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Supplementary material, Appendix 1: Proofs

Proof of Theorem 1

The first partial derivatives of log[s(y|µ, σ, γ)] are given by
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Then the entries of the Fisher information matrix of (µ, σ1, σ2) are given by
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Proof of Theorem 2

The determinant of the Fisher information matrix is
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We will first prove that α2 > 0. From the definition of α2 it can only be zero if 1 +
tf ′(t)/f(t) = 0 whenever f(t) > 0. This means that f(t) = −tf ′(t) and this only happens if
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f(t) = K/t for any positive K. The latter, however, is not a probability density function on R.
Thus, α2 can not be zero.

Next, we will prove that α1(1 + α2) > 2α2
3. Applying the Cauchy-Schwarz inequality we

have α1(1+α2) ≥ 2α2
3. We will show that this is a strict inequality. The condition in Theorem
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This is a polynomial of degree 2 in β with positive coefficients and no real roots, implying that
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Proof of Theorem 3

The first partial derivatives of log[s(y|µ, σ, γ)] are given by
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Thus, the entries of the Fisher information matrix of (µ, σ, γ) are
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Proof of Theorem 4

Note that
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Proof of Theorem 5

First of all, consider the independence Jeffreys prior (6) and the change of variable (7), then
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For the particular choice {a(γ), b(γ)} = {γ, 1/γ}, the upper bound of πI(µ, σ, γ) is propor-
tional to [σ(1 + γ2)]−1. Now, the proof of (i) and (ii) is as follows.

(i) Applying Theorem 1 from Fernández and Steel(1999) and using this upper bound we
can derive the properness of the posterior distribution of (µ, σ, γ). Now, since the map-
ping (µ, σ, γ) ↔ (µ, σ1, σ2) is one-to-one, it follows that the posterior distribution of
(µ, σ1, σ2) is proper.

(ii) The proof follows analogously by applying Theorem 2 from Fernández and Steel(1999).
�

Proof of Theorem 6

Let f be a scale mixture of normals with τj the mixing variable associated with yj and where
the τjs are independent random variables defined on R+ with distribution Pτj .

(i) Integrating with respect to µ over a subspace we get a lower bound for the marginal dis-
tribution of (y1, ..., yn) which is proportional to
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where h(γ) = max{a(γ), b(γ)}. Consider the change of variable ϑ = σh(γ) and rewrite
the upper bound as follows
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Fernández and Steel (2000, Th. 1) show that the integral in µ, ϑ, τ1, ..., τn is finite if n ≥ 2.
Then, by Theorem 1 from Fernández and Steel(1999), the existence of the integral in γ
is a sufficient condition for the properness of the posterior distribution of (µ, σ, γ). The
result then follows from∫
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(iii) The proof follows analogously by applying Theorem 2 from Fernández and Steel(1999).

�

Proof of Theorem 7

If f is a scale mixture of normals, then integrating over a subspace with respect to µ we get a
lower bound for the marginal distribution of (y1, ..., yn) which is proportional to
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Therefore, the existence of the first integral is a necessary condition for the properness of
the posterior distribution of (µ, σ, γ). �
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Proof of Theorem 8

The proof of (i) is as follows. If f is normal, defining h(γ) = max{a(γ), b(γ)} we get an
upper bound for the marginal distribution of (y1, ..., yn) which is proportional to
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and the same argument leads to the result.

Result (ii) follows immediately from Corollary 6.

For (iii) let us assume, without loss of generality, that AG(γ) is an increasing function and
Γ = (γ, γ). First, note that we can rewrite AG(γ) as follows
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which contradicts the assumption that λ(γ) is absolutely integrable. The result is analogous if
AG is decreasing. �
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Proof of Theorem 9

From Theorem 6(ii) and (iii) we know that properness of π(γ) in (23) is sufficient for existence
of the posterior. The AG beta prior implies a proper prior for AG when α0, β0 > 0. From
Theorem 4 the condition that λ(γ) does not change sign is equivalent to AG being a one-to-one
transformation of γ. Thus, the induced prior on γ will be proper and the result follows. �

Supplementary material, Appendix 2: Simulation Study
In this section we investigate the empirical coverage of the 95% posterior credible intervals,
defined by the 2.5th and 97.5th percentiles. We simulate N = 10, 000 data sets of size n =
30, 100 and 1000 from seven sampling models, Models 1-5 described in Section 4 plus two
additional models described below, where we take f to be a normal distribution throughout,
and analyse these data using the corresponding Bayesian model. Model 7 corresponds to the
Logistic AG model model with AG beta prior and α0 = β0 = 1, and Model 8 consists of
the Inverse scale factors model with AG beta prior and α0 = β0 = 1. For each of these N
datasets, a sample of size 3, 000 was obtained from the posterior distribution using a Markov
chain Monte Carlo sampler after a burn-in period of 5, 000 iterations and thinned to every 50th
iteration. Finally, the proportion of 95% credible intervals that include the true value of the
parameter was calculated. Results are presented in Tables 1-7. For Model 3 we know that
the truncation to a finite interval is what makes the posterior well-defined. To investigate how
sensitive the results are to the particular value chosen forB, we have experimented with various
values. Models 5, 7 and 8 employ the same sort of prior with different parameterizations of
the sampling model (9), while Models 1–4 differ in both the kind of prior employed and the
parameterization of the sampling model.

