Supplementary material, Appendix 1: Proofs

Proof of Theorem 1

The first partial derivatives of $\log [s(y \mid \mu, \sigma, \gamma)]$ are given by

$$
\begin{aligned}
\frac{\partial}{\partial \mu} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right] & =-\frac{1}{\sigma_{1}} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma_{1}}\right)}{f\left(\frac{y-\mu}{\sigma_{1}}\right)} I_{(-\infty, \mu)}(y)-\frac{1}{\sigma_{2}} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma_{2}}\right)}{f\left(\frac{y-\mu}{\sigma_{2}}\right)} I_{[\mu, \infty)}(y), \\
\frac{\partial}{\partial \sigma_{1}} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right] & =-\frac{1}{\sigma_{1}+\sigma_{2}}-\frac{y-\mu}{\sigma_{1}^{2}} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma_{1}}\right)}{f\left(\frac{y-\mu}{\sigma_{1}}\right)} I_{(-\infty, \mu)}(y), \\
\frac{\partial}{\partial \sigma_{2}} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right] & =-\frac{1}{\sigma_{1}+\sigma_{2}}-\frac{y-\mu}{\sigma_{2}^{2}} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma_{2}}\right)}{f\left(\frac{y-\mu}{\sigma_{2}}\right)} I_{[\mu, \infty)}(y) .
\end{aligned}
$$

Then the entries of the Fisher information matrix of ($\mu, \sigma_{1}, \sigma_{2}$) are given by

$$
\begin{aligned}
& I_{11}=\mathbb{E}\left[\left(\frac{\partial}{\partial \mu} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right]\right)^{2}\right]=\frac{2 \alpha_{1}}{\sigma_{1} \sigma_{2}}, \\
& I_{22}=\mathbb{E}\left[\left(\frac{\partial}{\partial \sigma_{1}} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right]\right)^{2}\right]=\frac{\alpha_{2}}{\sigma_{1}\left(\sigma_{1}+\sigma_{2}\right)}+\frac{\sigma_{2}}{\sigma_{1}\left(\sigma_{1}+\sigma_{2}\right)^{2}}, \\
& I_{33}=\mathbb{E}\left[\left(\frac{\partial}{\partial \sigma_{2}} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right]\right)^{2}\right]=\frac{\alpha_{2}}{\sigma_{2}\left(\sigma_{1}+\sigma_{2}\right)}+\frac{\sigma_{1}}{\sigma_{2}\left(\sigma_{1}+\sigma_{2}\right)^{2}}, \\
& I_{12}=\mathbb{E}\left[\left(\frac{\partial}{\partial \mu} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right]\right)\left(\frac{\partial}{\partial \sigma_{1}} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right)\right]=-\frac{2 \alpha_{3}}{\sigma_{1}\left(\sigma_{1}+\sigma_{2}\right)},\right. \\
& I_{13}=\mathbb{E}\left[\left(\frac{\partial}{\partial \mu} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right]\right)\left(\frac{\partial}{\partial \sigma_{2}} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right)\right]=\frac{2 \alpha_{3}}{\sigma_{2}\left(\sigma_{1}+\sigma_{2}\right)},\right. \\
& I_{23}=\mathbb{E}\left[\left(\frac{\partial}{\partial \sigma_{1}} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right]\right)\left(\frac{\partial}{\partial \sigma_{2}} \log \left[s\left(y \mid \mu, \sigma_{1}, \sigma_{2}\right)\right)\right]=-\frac{1}{\left(\sigma_{1}+\sigma_{2}\right)^{2}} .\right.
\end{aligned}
$$

Proof of Theorem 2

The determinant of the Fisher information matrix is

$$
\left|I\left(\mu, \sigma_{1}, \sigma_{2}\right)\right|=\frac{2 \alpha_{2}\left(\alpha_{1}+\alpha_{1} \alpha_{2}-2 \alpha_{3}^{2}\right)}{\sigma_{1}^{2} \sigma_{2}^{2}\left(\sigma_{1}+\sigma_{2}\right)^{2}}
$$

We will first prove that $\alpha_{2}>0$. From the definition of α_{2} it can only be zero if $1+$ $t f^{\prime}(t) / f(t)=0$ whenever $f(t)>0$. This means that $f(t)=-t f^{\prime}(t)$ and this only happens if
$f(t)=K / t$ for any positive K. The latter, however, is not a probability density function on \mathbb{R}. Thus, α_{2} can not be zero.

