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APPENDIX A: PROOFS

A.1. Proofs in Section 5.. Proof of Theorem 5.1. The sufficiency

part due to Hoeffding [1] is proved in Theorem 15.2.3. of Lehmann and

Romano [2]. To prove the necessity part, suppose s and t are continuity

points of RT (·). Then,

P{Tn(GnX
n) ≤ s, Tn(G′nX

n) ≤ t} = E[P{Tn(GnX
n) ≤ s, Tn(G′nX

n) ≤ t|Xn}]

= E[R̂Tn (s)R̂Tn (t)]→ RT (s)RT (t) ,

since convergence in probability of a bounded sequence of random variables

entails convergence of moments. Convergence for a dense set of rectangles

in the plane entails weak convergence. �

Before proving Slutsky’s Theorem for Randomization Distributions (The-

orem 5.2), we need three lemmas.

Lemma A.1. Suppose Xn has distribution Pn in Xn, and Gn is a finite

group of transformations g of Xn onto itself. Also, let Gn be a random vari-

able that is uniform on Gn. Assume Xn and Gn are mutually independent.

Let R̂An denotes the randomization distributions of An, defined by

(S1) R̂An (t) =
1

|Gn|
∑
g∈Gn

I{An(gXn) ≤ t}.

Suppose, under Pn,

An(GnX
n)

P→ a.

S1
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Then, under Pn,

(S2) R̂An (t) =
1

|Gn|
∑
g∈Gn

I{An(gXn) ≤ t} P→ δa(t) if t 6= a,

where δc(·) denotes the distribution function corresponding to the point mass

function at c.

Proof of Lemma A.1: Let G′n have the same distribution as Gn and be

independent from Gn and Xn. Since An(GnX
n) converges in probability to

a constant a, An(G′nX
n)

P→ a and the independence of the limiting distri-

butions is satisfied. Thus, the result follows from Theorem 5.1. �

Lemma A.2. Let Bn and Tn be sequences of random variables satisfying

the conditions above, i.e.,

Bn(GnX
n)

P→ b,

and

(S3)
(
Tn(GnX

n), Tn(G′nX
n)
) d→ (T, T ′),

where T and T ′ are independent, each with common c.d.f. RT (·). Let R̂T+B
n (t)

denote the randomization distribution of Tn+Bn, defined in (S1) with A re-

placed by T +B. Then, R̂T+B
n (t) converges to T + b in probability. In other

words,

R̂T+B
n (t) ≡ 1

|Gn|
∑
g∈Gn

I{Tn(gXn)+Bn(gXn) ≤ t} P→ RT+b(t) if RT+b is continuous at t,

where RT+b(·) denotes the corresponding c.d.f. of T+b. (Of course, RT+b(t) =

RT (t− b).)

Proof of Lemma A.2: Without loss of generality, assume b = 0. For any

ε > 0,

1

|Gn|
∑

I{Tn(gXn) +Bn(gXn) ≤ t− ε} − 1

|Gn|
∑

I{|Bn(gXn)| > ε}

≤ 1

|Gn|
∑

I{Tn(gXn) +Bn(gXn) ≤ t}
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≤ 1

|Gn|
∑

I{Tn(gXn) +Bn(gXn) ≤ t+ ε}+
1

|Gn|
∑

I{|Bn(gXn)| > ε}.

Note that 1
|Gn|

∑
I{|Bn(gXn)| > ε} of the first line and the third line con-

verges in probability to 0 by Lemma A.1. Also, by Theorem 5.1, (S3) implies

(S4) R̂Tn (t) =
1

|Gn|
∑
g∈Gn

I{Tn(gXn) ≤ t} P→ RT (t)

if RT (·) is continuous at t. Thus, if both t− ε and t+ ε are continuity points

of RT (·), the first term of the first line and the first term of the third line

converge in probability to RT (t− ε) and RT (t+ ε), respectively. Therefore,

RT (t− ε) ≤ R̂T+b
n (t) ≤ RT (t+ ε)

with probability tending to one, for continuity points t−ε and t+ε of RT (·).
Now, let ε ↓ 0 through continuity points to deduce that

R̂T+B
n (t)

P→ RT (t). �

Lemma A.3. Let An and Tn be sequences of random variables satisfying

the conditions above, i.e.,

An(GnX
n)

P→ a

where a is nonzero, and(
Tn(GnX

n), Tn(G′nX
n)
) d→ (T, T ′),

where T and T ′ are independent, each with common c.d.f. RT (·). Then, the

randomization distribution of AnTn converges to aT in probability. In other

words,

R̂ATn (t) ≡ 1

|Gn|
∑
g∈Gn

I{An(gXn)Tn(gXn) ≤ t} P→ RaT (t),

if RaT is continuous at t, where RaT (·) denotes the corresponding c.d.f. of

aT.

