider
the best possible estimator that is constructed by means of the base estimators
(see Section 2). The setup we consider is that of Paragraph A, where we use
β∗ = 2 for all estimators. The measure of deviance is the pointwise mean

∆
(
f̂ , f

)
=

1

n

n∑
i=1

∣∣f̂(i/n)− f(i/n)
∣∣.

The results are given in Table 1. Interestingly, the adaptive estimator and the
oracle estimator where a, b, c are known have almost the identical risk. Figure 5
also indicates that they behave almost identically. Both have about three times
the risk of the best possible base estimator, rendering a good performance.
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Fig 5: (a) Function f = f1, β∗ = 2, n = 200, εj ∼ Exp(1); (b) Function
f = f2, β∗ = 2, n = 200, εj ∼ Exp(1);

n = 200 Adaptive Estimator Oracle estimator Best estimator

f1 0.120 0.120 0.055
f2 0.148 0.147 0.053
f3 0.094 0.093 0.022

n = 1000
f1 0.058 0.057 0.039
f2 0.057 0.056 0.022
f3 0.036 0.035 0.011

Table 1
Comparison to oracle estimators with β∗ = 2;
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8. Proof of the lower bound. For the sake of reference, we restate the
the results concerning the lower bound.

We assume that the εj have a Lebesgue density fε which is continuous and
strictly positive on (−∞, 0), and vanishes on [0,∞]. Moreover, we impose that
the χ2-distance for the parametric location problem satisfies

(8.1)

∫ 0

−∞
|fε(x+ ϑ)− fε(x)|2/fε(x)dx ≤ cεϑ

a| log ϑ|−ab , ∀ϑ ∈ (0, 1) ,

for some a ∈ (0, 2] and b ∈ R.

Theorem 8.1. Assume condition (8.1) and fix some arbitrary x0 ∈ [0, 1],
β1 > β2 > 0 and C0, C1 > 0. Let {f̂n(x0)}n be any sequence of estimators of
f(x0) based on the data Y1, . . . , Yn which satisfies

sup
f∈H[0,1](β1,C0)

Ef
∣∣f̂n(x0)− f(x0)

∣∣2 = O
(
n−2β2/(1+β2a)n−ξ

)
,

for some ξ > 0. Then this estimator sequence suffers from the lower bound

lim inf
n→∞

(n/ log n)
2β2

1+aβ2 (log n)
−2abβ2
1+aβ2 sup

f∈H[0,1](β2,C1)
Ef
∣∣f̂n(x0)− f(x0)

∣∣2 > 0 .

For completeness we also derive the Lq-minimax optimality of the conver-

gence rates established by our estimator f̂ in Theorem 3.3.

Theorem 8.2. Assume condition (8.1) and let {f̂n}n be any sequence of
estimators of f based on the data Y1, . . . , Yn. Then, for any fixed q ≥ 1, we
have

lim inf
n→∞

n
β2

1+aβ2 (log n)
−abβ2
1+aβ2 sup

f∈H[0,1](β2,C1)
Ef
[
‖f̂n − f‖q

]
> 0 .

Now we focus on the case a > 2. To simplify some of the technical arguments
in the proofs, we restrict to the case b = 0.

Definition 1. Let a > 2, 0 < h0 ≤ 1, and denote with Dn(a, h0) the set
of all error distribution functions whose quantile functions U (n) satisfy

(i) sup
y∈(0,∞]

∣∣∣∣U (n)(y)

A(y/2)

∣∣∣∣ ≤ 1, where A(y) = −y−1/a,

(ii) sup
n

sup
y∈[logN,N ]

∣∣∣∣U (n)(y)

A(y)
− 1

∣∣∣∣| log y| ≤ (log n)−2, N = nh0 .

Note that we have Dn(a, h0) ⊆ Dn(a, h′0) if h0 > h′0.
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The above conditions particularly imply that the distribution function F (y) =
F (n)(y) (or likewise U(y) = U (n)(y)) of the errors εj may depend on n.

Theorem 8.3. Fix some arbitrary x0 ∈ [0, 1], β1 > β2 > 0 and C0, C1 > 0.
Let a > 2 and suppose that h0 < β2

aβ2+1 . Let {f̂n(x0)}n be any sequence of
estimators of f(x0) based on the data Y1, . . . , Yn which satisfies

sup
f∈H[0,1](β1,C0)

sup
F∈Dn(a,h0)

Ef,F
∣∣f̂n(x0)− f(x0)

∣∣2 = O
(
n−2β2/(1+aβ2)n−ξ

)
,

for some ξ > 0. Then this estimator sequence suffers from the lower bound

lim inf
n→∞

(n/ log n)
2β2

1+aβ2 sup
f∈H[0,1](β2,C1)

sup
F∈Dn(a,h0)

Ef,F
∣∣f̂n(x0)− f(x0)

∣∣2 > 0 .

Proof of Theorem 8.1:. Without loss of generality assume x0 = 0. We
introduce the regression curves f0(x) = 0 and f1(x) = −dhβ2n K(x/hn) for
some hn ↓ 0 to be specified, the kernel function K(x) := exp

(
1/(x2 −

1)
)
1(−1,1)(x) and some constant d > 0 sufficiently small such that f1 ∈

H[0,1](β2, C1) is satisfied. We easily realise that f0 ∈ H[0,1](β1, C0) so that

Ef0
∣∣f̂n(0)− f0(0)

∣∣2 ≤ qn−2β2/(1+β2a)n−ξ ,

for some constant q by assumption. In the sequel we write Pf for the joint
probability measure of the data Y1, . . . , Yn where f indicates the true regression
function; and Ef denotes the corresponding expectation. Hence, Pf has the
n-dimensional Lebesgue density

pf (y) :=
n∏
j=1

fε
(
yj − f(xj)

)
, y ∈ Rn .