Next, we will prove that $\alpha_{1}\left(1+\alpha_{2}\right)>2 \alpha_{3}^{2}$. Applying the Cauchy-Schwarz inequality we have $\alpha_{1}\left(1+\alpha_{2}\right) \geq 2 \alpha_{3}^{2}$. We will show that this is a strict inequality. The condition in Theorem 2 implies that

$$
0<\int_{0}^{\infty} t\left[\frac{f^{\prime}(t)}{f(t)}\right]^{2} f(t) d t
$$

Let

$$
\phi(t)=\left|\frac{f^{\prime}(t)}{\sqrt{f(t)}}\right|>0 \text { a.e. and } \psi(t)=t\left|\frac{f^{\prime}(t)}{\sqrt{f(t)}}\right|>0 \text { a.e. }
$$

Note that $[\beta \phi(t)+\psi(t)]^{2}>0$ a.e. for any $\beta \in \mathbb{R}$, and thus

$$
0<\int_{0}^{\infty}[\beta \phi(t)+\psi(t)]^{2} d t=\beta^{2} \int_{0}^{\infty} \phi^{2}(t) d t+2 \beta \int_{0}^{\infty} \phi(t) \psi(t) d t+\int_{0}^{\infty} \psi^{2}(t) d t
$$

This is a polynomial of degree 2 in β with positive coefficients and no real roots, implying that the discriminant is negative, so that

$$
\left[\int_{0}^{\infty} t\left[\frac{f^{\prime}(t)}{f(t)}\right]^{2} f(t) d t\right]^{2}<\left[\int_{0}^{\infty} t^{2}\left[\frac{f^{\prime}(t)}{f(t)}\right]^{2} f(t) d t\right]\left[\int_{0}^{\infty}\left[\frac{f^{\prime}(t)}{f(t)}\right]^{2} f(t) d t\right]
$$

Proof of Theorem 3

The first partial derivatives of $\log [s(y \mid \mu, \sigma, \gamma)]$ are given by

$$
\begin{aligned}
\frac{\partial}{\partial \mu} \log [s(y \mid \mu, \sigma, \gamma)] & =-\frac{1}{\sigma b(\gamma)} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma b(\gamma)}\right)}{f\left(\frac{y-\mu}{\sigma b(\gamma)}\right)} I_{(-\infty, \mu)}(y)-\frac{1}{\sigma a(\gamma)} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma a(\gamma)}\right)}{f\left(\frac{y-\mu}{\sigma a(\gamma)}\right)} I_{[\mu, \infty)}(y) \\
\frac{\partial}{\partial \sigma} \log [s(y \mid \mu, \sigma, \gamma)] & =-\frac{1}{\sigma}-\frac{y-\mu}{\sigma^{2} b(\gamma)} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma b(\gamma)}\right)}{f\left(\frac{y-\mu}{\sigma b(\gamma)}\right)} I_{(-\infty, \mu)}(y)-\frac{y-\mu}{\sigma^{2} a(\gamma)} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma a(\gamma)}\right)}{f\left(\frac{y-\mu}{\sigma a(\gamma)}\right)} I_{[\mu, \infty)}(y), \\
\frac{\partial}{\partial \gamma} \log [s(y \mid \mu, \sigma, \gamma)] & =-\frac{a^{\prime}(\gamma)+b^{\prime}(\gamma)}{a(\gamma)+b(\gamma)}-\frac{y-\mu}{\sigma} \frac{b^{\prime}(\gamma)}{b(\gamma)^{2}} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma b(\gamma)}\right)}{f\left(\frac{y-\mu}{\sigma b(\gamma)}\right)} I_{(-\infty, \mu)}(y) \\
& -\frac{y-\mu}{\sigma} \frac{a^{\prime}(\gamma)}{a(\gamma)^{2}} \frac{f^{\prime}\left(\frac{y-\mu}{\sigma a(\gamma)}\right)}{f\left(\frac{y-\mu}{\sigma a(\gamma)}\right)} I_{[\mu, \infty)}(y)
\end{aligned}
$$