Sample size n = 30 n = 100 n = 1000

Parameters σ1 = 2.0 σ1 = 0.66 σ1 = 2.0 σ1 = 0.66 σ1 = 2.0 σ1 = 0.66
σ2 = 0.5 σ2 = 1.50 σ2 = 0.5 σ2 = 1.50 σ2 = 0.5 σ2 = 1.50

µ 0.976 0.967 0.971 0.956 0.948 0.953
σ1 0.961 0.951 0.974 0.958 0.947 0.949
σ2 0.975 0.971 0.961 0.951 0.948 0.950

Table 1: Coverage proportions. Two-piece model in (2) with independence Jeffreys prior (Model 1)

Sample size n = 30 n = 100 n = 1000
Parameter γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

µ 0.971 0.967 0.954 0.955 0.947 0.948
σ 0.959 0.960 0.947 0.945 0.953 0.954
γ 0.971 0.969 0.957 0.957 0.948 0.952

Table 2: Coverage proportions. ϵ-skew model with independence Jeffreys prior (Model 2)
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Sample size n = 30 n = 100 n = 1000
Parameter γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

µ 0.967 0.964 0.949 0.953 0.948 0.949
σ 0.995 0.991 0.952 0.960 0.948 0.947
γ 0.964 0.965 0.949 0.952 0.948 0.947

Table 3: Coverage proportions. Logistic AG model with Jeffreys prior (Model 3) and B = 3

Size n = 30 n = 100 n = 1000
Parameter γ = 0.5 γ = 1.5 γ = 0.5 γ = 1.5 γ = 0.5 γ = 1.5

µ 0.969 0.967 0.963 0.950 0.949 0.946
σ 0.992 0.972 0.965 0.949 0.947 0.949
γ 0.967 0.971 0.967 0.950 0.950 0.948

Table 4: Coverage proportions: Inverse scale factors model with modified Jeffreys prior (Model 4)

Size n = 30 n = 100 n = 1000
Parameter γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

µ 0.968 0.967 0.960 0.959 0.947 0.951
σ 0.994 0.993 0.968 0.970 0.947 0.951
γ 0.968 0.969 0.964 0.964 0.948 0.950

Table 5: Coverage proportions: ϵ-skew model with AG beta prior and α0 = β0 = 1 (Model 5).

Size n = 30 n = 100 n = 1000
Parameter γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

µ 0.965 0.965 0.956 0.961 0.945 0.950
σ 0.992 0.994 0.964 0.966 0.950 0.952
γ 0.968 0.968 0.960 0.965 0.947 0.948

Table 6: Coverage proportions: Logistic AG model with AG beta prior and α0 = β0 = 1 (Model 7).

Size n = 30 n = 100 n = 1000
Parameter γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

µ 0.969 0.973 0.952 0.949 0.949 0.948
σ 0.986 0.973 0.963 0.953 0.950 0.951
γ 0.968 0.976 0.959 0.951 0.946 0.951

Table 7: Coverage proportions: Inverse scale factors model with AG beta prior and α0 = β0 = 1 (Model
8).
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All models lead to coverage probabilities above the nominal level for samples of size n =
30, especially in the case of σ for Models 3–5 and 7. Once we increase the sample size to
n = 100, the coverage is quite close to the nominal value, except for one setting for Model 1,
where the coverage is still a bit high. As we further increase to samples of 1000 observations, all
cases lead to coverage very close to 95%, as we would expect. The simulation standard errors
are around 0.002 for all cases, so that for large n most differences in the tables can simply be
accounted for by Monte Carlo error. For Model 3, the choice of B (we have also tried B = 10
andB = 30) did not seem to have any noticeable effect. Comparing Tables 2 and 5, Tables 3 and
6 and Tables 4 and 7 allows us to assess the difference in coverage between the AG beta prior
and the other priors, and we can conclude these differences are quite small. The only exception
is the performance for σ with 30 observations from the ϵ-skew model, where the independence
Jeffreys prior leads to better coverage. Overall, the frequentist coverage properties of the models
examined are pretty good, with perhaps Model 2 displaying the best performance.

We also conducted the same simulation study using a skewed version of a Student-t sam-
pling model with 2 degrees of freedom and we observed a rather similar behaviour of the cov-
erage proportions. Interestingly, however, the coverage for the ϵ-skew model with n = 30 is
better in this case with the AG beta prior than under the independence Jeffreys and the overall
coverage for σ in small samples is better than with the skewed normal throughout.