Proof of Lemma A.3: Write

AnTn = aTn + (An − a)Tn .
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Then, we can apply Lemma A.2 with Bn = (An− a)Tn, if we can verify the

condition Bn(GnX
n)

P→ 0. But,

Bn(GnX
n) = [An(GnX

n)− a]Tn(GnX
n)

P→ 0 · T = 0 ,

by the usual Slutsky’s Theorem. Finally, the behavior of aTn follows trivially

from that of Tn.

Proof of Theorem 5.2: The proof follows from Lemma A.2 and Lemma

A.3. �

Remark A.1. Under the randomization hypothesis that the distribution

of Xn is the same as that of gXn for any g ∈ Gn, the conditions (5.5) and

(5.6) are equivalent to the assumptions that An(Xn)
P→ a and Bn(Xn)

P→ b,

i.e. the convergence in probability just based on the original sample Xn

without first transforming by a random Gn. For more on the randomization

hypothesis, see Section 15.2 of Lehmann and Romano [2].

Proof of (5.8): Let Nj denote number of observations in Z̄ which are gen-

erated from Pj . Then, (N1, . . . , Nk) has the multinomial distribution based

on N trials and success probabilities (p1, . . . , pk). In terms of the Nj , the

number of differing observations in the above coupling construction is

D =

k∑
j=1

max(nj −Nj , 0) .

If we assume pj > 0 for all j, then by the usual central limit theorem,

Nj −Npj = OP (N1/2) ,

which together with (5.7) yields

Nj − nj = (Nj −Npj) + (Npj − nj) = OP (N1/2) .

It follows that D = OP (N1/2) and so D/N converges to 0 in probability. It

also follows that

E(D) ≤
k∑
j=1

E|Nj − nj | ≤
k∑
j=1

E|Nj − pjN |+ |pjN − nj |
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≤
k∑
j=1

{E[(Nj−Npj)2]}1/2+O(N1/2) =
k∑
j=1

[Npj(1−pj)]1/2+O(N1/2) = O(N1/2) . �

Proof of Lemma 5.2: First, we can write the likelihood ratio Ln(x) =

dQn(x)/dPn(x) as a product of conditional likelihood ratios, i.e., for x =

(x1, . . . , xk) ,

Ln(x) =
P
(⋂k

i=1{Hn,i = xi}
)

P
(⋂k

i=1{Mn,i = xi}
)

=
P (Hn,1 = x1)

P (Mn,1 = x1)︸ ︷︷ ︸
=Ln,1(x1)

· P (Hn,2 = x2|Hn,1 = x1)

P (Mn,2 = x2|Mn,1 = x1)︸ ︷︷ ︸
=Ln,2(x2|x1)

· · ·
P (Hn,k = nk|

⋂k−1
i=1 {Hn,i = xi})

P (Mn,k = nk|
⋂k−1
i=1 {Mn,i = xi})︸ ︷︷ ︸

=Ln,k(xk|x1,...,xk−1)

.

Note that conditional on
⋂i−1
j=1{Mn,j = xj}, Mn,i has the binomial distri-

bution Bn,i based on (s−
∑i−1

j=1 xj) trials and success probability p̃n,i given

by

(S5) p̃n,i =
ni∑k
j=i nj

for i = 1, . . . , k .

Likewise, conditional on
⋂i−1
j=1{Hn,j = xj}, Hn,i has the one-dimensional

hypergeometric distribution representing the number of objects from popu-

lation i sampled without replacement. Thus, as long as

(S6) max(0,
i∑

j=1

nj + s−N −
i−1∑
j=1

xj) ≤ xi ≤ ni for i = 1, . . . , k ,

L̃n(x) =

(
n1

x1

)(
N−n1

s−x1

)(
N
s

)(
s
x1

)
p̃x1n,1(1− p̃n,1)s−x1

·
(
n2

x2

)(
N−(n1+n2)
s−x1−x2

)(
N−n1

s−x1

)(
s−x1
x2

)
p̃x1n,2(1− p̃n,2)s−x1−x2

· · ·

(
nk
xk

)(N−∑k
i=1 ni

s−
∑k

i=1 xi

)
(N−∑k−1

i=1 ni

s−
∑k−1

i=1 xi

)(
s−

∑k−1
i=1 xi
xk

)
p̃xkn,k(1− p̃n,k)s−

∑k
i=1 xi

,

for s =
∑k

i=1 xi. Of course, when for x in the support of the multivariate

hypergeometric distribution, (S6) holds. Moreover, even when x is an atom
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from the the multinomial distribution, we can use the fact that xi = (s −∑i−1
j=1 xj)p̃n,i +OP (

√
s) to yield

P

max(0,
i∑

j=1

nj + s−N −
i−1∑
j=1

xj) ≤ xi ≤ ni

→ 1 .