Thus, the entries of the Fisher information matrix of (μ, σ, γ) are

$$
\begin{aligned}
I_{11} & =\mathbb{E}\left[\left(\frac{\partial}{\partial \mu} \log [s(y \mid \mu, \sigma, \gamma)]\right)^{2}\right]=\frac{2 \alpha_{1}}{a(\gamma) b(\gamma) \sigma^{2}}, \\
I_{22} & =\mathbb{E}\left[\left(\frac{\partial}{\partial \sigma} \log [s(y \mid \mu, \sigma, \gamma)]\right)^{2}\right]=\frac{\alpha_{2}}{\sigma^{2}} \\
I_{33} & =\mathbb{E}\left[\left(\frac{\partial}{\partial \gamma} \log [s(y \mid \mu, \sigma, \gamma)]\right)^{2}\right]=\frac{\alpha_{2}+1}{a(\gamma)+b(\gamma)}\left[\frac{b^{\prime}(\gamma)^{2}}{b(\gamma)}+\frac{a^{\prime}(\gamma)^{2}}{a(\gamma)}\right]-\left[\frac{a^{\prime}(\gamma)+b^{\prime}(\gamma)}{a(\gamma)+b(\gamma)}\right]^{2}, \\
I_{12} & =\mathbb{E}\left[\left(\frac{\partial}{\partial \mu} \log [s(y \mid \mu, \sigma, \gamma)]\right)\left(\frac{\partial}{\partial \sigma} \log [s(y \mid \mu, \sigma, \gamma))\right]=0,\right. \\
I_{13} & =\mathbb{E}\left[\left(\frac{\partial}{\partial \mu} \log [s(y \mid \mu, \sigma, \gamma)]\right)\left(\frac{\partial}{\partial \gamma} \log [s(y \mid \mu, \sigma, \gamma))\right]\right. \\
& =\frac{2 \alpha_{3}}{\sigma[a(\gamma)+b(\gamma)]}\left[\frac{a^{\prime}(\gamma)}{a(\gamma)}-\frac{b^{\prime}(\gamma)}{b(\gamma)}\right] \\
I_{23} & =\mathbb{E}\left[\left(\frac{\partial}{\partial \sigma} \log [s(y \mid \mu, \sigma, \gamma)]\right)\left(\frac{\partial}{\partial \gamma} \log [s(y \mid \mu, \sigma, \gamma))\right]\right. \\
& =\frac{\alpha_{2}}{\sigma}\left[\frac{a^{\prime}(\gamma)+b^{\prime}(\gamma)}{a(\gamma)+b(\gamma)}\right] .
\end{aligned}
$$

Proof of Theorem 4

Note that

$$
\frac{d}{d \gamma} A G(\gamma)=2 \frac{a^{\prime}(\gamma) b(\gamma)-a(\gamma) b^{\prime}(\gamma)}{[a(\gamma)+b(\gamma)]^{2}}=2 \frac{a(\gamma) b(\gamma) \lambda(\gamma)}{[a(\gamma)+b(\gamma)]^{2}}
$$

so that

$$
\frac{d A G(\gamma)}{d \gamma}>0 \Leftrightarrow \lambda(\gamma)>0 \text { and } \frac{d A G(\gamma)}{d \gamma}<0 \Leftrightarrow \lambda(\gamma)<0
$$

Proof of Theorem 5

First of all, consider the independence Jeffreys prior (6) and the change of variable (7), then

$$
\begin{aligned}
\pi_{I}(\mu, \sigma, \gamma) & \propto \frac{\left|a^{\prime}(\gamma) b(\gamma)-a(\gamma) b^{\prime}(\gamma)\right| \sqrt{\left[b(\gamma)+\alpha_{2}[a(\gamma)+b(\gamma)]\right]\left[a(\gamma)+\alpha_{2}[a(\gamma)+b(\gamma)]\right]}}{\sigma \sqrt{a(\gamma) b(\gamma)}[a(\gamma)+b(\gamma)]^{2}} \\
& \leq \frac{\left(\alpha_{2}+1\right)\left|a^{\prime}(\gamma) b(\gamma)-a(\gamma) b^{\prime}(\gamma)\right|}{\sigma \sqrt{a(\gamma) b(\gamma)}[a(\gamma)+b(\gamma)]}
\end{aligned}
$$

For the particular choice $\{a(\gamma), b(\gamma)\}=\{\gamma, 1 / \gamma\}$, the upper bound of $\pi_{I}(\mu, \sigma, \gamma)$ is proportional to $\left[\sigma\left(1+\gamma^{2}\right)\right]^{-1}$. Now, the proof of (i) and $(i i)$ is as follows.
(i) Applying Theorem 1 from Fernández and Steel(1999) and using this upper bound we can derive the properness of the posterior distribution of (μ, σ, γ). Now, since the mapping $(\mu, \sigma, \gamma) \leftrightarrow\left(\mu, \sigma_{1}, \sigma_{2}\right)$ is one-to-one, it follows that the posterior distribution of $\left(\mu, \sigma_{1}, \sigma_{2}\right)$ is proper.
(ii) The proof follows analogously by applying Theorem 2 from Fernández and Steel(1999).