As the function f1 is non-positive the probability measure Pf0 dominates Pf1
so that the Radon-Nikodym derivative dPf1/dPf0 exists and

sup
f∈H[0,1](β2,C1)

{
Ef
∣∣f̂n(0)− f(0)

∣∣2}1/2 ≥ Ef1
∣∣f̂n(0)− f1(0)

∣∣
≥
∣∣f0(0)− f1(0)

∣∣ − Ef1
∣∣f̂n(0)− f0(0)

∣∣
=
∣∣f0(0)− f1(0)

∣∣ − Ef0
∣∣f̂n(0)− f0(0)

∣∣(dPf1
dPf0

− 1
)
− Ef0

∣∣f̂n(0)− f0(0)
∣∣

≥
∣∣f0(0)− f1(0)

∣∣ − {Ef0∣∣f̂n(0)− f0(0)
∣∣2}1/2

({
Ef0
(dPf1
dPf0

− 1
)2}1/2

+ 1
)

≥ dehβ2n − qn−β2/(1+aβ2)n−ξ/2
{

1 + χ2(Pf0 , Pf1)
}
,

(8.2)
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by the Cauchy-Schwarz inequality. Note that χ2(Pf0 , Pf1) := Ef0
(
dPf1
dPf0

− 1
)2

denotes the χ2-distance between the measures Pf0 and Pf1 . We deduce that

χ2(Pf0 , Pf1) = Ef0
(dPf1
dPf0

)2
− 1 =

n∏
j=1

(∫
f2
ε (y − f1(xj))/fε(y − f0(xj))dy

)
− 1

=
n∏
j=1

{
1 + χ2

(
fε(· − f0(xj)), fε(· − f1(xj))

)}
− 1

≤ exp
{ n∑
j=1

χ2
(
fε(· − f0(xj)), fε(· − f1(xj))

)}
− 1

≤ exp
{
cε

n∑
j=1

|f1(xj)|a
}
− 1 ≤ exp

{
const. · nh1+β2a

n | log hn|−ab
}
− 1 ,

(8.3)

due to (8.1) whenever h−1
n = o(n) for n sufficiently large. We select

hn = {cHn/ log n}−1/(1+aβ2) · (log n)αb/(1+αβ2)

with some sufficiently small constant cH > 0 so that

χ2(Pf0 , Pf1) ≤ const. · nξ/2 .

Inserting that into (8.2) provides the desired lower bound.

Proof of Theorem 8.2:. With K as in the proof of Theorem 8.1, we
consider the functions

fθ(x) := −d
mn−1∑
j=1

θjm
−β2
n K

(
2mn(x− xj,n)

)
,

where θ = (θ1, . . . , θmn−1) ∈ {0, 1}(mn−1), xj,n = j/mn and (mn)n ↑ ∞
denotes some integer-valued sequence which remains to be selected. Again
we may choose d > 0 sufficiently small such that all functions fθ lie in
H[0,1](β2, L). Thus the supremum of the L2-risk of the estimator f̂n taken
over f ∈ H[0,1](β2, L) is bounded from below by its Bayesian risk when the

prior distribution of the vector θ is the uniform distribution on {0, 1}(mn−1).
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According to that standard strategy we have

sup
f∈H[0,1](β2,L)

Ef‖f̂n − f‖qq ≥
1

2

mn−1∑
j=1

Eθ,−j
1∑
b=0

Efθ,j,b
∫ xj,n+1/(2mn)

xj,n−1/(2mn)

∣∣f̂n(x)− fθ,j,b(x)
∣∣qdx

≥ 1

4

mn−1∑
j=1

Eθ,−j
∫ xj,n+1/(2mn)

xj,n−1/(2mn)

∣∣fθ,j,0(x)− fθ,j,1(x)
∣∣qdx

·
∫

min
{
dPfθ,j,1/dPfθ,j,0 , 1

}
dPf,θ,0 ,

with Pf as in the proof of Theorem 8.1. Moreover, Eθ,−j denotes the expecta-
tion with respect to the random vector θ when its jth component is removed;
and fθ,j,b, b = 0, 1, stands for the regression function fθ when the jth compo-
nent of the index vector θ is replaced by b. We have∫ xj,n+1/(2mn)

xj,n−1/(2mn)

∣∣fθ,j,0(x)− fθ,j,1(x)
∣∣qdx ≥ 1

2
dqm−qβ2−1

n ‖K‖qq ,

almost surely. Hence, we establish the lower bound m−qβ2n on the convergence
rate if we show that

(8.4) inf
n∈N

inf
j=1,...,mn−1

Eθ,−j
∫

min
{
dPfθ,j,1/dPfθ,j,0 , 1

}
dPf,θ,0 > 0 .

For that purpose we consider that∫
min

{
dPfθ,j,1/dPfθ,j,0 , 1

}
dPf,θ,0 ≥ 1−

√
1−

(
1− 1

2
χ2
(
Pfθ,j,0 , Pfθ,j,1

))2

≥ 1−
√

1−
(

1− 1

2

[
exp

{
const. · nm−1−β2a

n (logmn)−ab
}
− 1
])2

,

analogously to (8.3). With mn ∼ n1/(1+β2a)(log n)−ab/(1+β2a) we can verify
(8.4).

Proof of Theorem 8.3. We follow the same strategy of proof as for The-
orem 8.1. In that notation we assume that the observations at xj of the re-

gression curves f0 = 0 and f1(x) = −dhβ2n K(x/hn) are corrupted by noise

with distribution functions F
(0)
ε and F

(1,f1(xj))
ε , respectively, where for y ≤ 0,

δ ∈ (0, 1)

F (0)
ε (y) = 1−|y|a1[−1,0](y) and F (1,δ)

ε (y) = (1−|y−δ|a)1[−1+δ,−δ](y)+(1−|2y|a)1(−δ,0](y).
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Then F
(0)
ε is clearly in Dn(a, h0), but also F

(1,f1(xj))
ε ∈ Dn(a, h0) holds because

the quantile function of F
(1,δ)
ε satisfies U (1,δ)(y) = −y−1/a + δ for y ≤ (2δ)−a

and U (1,δ)(y) = −y−1/a/2 for y > (2δ)−a, but here

(2δ)−a & ‖f1‖−a∞ ∼ h−aβ2n

holds, which is of larger polynomial order in n than nh0 under the condition
h0 < aβ2/(1 + aβ2). Hence, the tail does not appear in condition (ii) for
Dn(a, h0) and we have for y ≤ nh0∣∣∣U (1,f1(xj))(y)

−y−1/a
− 1
∣∣∣ = |f1(xj)||y|1/a . hβ2n n

h0/a,

which tends to zero with polynomial speed in n.
In the proof of Theorem 8.1 the Lebesgue densities pf0 and pf1 are replaced

by

pf0(y) =

n∏
j=1

a|yj |a−11[−1,0](yj)

pf1(y) =

n∏
j=1

(
a|yj |a−11[−1,2f1(xj)](yj) + a2a|yj |a−11(2f1(xj),f1(xj)](yj)

)
.

The χ2-distance therefore satisfies

χ2(pf0 , pf1) = exp
( n∑
j=1

∫ f1(xj)

2f1(xj)

(
a(2a − 1)|y|a−1

)2(
a|y|a−1

)−1
)
− 1

= exp
(

(2a − 1)3
n∑
j=1

|f1(xj)|a
)
− 1

. n

∫ 1

0
|f1(x)|adx ∼ nhaβ2+1

n .