Thus, L̃n(x) = Ln(x) with probability tending to one. Note that the last

kth conditional likelihood ratio Ln,k(xk|x1, . . . , xk−1) = 1, and the ith con-

ditional likelihood ratio Ln,i(xi|x1, . . . , xi−1) for i = 1, . . . , k − 1 becomes

Ln,i(xi|x1, . . . , xi−1) =
P (Hn,i = xi|

⋂i−1
j=1{Hn,j = xj})

P (Mn,i = xi|
⋂i−1
j=1{Hn,j = xj})

=

(
ni
xi

)(N−∑i
j=1 nj

s−
∑i

j=1 xj

)
(N−∑i−1

j=1 nj

s−
∑i−1

j=1 xj

)(
s−

∑i−1
j=1 xj
xi

)
p̃xin,i(1− p̃n,i)

s−
∑i

j=1 xj

=
ni!(N −

∑i
j=1 nj)!(N −

∑i−1
j=1 nj − s+

∑i−1
j=1 xj)!

(ni − xi)!(N −
∑i

j=1 nj − s+
∑i

j=1 xj)!(N −
∑i−1

j=1 nj)!p̃
xi
n,i(1− p̃n,i)

s−
∑i

j=1 xj
.

Since xi|x1, . . . , xi−1 ∼ Bn,i = (s−
∑i−1

j=1 xj)p̃n,i +OP (s1/2), and thus,

min

ni, N − i∑
j=1

nj , ni −Bn,i, N −
i∑

j=1

nj − s+

i−1∑
j=1

xj +Bn,i

 P→∞ ,

we can apply Stirling’s approximation

n! ∼
√

2πn(n/e)n(1 +O(
1

n
)) as n→∞ ,

which yields Ln,i(xi|x1, . . . , xi−1) ∼ L′n,i(xi|x1, . . . , xi−1), where L′n,i(xi|x1, . . . , xi−1) =

n
n2+

1
2

2 (N −
∑i

j=1 nj)
N−

∑j
i=1 nj+

1
2 (N −

∑i−1
j=1 nj − s+

∑i−1
j=1 xj)

N−
∑i−1

j=1 nj−s+
∑i−1

j=1 xj+
1
2

(N −
∑i−1

j=1 nj)
N−

∑i−1
j=1 nj+

1
2 (ni − xi)

ni−xi+
1
2 (N −

∑i
j=1 −s+

∑i
j=1 xj)

N−
∑i

j=1 −s+
∑i

j=1 xj+
1
2 p̃xi

n,i(1− p̃n,i)
s−

∑i
j=1 xj

.

Therefore, Ln,i(Bn,i|Bn,1 = x1, . . . , Bn,i−1 = xi−1) has the same limiting

distribution as L′n,i(Bn,i|Bn,1 = x1, . . . , Bn,i−1 = xi−1). Write L′n,i = a · b · c
and q̃n,i = 1− p̃n,i, where

a =
n
n2+ 1

2
2 (N −

∑i
j=1 nj)

N−
∑i

j=1 nj+ 1
2

(N −
∑i−1

j=1 nj)
N−

∑i−1
j=1 nj+ 1

2

,
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b =
(N −

∑i−1
j=1 nj − s+

∑i−1
j=1 xj)

N−
∑i−1

j=1 nj−s+
∑i−1

j=1 xj+ 1
2

(ni − xi)ni−xi+ 1
2 (N −

∑i
j=1−s+

∑i
j=1 xj)

N−
∑i

j=1−s+
∑i

j=1 xj+ 1
2

and

c =
1

p̃xin,iq̃
s−

∑i
j=1 xj

n,i

.

Then,

a = p̃
n2+ 1

2
n,i q̃

N−
∑i

j=1 nj+ 1
2

n,i (N −
i−1∑
j=1

nj)
1
2 ,

and so

a · c = p
Ci+

1
2

n,i q
Di+

1
2

n,i (N −
i−1∑
j=1

nj)
1
2 ,

where Ci = ni − xi and Di = N −
∑i

j=1 nj − s+
∑i

j=1 xj . Also,

b =
(Ci +Di)

Ci+Di+
1
2

C
Ci+

1
2

i D
Di+

1
2

i

=

(
Ci +Di

Ci

)Ci+
1
2
(
Ci +Di

Di

)Di+
1
2

(Ci +Di)
− 1

2 .