Proof of Theorem 6

Let f be a scale mixture of normals with τ_{j} the mixing variable associated with y_{j} and where the $\tau_{j} \mathrm{~s}$ are independent random variables defined on \mathbb{R}^{+}with distribution $P_{\tau_{j}}$.
(i) Integrating with respect to μ over a subspace we get a lower bound for the marginal distribution of $\left(y_{1}, \ldots, y_{n}\right)$ which is proportional to

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{n}} \int_{\Gamma} \int_{0}^{\infty} \int_{-\infty}^{y_{(1)}}\left(\prod_{j=1}^{n} \tau_{j}^{\frac{1}{2}}\right) \frac{\sigma^{-(n+1)}}{[a(\gamma)+b(\gamma)]^{n}} \exp \left[-\frac{1}{2 \sigma^{2} a(\gamma)^{2}} \sum_{j=1}^{n} \tau_{j}\left(y_{j}-\mu\right)^{2}\right] \\
\times & \pi(\gamma) d \mu d \sigma d \gamma d P_{\left(\tau_{1}, \ldots, \tau_{n}\right) .}
\end{aligned}
$$

Using the change of variable $\vartheta=\sigma a(\gamma)$, we can rewrite the lower bound as follows

$$
\begin{aligned}
& \int_{\Gamma}\left[\frac{a(\gamma)}{a(\gamma)+b(\gamma)}\right]^{n} \pi(\gamma) d \gamma \int_{\mathbb{R}_{+}^{n}} \int_{0}^{\infty} \int_{-\infty}^{y_{(1)}}\left(\prod_{j=1}^{n} \tau_{j}^{\frac{1}{2}}\right) \vartheta^{-(n+1)} \\
\times & \exp \left[-\frac{1}{2 \vartheta^{2}} \sum_{j=1}^{n} \tau_{j}\left(y_{j}-\mu\right)^{2}\right] d \mu d \vartheta d P_{\left(\tau_{1}, \ldots, \tau_{n}\right)}
\end{aligned}
$$

and the result follows.
(ii) We can get an upper bound for the marginal distribution of $\left(y_{1}, \ldots, y_{n}\right)$ proportional to

$$
\begin{aligned}
& \int_{\mathbb{R}_{n}^{+}} \int_{\Gamma} \int_{0}^{\infty} \int_{-\infty}^{\infty}\left(\prod_{j=1}^{n} \tau_{j}^{\frac{1}{2}}\right) \frac{\sigma^{-(n+1)}}{[a(\gamma)+b(\gamma)]^{n}} \exp \left[-\frac{1}{2 \sigma^{2} h(\gamma)^{2}} \sum_{j=1}^{n} \tau_{j}\left(y_{j}-\mu\right)^{2}\right] \\
\times & \pi(\gamma) d \mu d \sigma d \gamma d P_{\left(\tau_{1}, \ldots, \tau_{n}\right)}
\end{aligned}
$$

where $h(\gamma)=\max \{a(\gamma), b(\gamma)\}$. Consider the change of variable $\vartheta=\sigma h(\gamma)$ and rewrite the upper bound as follows

$$
\begin{aligned}
& \int_{\Gamma}\left[\frac{h(\gamma)}{a(\gamma)+b(\gamma)}\right]^{n} \pi(\gamma) d \gamma \int_{\mathbb{R}_{n}^{+}} \int_{0}^{\infty} \int_{-\infty}^{\infty}\left(\prod_{j=1}^{n} \tau_{j}^{\frac{1}{2}}\right) \vartheta^{-(n+1)} \\
\times & \exp \left[-\frac{1}{2 \vartheta^{2}} \sum_{j=1}^{n} \tau_{j}\left(y_{j}-\mu\right)^{2}\right] d \mu d \vartheta d P_{\left(\tau_{1}, \ldots, \tau_{n}\right)}
\end{aligned}
$$