With the choice hn = (cHn/ log n)−1/(aβ2+1) the proof then continues exactly
as for Theorem 8.1.

9. Auxiliary lemmas. For the sake of reference, we will restate some
results and notation in the following. Recall that our main assumption is

Assumption 9.1.

(i) cx, bx, ax ∈ H[0,1](β0, L0), where β0, L0 > 0 and infx∈[0,1] ax, cx > 0,
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(ii) max1≤j≤n E
[
|εj |
]
<∞,

(iii) (εj) are independent and the distribution of εj satisfies (9.1), (9.2).

Our key structural condition is that for each x ∈ [0, 1], there exist ax, cx > 0,
bx ∈ R and a slowly varying function lx(y), such that

Ux(y) = −cxy−1/ax lx(y),(9.1)

where lx(y) satisfies the condition

lx(y) = log(y)bx + O
(
log(y)bx−1

)
as y →∞, uniformly for x ∈ [0, 1].(9.2)

Recall that

(9.3) ‖f̃k − f‖ ≤ Rk +Bk , ∀k = 0, . . . ,K + 1, f ∈ HN (x)(β, L) ,

for some nonnegative random variables Bk, Rk, where Bk increases in k and
Rk decreases in k.

Proposition 9.1. Let ‖ · ‖ denote some seminorm and let f̃k, f lie in the
corresponding normed space. Assume (9.3) and that the ẑTk decrease a.s. in k.
Defining the oracle-type index

k̂∗ := inf
{
k = 0, . . . ,K − 1 : Bk+1 > ẑTk+1/2

}
∧K,(9.4)

we obtain for q ≥ 1

(a) Ef
[∥∥f̂ − f̃

k̂∗

∥∥q1(k̂ > k̂∗)

]1/q

≤ Ef
[
(̂zT
k̂∗

)q
]
,

(b) Ef
[∥∥f̂ − f̃

k̂∗

∥∥q1(k̂ < k̂∗
)]1/q

≤ 2
2q−1
q Ef [̂zq

k̂∗
]1/q

+ 2
2q−1
q

K−1∑
k=0

Ef
[
Rqk1

(
∃l ≤ k : Rl > ẑTl /2

)]1/q
.

Theorem 9.1. Fix x ∈ [0, 1] and suppose ax, bx, cx and βx ∈ (0, β∗ + 1]
are unknown with h0 < βxax/(βxax + 1). If Assumption 9.1 holds, then

sup
f∈HN (x)(β,L)

Ef
[(
f̂(x)− f(x)

)2]
= O

(
(n/ log n)

−2βx
axβx+1 (log n)

2axbxβx
axβx+1

)
.

The concentration properties of the estimator will be derived from the fol-
lowing lemmas.
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Lemma 9.1. If y, t→∞ and

y = c(log t)bta
(
1 + O(1)

)
, c, a > 0, b ∈ R,

then

t =
(
c−1(log y1/a)−by

)1/a
+O(1).

In particular, if we have v = Ux(y) with v → 0, then

Fx
(
v
)

= 1− c−axx

(
log |v|−1/ax

)−bxax |v|ax(1 + O(1)
)
.

Proof of Lemma 9.1:. Applying the logarithm and rearranging terms, it
follows that

log t = 1/a
(
log y − log c− b log log t

)
+ O(1),(9.5)

hence we conclude 1/a log y = log t+O(1). Plugging this into (9.5), we deduce
that

log t = 1/a
(
log y − log c− b log(1/a log y)

)
+ O(1),

hence the claim follows by applying the exponential function. The second
follows by applying the first result to −t−1.

Lemma 9.2. For 1 ≤ j0, j1 ≤ n, let J =
{
j0, ..., j1

}
such that |j0−j1|/n =

O
(
n−ρ0

)
for some 0 < ρ0 < 1. If u→ 0, u ≤ −n−ρ1 for some ρ1 > 0, then∏

j∈J
P
(
εj ≤ Axj0 (−u−1)

)
≤ e#J c−3 u,

where c−3 < 1 may be chosen arbitrarily close to one.

Proof of Lemma 9.2:. Since cx, bx, ax ∈ H[0,1](β0, L) and infx∈[0,1] cx >
0, we conclude that

max
j∈J

∣∣∣∣ Uxj (u)

Axj0 (u)
− 1

∣∣∣∣ = O
(
1
)

as u→ 0, u ≤ −n−ρ1 ,(9.6)

see the proof of Lemma 10.4 for a related, more detailed argument. Let c+
3 > 1

be arbitrarily close to one. Then for sufficiently small u < 0, we have from
(9.6) that

∏
j∈J

P
(
εj ≤ Axj0 (−u−1)

)
≤
∏
j∈J

P
(
εj ≤ Uxj (c+

3 − u
−1)
)
≤ e

∑
j∈J (c+3 )−1u.

(9.7)

Hence the claim follows.
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We proceed by giving the proof of Lemma 9.3.

Lemma 9.3. Let q ≥ 1. Under the Assumptions of Theorem 9.1, we have
uniformly over f ∈ HN (x)(β, L)

Ef
[
(̂zT
k̂∗

)q
]
≤ (c+

1 )q Ef
[
(zT
k̂∗

)q
]

+ O
(
n−q/ax

)
,

where c+
1 > 1.

Proof of Lemma 9.3:. Proposition 10.1 and Lemma 10.1 (to deal with
âx) yield that for any c+

1 > 1, we have uniformly over f ∈ HN (x)(β, L)

Ef [(̂zT
k̂∗

)2] ≤ (c+
1 )2Ef [(zT

k̂∗
)q] +

K−1∑
k=0

Pf
(
k̂∗ = k, ẑTk > c+

1 z
T
k

)
≤ (c+

1 )2 Ef [(zT
k̂∗

)q] + O
(
n−v log n

)
,

since K = O
(
log n

)
. Choosing v sufficiently large, the claim follows.

Lemma 9.4. Let (qn)n be a real-valued sequence which satisfies qn ∈ [1, log n]
for all integer n, and denote with F (·) the cdf of ε. Then we have

E
∣∣max{ε1, . . . , εn}

∣∣qn ≤ (1 + O(1)
) ∫ n1/2

0

(
(−U)qn

(
n/y

))(1)
exp(−y)dy.

If U(.) is not differentiable, replace U(.) with c+
2 A(.) in the above inequality,

where c+
2 > 1 can be chosen arbitrarily close to one. If qn = q is finite and

independent of n, we obtain that

E
∣∣max{ε1, . . . , εn}

∣∣q = O
(
(log n)qbF n−q/aF

)
.