Therefore, L′n,i = a · b · c equals

L′n,i =

(
Ci

p̃n,i(Ci +Di)

)−(Ci+
1
2)( Di

q̃n,i(Ci +Di)

)−(Di+
1
2

)
(

Ci +Di

N −
∑i−1

j=1 nj

)− 1
2

We will evaluate Ln,i and L′n,i not at a generic xi, but at the binomial

variable Bn,i conditioning on Bn,1 = x1, . . . , Bn,i−1 = xi−1, which satisfies

Bn,i =
(
s−

i−1∑
j=1

xj

)
p̃n,i +OP (s1/2) ,

in which case Cn,i = Ci(Bn,i) = ni − Bn,i and Dn,i = Di(Bn,i) = N −∑i
j=1 nj − s+

∑i−1
j=1 xj +Bn,i satisfy

Cn,i
p̃n,i(Cn,i +Dn,i)

=
ni − (s−

∑i−1
j=1 xj)p̃n,i

p̃n,i(N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj)
+

OP (s1/2)

p̃n,i(N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj)

= 1 +
OP (s1/2)

p̃n,i(N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj)
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and

Dn,i

q̃n,i(Cn,i +Dn,i)
=
N −

∑i
j=1 nj − (s−

∑i−1
j=1 xj)q̃n,i

q̃n,i(N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj)
+

OP (s1/2)

q̃n,i(N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj)

= 1 +
OP (s1/2)

q̃n,i(N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj)
.

Also, since

(S7)
Bn,i

(s−
∑i−1

j=1 xj)

P→ p̃i, where p̃i =
pn,i∑k
j=i pn,j

,

we also have

(S8)
Cn,i

p̃n,i(Cn,i +Dn,i)

P→ 1 and
Dn,i

q̃n,i(Cn,i +Dn,i)

P→ 1 .

Therefore, we can expand the logarithm of L′n,i as long as we keep both the

linear and quadratic terms,

log(t) = (t− 1)− 1

2
(t− 1)2 + o(|t− 1|2) as t→ 1 .

Hence,

− log[

(
N −

∑i−1
j=1 nj − s+

∑i−1
j=1 xj

N −
∑i−1

j=1 nj

) 1
2

L′n,i(Bn,i|Bn,1 = x1, . . . , Bn,i−1 = xi−1)]

= (Cn,i +
1

2
) log

(
Cn,i

p̃n,i(Cn,i +Dn,i)

)
+ (Dn,i +

1

2
) log

(
Dn,i

q̃n,i(Cn,i +Dn,i)

)
= Cn,i

(
Cn,i

p̃n,i(Cn,i +Dn,i)
− 1

)
+Dn,i

(
Dn,i

q̃n,i(Cn,i +Dn,i)
− 1

)
︸ ︷︷ ︸

Ai

−1

2
Cn,i

(
Cn,i

p̃n,i(Cn,i +Dn,i)
− 1

)2

− 1

2
Dn,i

(
Dn,i

q̃n,i(Cn,i +Dn,i)
− 1

)2

︸ ︷︷ ︸
Bi

+oP (1) .

Noting that

(S9)
Dn,i

q̃n,i(Cn,i +Dn,i)
− 1 = − p̃n,i

q̃n,i

(
Cn,i

p̃n,i(Cn,i +Dn,i)
− 1

)
,
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we have that

Ai =

(
Cn,i − p̃n,i(Cn,i +Dn,i)

p̃n,i(Cn,i +Dn,i)

)
·
[
Cn,i −

p̃n,i
q̃n,i

Dn,i

]
=

(
q̃n,iCn,i − p̃n,iDn,i

p̃n,i(Cn,i +Dn,i)

)
· q̃n,iCn,i − p̃n,iDn,i

q̃n,i

=
(q̃n,iCn,i − p̃n,iDn,i)

2

p̃n,iq̃n,i(Cn,i +Dn,i)
= Z2

n,i ·
s−

∑i−1
j=1 xj

N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj
,

where

Zn,i =
q̃n,iCn,i − p̃n,iDn,i√
(s−

∑i−1
j=1 xj)p̃n,iq̃n,i

= −
Bn,i − p̃n,i(s−

∑i−1
j=1 xj)√

(s−
∑i−1

j=1 xj)p̃n,iq̃n,i

L→ Z ∼ N(0, 1) .

Using first (S9) and then (S8), we find that

−2 ·Bi =

(
Cn,i

p̃n,i(Cn,i +Dn,i)
− 1

)2

·

(
Cn,i +Dn,i

p̃2
n,i

q̃2
n,i

)

= Z2
n,i ·

s−
∑i−1

j=1 xj

N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj
+ oP (1)

. Therefore,

Ai +Bi =
1

2
Z2
n,i ·

s−
∑i−1

j=1 xj

N −
∑i−1

j=1 nj − s+
∑i−1

j=1 xj
+ oP (1) .