Fernández and Steel (2000, Th. 1) show that the integral in $\mu, \vartheta, \tau_{1}, \ldots, \tau_{n}$ is finite if $n \geq 2$. Then, by Theorem 1 from Fernández and Steel(1999), the existence of the integral in γ is a sufficient condition for the properness of the posterior distribution of (μ, σ, γ). The result then follows from

$$
\int_{\Gamma}\left[\frac{h(\gamma)}{a(\gamma)+b(\gamma)}\right]^{n} \pi(\gamma) d \gamma \leq \int_{\Gamma} \pi(\gamma) d \gamma
$$

(iii) The proof follows analogously by applying Theorem 2 from Fernández and Steel(1999).

Proof of Theorem 7

If f is a scale mixture of normals, then integrating over a subspace with respect to μ we get a lower bound for the marginal distribution of $\left(y_{1}, \ldots, y_{n}\right)$ which is proportional to

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{n}} \int_{\Gamma} \int_{0}^{\infty} \int_{-\infty}^{y_{(1)}}\left(\prod_{j=1}^{n} \tau_{j}^{\frac{1}{2}}\right) \frac{\sigma^{-(n+2)}}{[a(\gamma)+b(\gamma)]^{n}} \exp \left[-\frac{1}{2 \sigma^{2} a(\gamma)^{2}} \sum_{j=1}^{n} \tau_{j}\left(y_{j}-\mu\right)^{2}\right] \\
& \times \frac{|\lambda(\gamma)|}{a(\gamma)+b(\gamma)} d \mu d \sigma d \gamma d P_{\left(\tau_{1}, \ldots, \tau_{n}\right)} .
\end{aligned}
$$

Using the change of variable $\vartheta=\sigma a(\gamma)$, we can rewrite this lower bound as follows

$$
\begin{aligned}
& \int_{\Gamma}\left[\frac{a(\gamma)}{a(\gamma)+b(\gamma)}\right]^{n+1}|\lambda(\gamma)| d \gamma \int_{\mathbb{R}_{+}^{n}} \int_{0}^{\infty} \int_{-\infty}^{y_{(1)}}\left(\prod_{j=1}^{n} \tau_{j}^{\frac{1}{2}}\right) \vartheta^{-(n+2)} \\
& \times \exp \left[-\frac{1}{2 \vartheta^{2}} \sum_{j=1}^{n} \tau_{j}\left(y_{j}-\mu\right)^{2}\right] d \mu d \vartheta d P_{\left(\tau_{1}, \ldots, \tau_{n}\right)}
\end{aligned}
$$

Therefore, the existence of the first integral is a necessary condition for the properness of the posterior distribution of (μ, σ, γ).

Proof of Theorem 8

The proof of (i) is as follows. If f is normal, defining $h(\gamma)=\max \{a(\gamma), b(\gamma)\}$ we get an upper bound for the marginal distribution of $\left(y_{1}, \ldots, y_{n}\right)$ which is proportional to

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{\Gamma} \int_{0}^{\infty} \frac{\pi_{J}(\mu, \sigma, \gamma)}{[a(\gamma)+b(\gamma)]^{n} \sigma^{n}} \exp \left[-\frac{1}{2 \sigma^{2} h(\gamma)^{2}} \sum_{j=1}^{n}\left(y_{j}-\mu\right)^{2}\right] d \sigma d \gamma d \mu \\
\propto & \int_{-\infty}^{\infty}\left[\sum_{j=1}^{n}\left(y_{j}-\mu\right)^{2}\right]^{-\frac{n+1}{2}} d \mu \int_{\Gamma} \frac{h(\gamma)^{n+1}}{[a(\gamma)+b(\gamma)]^{n+1}}|\lambda(\gamma)| d \gamma .
\end{aligned}
$$

The first integral exists if $n \geq 2$ and at least 2 observations are different. Then the existence of the second integral is a sufficient condition for the existence of the posterior distribution. For the second integral we use that

$$
\int_{\Gamma} \frac{h(\gamma)^{n+1}}{[a(\gamma)+b(\gamma)]^{n+1}}|\lambda(\gamma)| d \gamma \leq \int_{\Gamma}|\lambda(\gamma)| d \gamma
$$

which is finite by assumption. If f is Laplace, analogously to the normal case we get an upper bound for the marginal distribution of $\left(y_{1}, \ldots, y_{n}\right)$ which is proportional to