For arbitrary qn ∈ [1, log n] we have

O
(
n−c

+
2 aF /qn

)
≤
∫ ∞

0
F (−x1/qn)ndx ≤ O

(
n−c

−
2 aF /qn

)
,

where 0 < c−2 < 1 < c+
2 can be chosen arbitrarily close to one.

Proof of Lemma 9.4:. For 0 < δ1 < δ2 <∞ we have

E
∣∣max{ε1, . . . , εn}

∣∣qn =

∫ ∞
0

P
[

max{ε1, . . . , εn} < −x1/qn
]
dx

=

∫ δ1

0
F (−x1/qn)ndx+

∫ δ2

δ1

F (−x1/qn)ndx+

∫ ∞
δ2

F (−x1/qn)ndx.(9.8)
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Set ux = U−1
(
−x1/qn

)
. Making the substitution u−1

x n = y, the first integral
in (9.8) is bounded from above as follows:∫ δ1

0
F (−x1/qn)ndx =

∫ δ1

0
F
(
U(ux)

)n
dx ≤

∫ δ1

0
exp

(
− nu−1

x

)
dx

≤
∫ n1/2

0
n qny

−2U (1)
(
n/y

)[
−U
(
n/y

)]qn−1
exp(−y)dy

=

∫ n1/2

0

(
(−U)qn(n/y)

)(1)
exp(−y)dy,

for sufficiently small δ1. If δ1 → 0, we may replace U(.) with A(.) in the above
inequality. The above is then equal to

(
1 + O(1)

) ∫ n1/2

0
qnc

qn
F

(
log(n/y)

)bF qn−1(
a−1
F log(n/y)− bF

)
y−1+qn/aF n−qn/aF exp(−y)dy.

(9.9)

If qn = q, routine computations and (9.9) lead to∫ δ1

0
F (−x1/q)ndx = O

(
(log n)qbF n−q/aF

)
.(9.10)

For arbitrary 1 ≤ qn ≤ log n, we obtain, using the Gamma function and
Stirling’s formula, the (crude) upper and lower bounds

O
(
n−c

+
2 aF /qn

)
≤
∫ δ1

0
F (−x1/qn)ndx ≤ O

(
n−c

−
2 aF /qn

)
,(9.11)

where 0 < c−2 < 1 < c+
2 can be chosen arbitrarily close to one. For the second

integral in (9.8) we obtain, proceeding as before, that∫ δ2

δ1

F (−x1/qn)ndx ≤ δ2 · exp
(
− nδc

−
2 aF /qn

1

)
,

where c−2 is as above in (9.11). The third integral in (9.8) has the upper bound∫ ∞
δ2

Fn(−x1/qn)dx =

∫ ∞
δ2

P (εp1 > xp/qn)ndx ≤
∫ ∞
δ2

x−np/qndx · {E|ε1|p}n

=
qn

np− qn
δ

1−np/qn
2 · {E|ε1|p}n ,

by Markov’s inequality for n sufficiently large. We put δ2 = exp
(
nmin{1, δc

−
2 aF

1 }/2
)
.

Then we may choose δ1 → 0 such that the second and the third integral in
(9.8) decay subgeometrically and are thus asymptotically negligible.
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Lemma 9.5. Suppose hk ≤ exp(−cH logγ n) for fixed constants γ ∈ (0, 1),
cH > 0. Grant Assumption 9.1 and let m, a0, β0, h0 satisfy (10.2) in view of
(10.3). Then

sup
k=0,...,K−1

P
(
Rk > ẑTl /2

)
= O

(
exp(−cH log1+γ n/2q)

)
,

as n→∞.

Proof of Lemma 9.5:. Proposition 10.1 and Lemma 10.1 (to deal with
âF ) yield

sup
k=0,...,K−1

P
(
Rk > ẑTk /2

)
≤ sup

k=0,...,K−1
P
(
Rqk > c−3 z

q
k/2

q
)

+ O
(
n−v log n

)
,

where c−3 is arbitrarily close to one. Choosing v sufficiently large, the term
P
(
Rqk > c−3 z

q
k/2

q
)

remains to be considered. For I := d3J(β∗)/(2hk)e note

‖Zj(hk, ·)‖qq =
I−1∑
i=0

∫ (i+1)/I

i/I

∣∣max{εl : xl ∈ x+ hkIj}
∣∣qdx .

We deduce that

Ki,j(hk) := hkξj +
[
(i+ 1)/I, i/I + hk/J(β∗)

)
⊆

⋂
x∈[i/I,(i+1)/I]

(x+ hkIj) ,

where ξj denotes the left end point of the interval Ij so that

0 ≥ max{εl : xl ∈ x+ hkIj} ≥ max{εl : xl ∈ Ki,j(hk)}

holds true for all x ∈ [i/I, (i+ 1)/I]. We conclude that

‖Zj(hk, ·)‖qq ≤
I−1∑
i=0

∫ (i+1)/I

i/I
Wi,j(hk)dx =

1

I

I−1∑
i=0

Wi,j(hk) ,(9.12)

where we introduce the random variablesWi,j(hk) :=
∣∣max{εl : xl ∈ Ki,j(hk)}

∣∣q,
for all i = 0, . . . , I − 1. Let nk = nhk. From Lemma 9.4 we learn that

E[Wl,j(hk)] ≤
(
1 + o(1)

)
= c+

2

(
1 + O(1)

) ∫ n1/2

n−q/aF

∣∣AqF (nk/y)∣∣(1)
exp(−y)dy ,

(9.13)
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since
∫ n−q/aF

0 F (−x1/qn)dx = O
(
n−q/aF

)
. The length of each Kl,j(hk) has the

lower bound hk/[3J(β∗)] and thus contains at least bnhk/[3J(β∗)]c of the xl.
We observe that for sufficiently large n

P
(
Rqk > c−3 z

q
k/2

q
)
≤

2J(β∗)∑
j=1

P
(
c(β∗)q‖Zj(hk, ·)‖qq > c−3 z

q
k/2

q
)

≤
2J(β∗)∑
j=1

P
(1

I

I−1∑
i=0

Wi,j(hk) > c(β∗)−qc−3 z
q
k/2

q
)

≤
2J(β∗)∑
j=1

P
(1

I

I−1∑
i=0

W̃i,j(hk) ≥ c′zqk
)
,(9.14)

with centred random variables

W̃l,j(hk) := Wl,j(hk)− EWl,j(hk) .