Since
s−

∑i−1
j=1 xj

N

P→ θ
i−1∏
j=1

(1− p̃j) = θ(1−
i−1∑
j=1

pj) ,

we conclude that

Ln,i(Bn,i|Bn,1, . . . , Bn,i−1)
L→ (1− θ)−

1
2 exp

(
− θ

2(1− θ)
Z2

)
for i = 1, . . . , k−1,

where Z2 ∼ χ2
1, and therefore,

Ln(Mn) = Ln,1(Bn,1) · Ln,1(Bn,2|Bn,1) · · ·Ln,k(Bn,k|Bn,1, . . . , Ln,k(Bn,k−1)

L→ (1− θ)−
k−1
2 exp

{
− θ

2(1− θ)
χ2
k−1

}
.
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To prove (ii), note that

E

[
(1− θ)−

k−1
2 exp

{
− θ

2(1− θ)
χ2
k−1

}]
= 1 ,

since χ2
k−1 is the Chi-squared distribution with k − 1 degrees of freedom

and moment generating function ψ(t) = (1 − 2t)−
k−1
2 . Since the mean of

the limiting distribution has mean 1, by Theorem 12.3.2 (iii) of Lehmann

and Romano [2] Qn is contiguous with respect to Pn. Since the limiting

distribution has no mass at 0, by Problem 12.23 of Lehmann and Romano

[2], it also follows that Pn is contiguous to Qn. �

Proof of Lemma 5.3 Imagine V1, . . . , Vs are sampled in a two-stage pro-

cess. First M̄n = (M̄n,1, . . . , M̄n,k) is drawn from the multinomial distri-

bution with parameters s and p = (p1, . . . , pk), where s =
∑k

i=1 M̄n,i.

Then, V1, . . . , Vs are obtained by drawing M̄n,i i.i.d. observations from Pi
for i = 1, . . . , k. Similarly, let Hn,i denote the number of observations among

Zπ(1), . . . , Zπ(s) which were among theXi,1, . . . , Xi,ni , so thatHn = (Hn,1, . . . ,Hn,k)

has the hypergeometric distribution based on sampling s objects from N =∑k
i=1 ni, ni of which are Xi,1, . . . , Xi,ni . By Lemma 5.2, Remark 5.1 and

(5.14), M̄n and Hn are contiguous. Importantly, conditional on M̄n = Hn =

b = (b1, . . . , bk), the conditional probabilities

(S10) P{Wn(V1, . . . , Vs)− t| > ε|M̄n = b}

and

(S11) P{|Wn(Zπ(1), . . . , Zπ(s))− t| > ε|Hn = b}

are the same, because Wn is evaluated at a random sample of bi observations

from Pi for i = 1, . . . , k, in both cases. Let fn(M̄n) be defined by

(S12) fn(M̄n) ≡ P{|Wn(V1, . . . , Vs)− t| > ε|M̄n} .

By assumption (5.13),

E[fn(M̄n)]→ 0 ,

and hence

fn(M̄n)
P→ 0 ,
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by Markov’s inequality. But then, by contiguity,

fn(Hn)
P→ 0 ,

and so

(S13) E[fn(Hn)]→ 0 ,

since fn is uniformly bounded. But (S13) is exactly same as showing, for

any ε > 0, P{|Wn(Zπ(1), . . . , Zπ(s))− t| > ε} → 0 as s = s(n)→∞ . �

Remark A.2. The assumption (5.14) is stronger than the more basic as-

sumption ni/N → pi, where no rate is required between the difference ni/N

and pi. Alternatively, we can replace (5.14) with the more basic assumption

ni/N → pi as long as we slightly strengthen the requirement (5.13) to

Wn(Zn,1, . . . , Zn,s)
P→ t

when Zn,1, . . . , Zn,s are i.i.d. according to the mixture distribution
∑k

i=1
ni
N Pi

(rather than
∑k

i=1 piPi), so that the data distribution at time n depends

on n. We prefer to assume the convergence hypothesis based on an i.i.d.

sequence, though it is really a matter of choice. Usually, we can appeal to

some basic convergence in probability results with ease, but if convergence

in probability results are available (or can be derived) which are “uniform”

in the underlying probability distribution, then such results can be used

instead with the weaker hypothesis ni/N → pi for i = 1, . . . , k.

A.2. Proofs of Theorems in Section 2.. Proof of Theorem 2.1

First, argue in the case θ(P ) = µ(P ) =
∫
xdP (x), so fP (x) = x − θ(P ) for

all x, P and

Tm,n = N1/2(X̄m − Ȳn).