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{\Gamma} \int_{0}^{\infty} \frac{\pi_{J}(\mu, \sigma, \gamma)}{[a(\gamma)+b(\gamma)]^{n} \sigma^{n}} \exp \left[-\frac{1}{\sigma h(\gamma)} \sum_{j=1}^{n}\left|y_{j}-\mu\right|\right] d \sigma d \gamma d \mu \\
\propto & \int_{-\infty}^{\infty}\left[\sum_{j=1}^{n}\left|y_{j}-\mu\right|\right]^{-(n+1)} d \mu \int_{\Gamma} \frac{h(\gamma)^{n+1}}{[a(\gamma)+b(\gamma)]^{n+1}}|\lambda(\gamma)| d \gamma,
\end{aligned}
$$

and the same argument leads to the result.
Result (ii) follows immediately from Corollary 6.
For (iii) let us assume, without loss of generality, that $A G(\gamma)$ is an increasing function and $\Gamma=(\underline{\gamma}, \bar{\gamma})$. First, note that we can rewrite $A G(\gamma)$ as follows

$$
A G(\gamma)=\tanh \left\{\frac{1}{2} \log \left[\frac{a(\gamma)}{b(\gamma)}\right]\right\}
$$

Then

$$
\begin{gathered}
\lim _{\gamma \rightarrow \bar{\gamma}} A G(\gamma)=1 \quad \Leftrightarrow \quad \lim _{\gamma \rightarrow \bar{\gamma}} \log \left[\frac{a(\gamma)}{b(\gamma)}\right]=\infty \\
\lim _{\gamma \rightarrow \underline{\gamma}} A G(\gamma)=-1 \quad \Leftrightarrow \quad \lim _{\gamma \rightarrow \underline{\gamma}} \log \left[\frac{a(\gamma)}{b(\gamma)}\right]=-\infty
\end{gathered}
$$

which contradicts the assumption that $\lambda(\gamma)$ is absolutely integrable. The result is analogous if $A G$ is decreasing.

Proof of Theorem 9

From Theorem 6(ii) and (iii) we know that properness of $\pi(\gamma)$ in (23) is sufficient for existence of the posterior. The $A G$ beta prior implies a proper prior for $A G$ when $\alpha_{0}, \beta_{0}>0$. From Theorem 4 the condition that $\lambda(\gamma)$ does not change sign is equivalent to $A G$ being a one-to-one transformation of γ. Thus, the induced prior on γ will be proper and the result follows.

Supplementary material, Appendix 2: Simulation Study

In this section we investigate the empirical coverage of the 95% posterior credible intervals, defined by the 2.5 th and 97.5 th percentiles. We simulate $N=10,000$ data sets of size $n=$ 30,100 and 1000 from seven sampling models, Models 1-5 described in Section 4 plus two additional models described below, where we take f to be a normal distribution throughout, and analyse these data using the corresponding Bayesian model. Model 7 corresponds to the Logistic AG model model with $A G$ beta prior and $\alpha_{0}=\beta_{0}=1$, and Model 8 consists of the Inverse scale factors model with $A G$ beta prior and $\alpha_{0}=\beta_{0}=1$. For each of these N datasets, a sample of size 3,000 was obtained from the posterior distribution using a Markov chain Monte Carlo sampler after a burn-in period of 5,000 iterations and thinned to every 50th iteration. Finally, the proportion of 95% credible intervals that include the true value of the parameter was calculated. Results are presented in Tables 1-7. For Model 3 we know that the truncation to a finite interval is what makes the posterior well-defined. To investigate how sensitive the results are to the particular value chosen for B, we have experimented with various values. Models 5, 7 and 8 employ the same sort of prior with different parameterizations of the sampling model (9), while Models 1-4 differ in both the kind of prior employed and the parameterization of the sampling model.