and c′ > 0. Note that by Lemma 9.4 we have zqk ≥ c
′′n
−qc+2 /aF
k for some c′′ > 0

and c+
2 > 1 arbitrarily close to one. Markov’s inequality with the even integer

power qn ∈ [1, log n] (to be specified) yields

P
(1

I

I−1∑
i=0

W̃i,j(hk) ≥ c′′ · (nhk)−qc
+
2 /aF

)
≤ (c′′)−qn(nhk)

qc+2 qn/aF · E
∣∣∣1
I

I−1∑
i=0

W̃i,j(hk)
∣∣∣qn

= (c′′)−qn(nhk)
qc+2 qn/aF I−qn

∑
r∈{0,...,I−1}(qn)

E
qn∏
i=1

W̃ri,j(hk)

(9.15)

where ri denotes the ith component of r. For all r ∈ {0, . . . , I − 1}(qn) with at
least one component ri such that |ri′ − ri| ≥ 2 for all i′ 6= i the corresponding
addend vanishes in (9.15). Therein note that Wi,j(hk) is independent of the
σ-field generated by the Wi′,j(hk), |i′ − i| ≥ 2, since all intervals Ki,j(hk)
and Ki′,j(hk) with |i′ − i| ≥ 2 are disjoint. Therefore the sum in (9.15) can
equivalently be taken over all r ∈ {0, . . . , I − 1}(qn) such that, for all i, there
exists at least one i′ 6= i with |ri − ri′ | ≤ 1. In order to provide an upper
bound on the cardinality of that subset of {0, . . . , I − 1}(qn) we consider the
components of r with increasing order leading to r(1) ≤ · · · ≤ r(qn). For at
least qn/2 of the i = 2, . . . , qn we have r(i) ≤ r(i−1) + 1. Thus the summation
is restricted to the set

Rn :=
⋃

K⊆{2,...,qn},#K≥qn/2

{
r ∈ {0, . . . , I − 1}(qn) : r(i) ≤ r(i−1) + 1,∀i ∈ K

}
,
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whose cardinality is bounded from above by qn! 23qn/2 Iqn/2. Those combina-
tional arguments, Hölder’s inequality and the assumption that h0 > 0 yield
that for c−2 , c

+
2 sufficiently close to one

P
(1

I

I−1∑
i=0

W̃i,j(hk) ≥ c′′ · (nhk)−qc
+
2 /aF

)
≤ qn! · (c′′)−qn(nhk)

qc+2 qn/aF I−qn/223qn/2 sup
r∈Rn

qn∏
i=1

{
E|W̃ri,j(hk)|qn

}1/qn

≤ (D/c′′)qn · q(1+qc+2 /aF )qn
n · hqn/2

q

k ,

(9.16)

for some finite constant D > 1 when using Lemma 9.4 and again Stirling’s
formula in order to bound qn!. We use qn = blog nc and obtain

P
(1

I

I−1∑
i=0

W̃i,j(hk) ≥ c′′ · (nhk)−qc
+
2 /aF

)
≤ exp

{
blog nc ·

(
log(D/c′′) + (1 + q/aF ) log(blog nc) + log(hk)/q

)}
≤ exp

{
− (cH/2q) · (log n)1+γ

}
,

for n sufficiently large, using the upper bound imposed on hk.

10. Proofs for the Hill-type estimator.

hβx0

∣∣Ax(m0

)∣∣−1
= O

(
(log n)−1

)
.(10.1)

If h0,m > 0 is such that

mh0 < (1− h0)a0β0,(10.2)

for some lower bounds

(10.3) a0 ≤ ax and β0 ≤ βx

on the unknown parameters, then (10.1) is valid. In Section 10 below we prove
the following result, under the general Assumption 10.1, which is implied by
Assumption 9.1.

Proposition 10.1. Grant Assumption 10.1 and suppose that (10.1) is
valid. Then Âx(y) defined is admissible.
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We will show the validity of Proposition 10.1, working in a general frame-
work. For each N ∈ N and 0 < h0 < 1, let xj = j/N1/h0 and assume that

(εj) has distribution function F
(N)
xj (.), with quantile function U (N)

xj (.) such that

F
(N)
xj

(
U (N)
xj (y)

)
= 1− 1/y. One may think of N1/h0 = n.

Assumption 10.1. There exist ax, cx > 0, bx ∈ R, such that,

(i) lim sup
y→∞

sup
x∈[0,1]

∣∣∣∣ U (N)
x (y)

Ax(y/2)

∣∣∣∣ ≤ 1, where Ax(y) = −cx log(y)bxy−1/ax ,

(ii) lim sup
N→∞

sup
y∈[logN,N ]

sup
x∈[0,1]

∣∣∣∣U (N)
x (y)

Ax(y)
− 1

∣∣∣∣ log y = 0,

(iii) cx, bx, ax ∈ H[0,1](β0, L), where β0 > 0 and inf
x∈[0,1]

ax, cx > 0.

To lighten the notation, we use the abbreviation Ux(y) = U (N)
x (y) in the

sequel. Note that our Assumptions in 10.1 include cases where a CLT for an
estimator âx fails to hold, and only slower rates of convergence than N−1/2

are available. This is particularly the case if bx 6= 0, we refer to de Haan and
Ferreira [2] for details.

We assume that we observe (Yj)1≤j≤N , specified generally by

Yj = θj + εj , θj ∈ R, j = 1, ..., N.

We introduce the maximal signal variation

ΘN = max
1≤i,j≤N

∣∣θi − θj∣∣.
Recall that Y1,N , ..., YN,N denotes the decreasing order statistics of (Yj)1≤j≤N .

Let E1, ..., EN be a sequence of i.i.d. unit exponential random variables. Then

Ej
d
= − log

(
1− Fxj (εj)

)
holds and we may generate εj as

εj = F−1
xj

(
1− exp(−Ej)

)
.(10.4)

Given x ∈ [0, 1], we consider the base estimators

1

â∗x
(
m
) =

1

m

m−1∑
i=2

log

(
Ym,N − Y1,N

Yi,N − Y1,N

)
,(10.5)

and

b̂∗x
(
m
)

=
1

m log logN

m−1∑
i=2

log

(
Yi,N − Y1,N

(N/i)−1/â∗x − (N/1)−1/â∗x

)
.(10.6)
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Let ∆xi,xj = L|xi − xj |β0 , where we suppress the indices xi, xj if the corre-
spondence is clear. For notational reasons, we write x = xk∗ = k∗/N for some
k∗ ∈ [0, N ] in the sequel. We then require the following conditions.

Assumption 10.2. Let m/N → 0, and put I =
{
l, ..., N

}
∪ {1, k∗}. We

require that

(i) supi,j∈I ∆xi,xj = O
(
(logN)−2

)
,

(ii) yi = N/i
(
1 + O

(
log(N/i)−1

))
for i ∈ I,

(iii) BN := supi,j∈I
∣∣ΘNA

−1
xi (yj)

∣∣ = O
(
(logN)−1

)
.