Independent of Zs, let (π(1), . . . , π(N)) and (π′(1), . . . , π′(N)) be indepen-

dent random permutations of {1, . . . , N}. We will show(
Tm,n(Zπ(i)), Tm,n(Zπ′(i))

)
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converges in distribution to a bivariate normal distribution with indepen-

dent, identically distributed marginals having mean 0 and variance

τ2(P̄ ) =
1

p(1− p)
σ2(P̄ ),

where σ2(P ) denotes the variance of P . To do this, we will use the coupling

argument of Lemma 5.1, and so we must verify (5.9) and (5.10). When all

observations are from the mixture distribution P̄ , the result (5.9) holds by

the arguments in Example 15.2.6 of Lehmann and Romano [2]. Moreover,

(5.10) is verified in the case of difference of means in Example 5.1. Thus,

the result is true.

Next, consider the case θ(P ) =
∫
f(x)dP (x), so fP (x) = f(x) − θ(P ).

However, this problem is the same as the mean case. Instead of observing

(Z1, . . . , ZN ) = (X1, . . . , Xm, Y1, . . . , Yn), we now observe (Z̃1, . . . , Z̃N ) =

(f(X1), . . . , f(Xm), f(Y1), . . . , f(Yn)) and we are interested in means of Z̃s.

Thus, the proof for this case would be the same as above except we replace

σ2(P ) = EP (Xi − µ(P ))2 with EP (fP (Xi)− θ(P ))2.

Finally, we consider the general case. Let π be a random permutation of

{1, . . . , N}, so that

Tm,n(Zπ(1), . . . , Zπ(N)) = N1/2[θ̂m(Zπ(1), . . . , Zπ(m))−θ̂n(Zπ(m+1), . . . , Zπ(N))] .

Let V1, V2, . . . be i.i.d. P̄ . By assumption,

(S14) N1/2[θ̂m(V1, . . . , Vm)− θ(P̄ )]− N1/2

m

m∑
i=1

fP̄ (Vi)
P→ 0 .

By Lemma 5.3 and (S14),

εm(Zπ(1), . . . , Zπ(m)) ≡ N1/2[θ̂m(Zπ(1), . . . , Zπ(m))−θ(P̄ )]−N
1/2

m

m∑
i=1

fP̄ (Zπ(i))
P→ 0 .

Similarly,

εn(Zπ(m+1), . . . , Zπ(N)) ≡ N1/2[θ̂n(Zπ(m+1), . . . , Zπ(N))−θ(P̄ )]−N
1/2

n

N∑
j=m+1

fP̄ (Zπ(j))
P→ 0 .

Hence, we can write

Tm,n(Zπ(1), . . . , Zπ(N)) =



EXACT AND ASYMPTOTICALLY ROBUST PERMUTATION TESTS S13

N1/2[
1

m

m∑
i=1

fP̄ (Zπ(i))−
1

n

N∑
j=m+1

fP̄ (Zπ(j))]+εm(Zπ(1), . . . , Zπ(m))−εn(Zπ(m+1), . . . , Zπ(N)) ,

and each of the last two terms goes to zero in probability. Therefore, we can

apply Theorem 5.2; that is, it suffices to determine the limit behavior of just

N1/2[
1

m

m∑
i=1

fP̄ (Zπ(i))−
1

n

N∑
j=m+1

fP̄ (Zπ(j))] ,

which reduces the problem to the previous case considered. �

Remark A.3. Using similar arguments, one can deduce the behavior of

the permutation distribution even if p = 0 (or p = 1). Of course, τ2(P̄ ) in

(2.5) is not properly defined now. But, the scaling factor
√
N in the definition

of Tm,n plays a minor role and can be replaced by
√

min(m,n) in order to

get a nondegenerate limiting distribution.

Remark A.4. As mentioned in Remark A.2, the assumption (2.4) is of

course a little stronger than the more basic assumption m/N → p, where

no rate is required between the difference m/N and p. Of course, we are

free to choose p as m/N in any situation, and the assumption is rather

innocuous. (Indeed, for any m0 and N0 with m0/N0 = p, we can always let

m and N tend to infinity with m = km0 and N = kN0 and let k → ∞.)

Alternatively, we can replace (2.4) with the more basic assumptionm/N → p

as long as we slightly strengthen the basic assumption that the statistic has

a linear expansion under P̄ = pP +qQ to also have a linear expansion under

sequences

P̄m,n =
m

N
P +

n

N
Q ,

which is a rather weak form of local uniform triangular array type of con-

vergence. We prefer to assume the convergence hypothesis based on an i.i.d.

sequence from a fixed P̄ , though it is really a matter of choice. Usually, we

can appeal to some basic convergence in distributions results with ease, but

if linear expansions are available (or can be derived) which are “uniform”

in the underlying probability distribution near P̄ , then such results can be

used instead with the weaker hypothesis pm → p.