Sample size	$n=30$		$n=100$		$n=1000$	
Parameters	$\sigma_{1}=2.0$	$\sigma_{1}=0.66$	$\sigma_{1}=2.0$	$\sigma_{1}=0.66$	$\sigma_{1}=2.0$	$\sigma_{1}=0.66$
	$\sigma_{2}=0.5$	$\sigma_{2}=1.50$	$\sigma_{2}=0.5$	$\sigma_{2}=1.50$	$\sigma_{2}=0.5$	$\sigma_{2}=1.50$
μ	0.976	0.967	0.971	0.956	0.948	0.953
σ_{1}	0.961	0.951	0.974	0.958	0.947	0.949
σ_{2}	0.975	0.971	0.961	0.951	0.948	0.950

Table 1: Coverage proportions. Two-piece model in (2) with independence Jeffreys prior (Model 1)

Sample size	$n=30$		$n=100$		$n=1000$	
Parameter	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$
μ	0.971	0.967	0.954	0.955	0.947	0.948
σ	0.959	0.960	0.947	0.945	0.953	0.954
γ	0.971	0.969	0.957	0.957	0.948	0.952

Table 2: Coverage proportions. ϵ-skew model with independence Jeffreys prior (Model 2)

Sample size	$n=30$		$n=100$		$n=1000$	
Parameter	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$
μ	0.967	0.964	0.949	0.953	0.948	0.949
σ	0.995	0.991	0.952	0.960	0.948	0.947
γ	0.964	0.965	0.949	0.952	0.948	0.947

Table 3: Coverage proportions. Logistic $A G$ model with Jeffreys prior (Model 3) and $B=3$

Size	$n=30$		$n=100$		$n=1000$	
Parameter	$\gamma=0.5$	$\gamma=1.5$	$\gamma=0.5$	$\gamma=1.5$	$\gamma=0.5$	$\gamma=1.5$
μ	0.969	0.967	0.963	0.950	0.949	0.946
σ	0.992	0.972	0.965	0.949	0.947	0.949
γ	0.967	0.971	0.967	0.950	0.950	0.948

Table 4: Coverage proportions: Inverse scale factors model with modified Jeffreys prior (Model 4)

Size	$n=30$		$n=100$		$n=1000$	
Parameter	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$
μ	0.968	0.967	0.960	0.959	0.947	0.951
σ	0.994	0.993	0.968	0.970	0.947	0.951
γ	0.968	0.969	0.964	0.964	0.948	0.950

Table 5: Coverage proportions: ϵ-skew model with $A G$ beta prior and $\alpha_{0}=\beta_{0}=1$ (Model 5).

Size	$n=30$		$n=100$		$n=1000$	
Parameter	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$
μ	0.965	0.965	0.956	0.961	0.945	0.950
σ	0.992	0.994	0.964	0.966	0.950	0.952
γ	0.968	0.968	0.960	0.965	0.947	0.948

Table 6: Coverage proportions: Logistic $A G$ model with $A G$ beta prior and $\alpha_{0}=\beta_{0}=1$ (Model 7).

Size	$n=30$		$n=100$		$n=1000$	
Parameter	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$	$\gamma=0.5$	$\gamma=-0.5$
μ	0.969	0.973	0.952	0.949	0.949	0.948
σ	0.986	0.973	0.963	0.953	0.950	0.951
γ	0.968	0.976	0.959	0.951	0.946	0.951

Table 7: Coverage proportions: Inverse scale factors model with $A G$ beta prior and $\alpha_{0}=\beta_{0}=1$ (Model 8).

All models lead to coverage probabilities above the nominal level for samples of size $n=$ 30 , especially in the case of σ for Models $3-5$ and 7 . Once we increase the sample size to $n=100$, the coverage is quite close to the nominal value, except for one setting for Model 1 , where the coverage is still a bit high. As we further increase to samples of 1000 observations, all cases lead to coverage very close to 95%, as we would expect. The simulation standard errors are around 0.002 for all cases, so that for large n most differences in the tables can simply be accounted for by Monte Carlo error. For Model 3, the choice of B (we have also tried $B=10$ and $B=30$) did not seem to have any noticeable effect. Comparing Tables 2 and 5, Tables 3 and 6 and Tables 4 and 7 allows us to assess the difference in coverage between the $A G$ beta prior and the other priors, and we can conclude these differences are quite small. The only exception is the performance for σ with 30 observations from the ϵ-skew model, where the independence Jeffreys prior leads to better coverage. Overall, the frequentist coverage properties of the models examined are pretty good, with perhaps Model 2 displaying the best performance.

We also conducted the same simulation study using a skewed version of a Student- t sampling model with 2 degrees of freedom and we observed a rather similar behaviour of the coverage proportions. Interestingly, however, the coverage for the ϵ-skew model with $n=30$ is better in this case with the $A G$ beta prior than under the independence Jeffreys and the overall coverage for σ in small samples is better than with the skewed normal throughout.