We then have the following two Lemmas.

Lemma 10.1. Suppose that m = Nm with 0 < m < 1. If Assumptions 10.1
and 10.2 hold, then

P

(
max
i∈I

∣∣∣∣ 1

â∗x
− 1

axi
− bxi

logN − logm

∣∣∣∣ ≥ O((logN)−1
))

= NO
(
exp(−(logN)4)

)
.

Lemma 10.2. Suppose that m = Nm with 0 < m < 1. If Assumptions 10.1
and 10.2 hold, then

P

(
max
i∈I

∣∣∣∣b̂∗x − bxi −
log cxi

log logN
− bxi

log logN

logm+ logN

logN − logm

∣∣∣∣ ≥ O((log logN)−1
))

= NO
(
exp(−(logN)4)

)
.

Based on the above results, we introduce the main estimators, constructed
via the slight bias correction

b̂x = b̂∗x −
b̂∗x

log logN

logm+ logN

logN − logm
,(10.7)

1

âx
=

1

â∗x
− b̂x

logN − logm
.(10.8)

We are now ready to derive Proposition 10.1.

Proof of Proposition 10.1. Set N = n̄0(x) and m = m0 = n̄0(x)m.
Note that since h0,m ∈ (0, 1), it follows from (10.1) that Assumption 10.2 is
valid. We thus conclude from Lemma 10.1 and (10.7) that there exists a set
A, such that P

(
Ac
)

= NO
(
exp(−(logN)4)

)
, and∣∣âx(m0

)
− ax

∣∣1(A) = O
(
(logN)−1

)
.
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Since q > 1, it follows by construction that∣∣âx − ax
∣∣1(A) = O

(
(logN)−1

)
.(10.9)

Similarly, it follows from Lemma 10.2 and (10.7) that there exists a set B, such
that P

(
Bc
)

= NO
(
exp(−(logN)4)

)
, and∣∣b̂x − bx − log cx/ log log(nh

k̂
)
∣∣1(B) = O

(
(log log n)−1

)
,

where k̂ is a random variable, taking values k̂ = 0, ...,K − 1. Note that
n(logn)−1 → e and log logn

log lognhk
→ 1 as n → ∞, uniformly in k = 0, ...,K − 1.

Hence we conclude that on the set A ∩ B, we have that

(nhk)
âx = (nhk)

ax
(
1 + O(1)

)
and (log nhk)

b̂x = cx(log nhk)
bx
(
1 + O(1)

)
.

(10.10)

Moreover, the functions xx, (log x)x are all differentiable for x 6= 0 with locally
bounded derivatives, hence they are locally Lipschitz-continuous by a Taylor
expansion. Together with (10.10), this yields the claim for T = 1, since

{
ẑk ≥

1
}
⊆
{
Ac ∪Bc

}
. In the same manner, one shows that the claim is valid if T is

Lipschitz-continuous.

For the proofs of Lemmas 10.1 and 10.2, we require some auxiliary results.
We will frequently use the following simple bound. Let a, b,∆1,∆2 ∈ R. Then,
if the expressions are well defined, we have∣∣∣∣log

(
a+ ∆1

b+ ∆2

)
− log

(
a

b

)∣∣∣∣ = O
(
|∆1/a|+

∣∣∆2/b
∣∣),(10.11)

provided that |∆1/a|+
∣∣∆2/b

∣∣ = O(1).

Lemma 10.3. Suppose that m = Nm, with 0 < m < 1, and a, c > 0, b ∈ R.
Then

1

m

m−1∑
i=2

log

(
c(N/m)−1/a(logN/m)b − c(N)−1/a(logN)b

c(N/i)−1/a(logN/i)b − c(N)−1/a(logN)b

)
=

1

a
+

b

logN − logm
+ O

(
log(m)−1

)
.

Proof of Lemma 10.3. We have that

1

m

m−1∑
i=2

log

(
c(N/m)−1/a(logN/m)b − c(N)−1/a(logN)b

c(N/i)−1/a(logN/i)b − c(N)−1/a(logN)b

)

=
1

m

m−1∑
i=2

log

(
m1/a(logN/m)b − (logN)b

i1/a(logN/i)b − (logN)b

)
=:

1

m

m−1∑
i=2

Ii.
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Let m∗ = m/(logm)3. Then

1

m

m∗−1∑
i=2

Ii = O
(
(logm)−1

)
.

On the other hand, using (10.11) it follows that

1

m

m−1∑
i=m∗

Ii =
1

m

m−1∑
i=m∗

log

(
m1/a(logN/m)b

i1/a(logN/i)b

)
+ O

(
(logm)−1

)
(10.12)

=
1

a

1

m

m−1∑
i=m∗

log
(
m/i

)
+

b

m

m−1∑
i=m∗

log

(
(logN/m)

(logN/i)

)
+ O

(
(logm)−1

)
.(10.13)

By Stirling’s formula, it follows that

1

m

m−1∑
i=1

log
(
m/i

)
=

1

m
log

(
(m)m−1

(m− 1)!

)
=

1

m

(
m logm−m logm+m+O(logm)

)
= 1 +O

(
log(m)/m

)
.(10.14)

Since m∗ = m/(logm)3, we deduce that

1

a

1

m

m−1∑
i=m∗

log
(
m/i

)
=

1

a
+ O

(
log(m)−1

)
.(10.15)

For the second quantity, note that

b

m

m−1∑
i=m∗

log

(
(logN/m)

(logN/i)

)
=

b

m

m−1∑
i=m∗

log

(
logN − logm

logN − logm− log i/m

)
=: II.

LetBN = logN−logm, and note that form∗ ≤ i ≤ m we have (log i/m)/BN =
O(1). Using the series expansion of log(1 + x), we thus obtain

log

(
BN

BN − log i/m

)
= log

(
(log i/m)/BN

1− (log i/m)/BN
+ 1

)
=

(log i/m)/BN
1− (log i/m)/BN

+ O
(
(log i/m)/BN

)
= (log i/m)/BN + O

(
(log i/m)/BN

)
.

Then using the above and (10.14), it follows that

II =
b

m

m−1∑
i=m∗

(
(log i/m)/BN + O

(
(log i/m)/BN

))
=

b

BN
+ O

(
log(m)−1

)
.

(10.16)

Piecing everything together, the claim follows.
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For the next result, let P
(
I
)

be the set of all permutations of I.

Lemma 10.4. Suppose that m = Nm, with 0 < m < 1. If Assumption 10.2
holds, then

sup
τ∈P
(
I
)∣∣∣∣ 1

m

m−1∑
i=2

log

(
Uxτ(m)

(
ym
)
− Uxτ(1)

(
y1

)
+O

(
ΘN

)
Uxτ(i)

(
yi
)
− Uxτ(1)

(
y1

)
+O

(
ΘN

) )− 1

ax

∣∣∣∣ = O
(
(logN)−1

)
.