Proof of Theorem 2.2: Write Vm,n = Vm,n(Z1, . . . , ZN ), where the Zi
are defined in (1.1). Let (π(1), . . . , π(N)) denote a random permutation of
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{1, . . . , N} (and independent of all other variables). We first will show that

(S15) V 2
m,n(Zπ(1), . . . , Zπ(N))

P→ τ2(P̄ ) .

To do this, it suffices to show that

(S16) σ̂2
m(Zπ(1), . . . , Zπ(m))

P→ σ2(P̄ )

and

(S17) σ̂2
n(Zπ(m+1), . . . , Zπ(N))

P→ σ2(P̄ ) .

But (S16) and (S17) both follow from Lemma 5.3. Now let RVm,n(·) denote

the permutation distribution corresponding to the statistic Vm,n, as defined

in (1.2) with T replaced by V . By Lemma A.1, R̂Vm,n(t) converges to δτ2(P̄ )(t)

for all t 6= τ2(P̄ ), where δc(·) denotes the c.d.f. of the distribution placing

mass one at the constant c. Using this fact together with Theorem 2.1, we

can apply Lemma A.3 to conclude that the permutation distribution of the

ratio of statistics Sm,n satisfies (2.9). �

A.3. Proofs in Section 3.. Proof of Lemma 3.1 First, consider

the case where θ(Pi) =
∫
fPi(x)dPi(x). Without loss of generality, assume

θ(Pi) = 0 for all i. Let Zn be the column vector with ith component

n
1/2
i f̂Pi/σi, where f̂Pi ≡ 1

ni

∑ni
j=1 fPi(Xi,j). Also, let I denote the k × k

identity matrix, let 1 denote the k× 1 vector of ones, and let Dn denote the

diagonal matrix with (i, i) entry Nσ2
i /ni. Then, we can write

Tn,0 = Z ′nPnZn .

where

Pn ≡ (I − D
−1/2
n 11′D

−1/2
n

1′D−1
n 1

) .

Of course, Zn converges in distribution to Z, where Z has the multivariate

normal distribution with mean 0 and covariance matrix I. If we let D denote

the diagonal matrix with (i, i) entry σ2
i /pi, then the convergence of Dn to

D (for each entry) as well as the convergence of D−1
n to D−1 implies (using

the continuous mapping theorem) that

Tn,0
d→ Z ′PZ ,
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where P is the matrix

(S18) P ≡ (I − D−1/211′D−1/2

1′D−11
) .

The matrix P is a symmetric idempotent or projection matrix, and its rank

therefore is its trace, which is then easily checked to be k − 1. Indeed, P

represents the projection orthogonal to the unit vector D−1/21/1′D−11. It

follows that Z ′PZ ∼ χ2
k−1, as required.

To handle Tn,1, let tn be the column vector with ith component n
1/2
i f̂Pi/σ̂n,i

and let D̂n be the diagonal matrix with (i, i) entry Nσ̂2
n,i/ni. Then, let P̂n

be the projection matrix where D is replaced by D̂n in the definition (S18)

of P . Of course by Slutsky’s Theorem, Zn− tn converges in probability to 0.

Also, D̂n converges in probability to D (as well as its inverse), P̂n converges

in probability to P , and so P̂n − Pn converges in probability to 0. Since

Tn,0 − Tn,1 = Z ′nPnZn − t′nP̂ntn

= (Zn − tn)′Pn(Zn − tn) + 2(Zn − tn)′Pntn + t′n(Pn − P̂n)tn
P→ 0 ,

then Tn,1 must have the same limiting distribution as that of Tn,0.

Finally, consider the general case when the estimators are asymptotically

linear as in (2.2). Let Wn and Vn be the column vector with ith component

n
1/2
i θ̂n,i/σi and n

1/2
i θ̂n,i/σ̂i, respectively. Then, the test statistics Tn,0 and

Tn,1 become

Tn,0 = W ′nPnWn and Tn,1 = V ′nPnVn .

Using the fact that Wn = Zn+oP (1) and Vn = tn+oP (1), we can apply the

continuous mapping theorem to conclude that both Tn,0 and Tn,1 converge in

distribution to the same limiting distribution as the previous case considered.