Proof of Lemma 10.4. For y ≥ 1, we have

max

{∣∣(log y)∆ − 1
∣∣, ∣∣y∆ − 1

∣∣} = O
(
∆ log y

)
if ∆ log y = O(1).(10.17)

Since cx, bx, ax ∈ H[0,1](β0, L) and infx∈[0,1] cx > 0, we conclude that∣∣∣∣Axτ(i)(y)

Axτ(j)(y)
− 1

∣∣∣∣ = O
(
∆ log y

)
if ∆ log y = O(1).(10.18)

Consequently, we obtain that

Uxτ(i)(y) =
Uxτ(i)(y)

Axτ(i)(y)

Axτ(i)(y)

Axτ(j)(y)

Axτ(j)(y)

Uxτ(j)(y)
Uxτ(j)(y) = Uxτ(j)(y)

(
1 + O

(
(logN)−1

))
.

(10.19)

Moreover, we also have from the assumptions and (10.18) that

Uxτ(i)(y)

Axτ(j)(y)
=
Uxτ(i)(y)

Axτ(i)(y)

Axτ(i)(y)

Axτ(j)(y)
= 1 + O

(
(logN)−1

)
.(10.20)

Let ∆(yi) = O
(
log(N)−1

)
Axm(yi). Then due to (10.19) and (10.20), we

obtain that

Im :=
1

m

m−1∑
i=2

log

(
Uxτ(m)

(
ym
)
− Uxτ(1)

(
y1

)
+O

(
ΘN

)
Uxτ(i)

(
yi
)
− Uxτ(1)

(
y1

)
+O

(
ΘN

) )

=
1

m

m−1∑
i=2

log

(
Uxm

(
ym
)
− Uxm

(
y1

)
+O

(
∆(ym) + ΘN

)
Uxm

(
yi
)
− Uxm

(
y1

)
+O

(
∆(yi) + ΘN

) ) .(10.21)

Let a = Uxm
(
ym
)
−Uxm

(
y1

)
and b = Uxm

(
yi
)
−Uxm

(
y1

)
. Then an application

of (10.11) in connection with (10.19) and (10.20) yields that

∣∣∣∣log

(
a+O

(
∆(y2m) + ΘN

)
b+O

(
∆(y2m) + ΘN

))− log

(
a

b

)∣∣∣∣ = O

(
(logN)−1 + (log y2m)−1

)
.

(10.22)
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A further application of (10.11) together with Assumption 10.1 gives

log

(
a

b

)
= log

(
cx(N/m)−1/ax(logN/m)bx − cx(N)−1/ax(logN)bx

cx(N/i)−1/ax(logN/i)bx − cx(N)−1/ax(logN)bx

)
+ O

(
(logN)−1

)
.

(10.23)

The claim now follows from Lemma 10.3.

Lemma 10.5. Let m = Nm, 0 < m < 1, and put M =
{
l, ...,m

}
, 1 ≤ l ≤

m. Then

P
(
max
i∈M

∣∣Ei,N − log(N/i)
∣∣ ≥ z/√i) = mO

(
exp(−z2/2)

)
for 0 ≤ z ≤ l. Moreover, for 0 < δ < 1, it holds that

P
(
E1,N ≥ δ logN

)
= 1−O

(
exp(−N1−δ)

)
, P

(
E1,N ≤ N δ

)
= 1−O

(
N exp(−N δ)

)
.

Proof of Lemma 10.5. ForM ≤ N−1, Renyi’s representation (cf. Feller [3],
p. 19) gives the relation

EM+1,N
d
=

N−M∑
j=1

1

N − j + 1
Ej .

For |τ | ≤M , one thus readily obtains that

E
[
exp(τEM+1,N )

]
=

N−M∏
j=1

(
1− τ/(N + 1− j)

)−1
=

N−M∏
j=1

exp
(
− log(1− τ/(N + 1− j))

)
= exp

(
−
N−M∑
j=1

log
(
1− τ/(N + 1− j)

))
≤ c1 exp

(N−M∑
j=1

τ/(N + 1− j)
)

≤ c2 exp
(
τ log(N/M)

)
= c2(N/M)τ .

Put LN =
√
M
(
−EM,N + log(N/M)

)
and consider |τ | ≤

√
M . Arguing simi-

larly as above, we derive

E
[
exp(τLN )

]
= exp

(
−
N−M∑
j=1

log(1− τ
√
M/(N + 1− j))− τ

√
M log(N/M)

)

≤ c3 exp

(
1/2

N−M∑
j=1

τ2M/(N + 1− j)2

)
≤ c4 exp(τ2/2).(10.24)
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Hence, an application of Markov’s inequality provides

P
(
zLN ≥ z2

)
≤ exp(−z2)E

[
exp(zLN )

]
= O

(
exp(−z2/2)

)
, |z| ≤

√
M.

Similarly, one obtains P
(
−LN ≥ z

)
= O

(
exp(−z2/2)

)
, hence

P
(
|LN | ≥ z

)
= O

(
exp(−z2/2)

)
.(10.25)

We now introduce L(i)
N =

√
i
(
−Ei,N+log(N/i)

)
, for i ∈M. Define the event

A :=
⋂
i∈M

{
|L(i)
N | ≤ z

}
. By (10.25), we have that the complement is bounded

by

P
(
Ac
)
≤
∑
i∈M

P
(
|L(i)
N | > z

)
= mO

(
exp(−z2/2)

)
,

which proofs the first part. The second claim follows via straightforward com-
putations.

Proof of Lemma 10.1. We have the decomposition

m−1∑
i=2

log

(
Ym,N − Y1,N

Yi,N − Y1,N

)
=

m−1∑
i=l

log

(
Ym,N − Y1,N

Yi,N − Y1,N

)
+

l−1∑
i=2

log

(
Ym,N − Y1,N

Yi,N − Y1,N

)
=: Im + IIm.

We first deal with the second part IIm. First note the trivial fact that when
computing Yi,N −Yj,N for i, j = 1, ..., N , Θi,j = θi∗−θj∗ may take N(N +1)/2
different values, where i∗, j∗ may be different from i, j. In addition, note that

∣∣IIm∣∣ ≤ l−1∑
i=2

∣∣∣∣log

(
Ym,N − Y1,N

Y2,N − Y1,N

)∣∣∣∣.
Let 0 < δ, l = 2(logN)4 and M =

{
l, ..,m

}
. Put

A =
{
E1,N ≤ N δ

}
∩
{

max
i∈M

∣∣Ei,N − log(N/i)
∣∣ ≤ z/√i}.(10.26)

By Lemma 10.5 we have P
(
Ac
)

= mO
(
e−l

2/2
)
. Lemma 10.5 and the repre-

sentation given in (10.4) yield that

P

({
|Y2,N − Y1,N | ≤ zN

}
∩ A

)
≤

m∑
i,j=1

P

({∣∣Ux1(eEi,N )− Ux2(eEj,N )+ Θi,j

∣∣ ≤ zN} ∩ A) =: IIIm,
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where zN = e−N
δ
, x1, x2 ∈ [0, 1] are random variables. Assume without loss

of generality that i ≤ j, and let E∗i be independent copies of Ei. Then

Ux1
(
eEj,N

) d
= Ux1

(
eE
∗
1,j−i+Ei,N

)
.(10.27)

We have that{∣∣Ux1(eEi,N )− Ux2(eEj,N )+ Θi,j

∣∣ ≤ zN} ∩ A
=

{
E∗1,j−i ∈ −Ei,N + log

(
U−1
x1

(
Θi,j − Ux2

(
eEj,N

)
+
[
−zN , zN

]))}
∩ A

⊆
{
E∗1,j−i ∈ −Ei,N +RIN

}
,

(10.28)

where RIN is a random interval, independent of E∗1,j−i. Due to the event
A, Assumption 10.1 and Assumption 10.2 (i), a Taylor expansion of log(1 −
x), |x| < 1 yields that RIN can be chosen such that the Lebesgue measure
λ
(
RIN

)
= O

(
zχN
)

for some χ > 0. Denote with dX(x) the density function of
a random variable X. Since E∗1,j−i and Ei,N are independent, we have by the
translation invariance of the Lebesgue measure that

P
({
E∗1,j−i ∈ −Ei,N +RIN

})
≤
∫
R
dEi,N (y)

∫
RIN

sup
x∈R

dE∗1,j−i(x)dxdy

≤
∫
R
dEi,N (y)

∫
RIN

O
(
N
)
dxdy = O

(
NzχN

)
,(10.29)

where we used that supx∈R dE∗1,j−i(x) = O(N). We thus obtain that

IIIm∗ ≤
m∗∑
i,j=1

= O
(
N2zχN

)
.

Choosing δ such that 0 < δχ < m, we conclude that on the set A we have

IIm ≤ O
(
1
) l−1∑
i=2

log
(
eN

δχ
)

= O
(
l N δχ

)
= O

(
m(logN)−1

)
,(10.30)

and it remains to deal with Im. Using the representation given in (10.4), we
have the relation

Im
d
=

1

m

m−1∑
i=l

log

(Uxm(eEm,N )− Ux1(eE1,N
)

+O
(
ΘN

)
Uxi
(
eEi,N

)
− Ux1

(
eE1,N

)
+O

(
ΘN

) ),
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where it is important to note that xi, i ∈ I are random variables. Note that
Assumption 10.2 is valid on the set A uniformly, with yi = Ei,N for i ∈ I. The
claim now follows by applying Lemma 10.4, and noting that maxi,j∈I

∣∣axi −
axj
∣∣ = O

(
(logN)−1

)
.

Proof of Lemma 10.2. It suffices to consider a fixed x, since all the
bounds in the sequel are uniform for xi, i ∈ I. The proof goes along the
same lines as the one of Lemma 10.1. Recall the definition of the set A in the
proofs of Lemma 10.1 and Lemma 10.5. In addition, let

B =

{
max
i∈I

∣∣∣∣ 1

â∗x
− 1

axi
− bxi

logN − logm

∣∣∣∣ ≤ O((logN)−1
)}
.(10.31)

By Lemma 10.1 and Lemma 10.5, we have P
(
Bc ∪ Ac

)
= NO

(
e−(logN)1+l)

.
Proceeding as in the proof of Lemma 10.4, it now follows that on the set A∩B

b̂∗x =
1

m log logN

m−1∑
i=2

log

(
cx
i1/ax log(N/i)bx − log(N)bx

i1/â∗x − 1

)
+

bx
log logN

logN

logN − logm

+ O
(
(log logN)−1

)
=: Im + IIm + O

(
(log logN)−1

)
.

Let m∗ = m/(logm)2. Then using (10.11), it follows that

Im + IIm =
1

m log logN

m−1∑
i=m∗

(
log
(
i1/ax−1/â∗x

)
+ bx log

(
log(N/i)

))
+ O

(
(log logN)−1

)
.

On the set A ∩ B, we have, using Stirling’s formula, that

1

m log logN

m−1∑
i=m∗

log
(
i1/ax−1/â∗x

)
=

bx
log logN

logm

logN − logm
+ O

(
(log logN)−1

)
.

(10.32)

On the other hand, using the log(1− x) power series, we derive that

bx

m−1∑
i=m∗

log
(
log(N/i)

)
= bx

m−1∑
i=m∗

log logN
(
1 + O(1)

)
.(10.33)

Hence piecing everything together, we deduce that

b̂∗x = bx +
log cx

log logN
+

bx
log logN

logm+ logN

logN − logm
+ O

(
(log logN)−1

)
.

The claim now follows from property bx ∈ H[0,1](β0, L).



28 M. JIRAK ET AL.

REFERENCES

[1] M. Chichignoud. Minimax and minimax adaptive estimation in multiplicative regression:
locally Bayesian approach. Probab. Theory Related Fields, 153(3-4):543–586, 2012.

[2] L. de Haan and A. Ferreira. Extreme value theory. Springer Series in Operations Research
and Financial Engineering. Springer, New York, 2006. An introduction.

[3] W. Feller. An introduction to probability theory and its applications. Vol. II. Second
edition. John Wiley & Sons Inc., New York, 1971.

[4] M. Jirak, A. Meister and M. Reiß
https://www.mathematik.hu-berlin.de/for1735/Publ/r_code_and_data.zip

Institut für Mathematik,
Humboldt-Universität zu Berlin,
Unter den Linden 6
D-10099 Berlin, Germany
E-mail: jirak@math.hu-berlin.de
E-mail: mreiss@mathematik.hu-berlin.de

Institut für Mathematik,
Universität Rostock,
D-18051 Rostock, Germany
E-mail: alexander.meister@uni-rostock.de

mailto:jirak@math.hu-berlin.de
mailto:mreiss@mathematik.hu-berlin.de
mailto:alexander.meister@uni-rostock.de

	Additional simulations
	Proof of the lower bound
	Auxiliary lemmas
	Proofs for the Hill-type estimator
	References
	Author's addresses