�

Proof of Theorem 3.1 Put all the N =
∑k

i=1 ni observations in one

vector

ZN ≡ (Z1, . . . , ZN ) = (X1,1, . . . , X1,n1 , . . . , Xk,1, . . . , Xk,nk
) ,

where Xi,1, . . . , Xi,ni are i.i.d. Pi for i = 1, . . . , k. Also, let Z̄N be a sample

of N i.i.d. observations

Z̄N ≡ (Z̄1, . . . , Z̄N ) ≡ (Z̄1,1, . . . , Z̄1,n1 , . . . , Z̄k,1, . . . , Z̄k,nk
)
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from the mixture distribution

P̄ ≡ p1P1 + · · ·+ pkPk .

Without loss of generality, we can assume θ(P̄ ) = 0 and we write σ2 =

σ2(fP̄ ) = EP̄ f
2
P̄

(Z̄i,j).

For now, we consider the case where all the N observations are i.i.d.,

so that Pi = P̄ for i = 1, . . . , k. First, we will show the randomization

distribution based on Tn,0, say R̂n,0(·), behaves the same as Tn,1. (Of course,

we can’t use Tn,0 as σ is unknown, but we treat it now in essence as if

it is known.) Let π = (π(1), . . . , π(N)) denote a random permutation of

{1, . . . , N} (and independent of the observations). From Theorem 5.1, we

must verify

(S19) (Tn,0(Z̄), Tn,0(Z̄π))
d→ (T, T ′) ,

where T and T ′ are independent and each distributed as the Chi-squared

distribution with degrees of freedom k − 1. (Note that we do not need to

consider the joint behavior of Tn,0 at Z̄π and at Z̄π′ , where π′ is another

independent random permutation, because since the Z̄i are i.i.d., Z̄π′ and Z̄

have the same distribution.) When all the N observations are i.i.d. P̄ , Tn,0
simplifies to

Tn,0 =
1

σ2

k∑
i=1

n1/2
i θ̂n,i −

k∑
j=1

n
1/2
j θ̂n,jn

1/2
i n

1/2
j /N

2

=
1

σ2

k∑
i=1

ni
(
f̄P̄ (Z̄n,i)− f̄P̄ (Z̄N )

)2
+ oP (1),

where f̄P̄ (Z̄n,i) = 1
ni

∑ni
j=1 fP̄ (Z̄i,j) and f̄P̄ (Z̄N ) = 1

N

∑N
l=1 fP̄ (Z̄l) and the

oP (1) term on the right side is derived from the condition (2.2) under P̄ .

Therefore, we can apply both Theorem 5.1 and Slutsky’s Theorem for

randomization distributions (Theorem 5.2); that is, it suffices to show that

the joint limit behavior(
1

σ2

k∑
i=1

ni
(
f̄P̄ (Z̄n,i)− f̄P̄ (Z̄N )

)2
,

1

σ2

k∑
i=1

ni
(
f̄P̄ (Z̄n,i)− f̄P̄ (Z̄N )

)2) d→ (T, T ′) .
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To do this, define

Vn,i = n
1/2
i f̄P̄ (Z̄n,i) = n

−1/2
i

N∑
l=1

fP̄ (Z̄l)I{l ∈ Ii}

and

V ′n,j = n
−1/2
j

N∑
l=1

fP̄ (Z̄l)I{π(l) ∈ Ij} ,

where Ii is the set of indices corresponding to the ith sample; that is, I1 =

{1, . . . , n1}. I2 = {n1 + 1, . . . , n1 + n2} , and ultimately Ik = {N − nk +

1, . . . , N}. We claim the joint asymptotic normality of

(Vn,1, . . . , Vn,k, V
′
n,1, . . . , V

′
n,k) .

To do this we use the Cramér-Wold device, i.e., we must show that

Vn ≡ VN (a, b) ≡
k∑
i=1

(aiVn,i + biV
′
n,i)

is asymptotically normal for any choices of constants ai and bi. We can write

Vn =

N∑
l=1

Cn,lfP̄ (Z̄l) ,

where

Cn,l =
k∑
i=1

[
aiI{l ∈ Ii}

n
1/2
i

+
biI{π(l) ∈ Ii}

n
1/2
i

]
.

Note that the Cn,l are random (as they depend on the random permuta-

tion π), but are independent of the Zl. By Lemma 11.3.3 in Lehmann and

Romano [2], a sufficient condition for

(S20)
N∑
l=1

Cn,lfP̄ (Z̄l)/

√√√√ N∑
l=1

C2
n,l

d→ N(0, σ2)

is

(S21)
maxl=1,...,N C

2
n,l∑N

l=1C
2
n,l

P→ 0



S18 E. CHUNG AND J. P. ROMANO

as N →∞. Note that

C2
n,l =

k∑
i=1

[
aiI{l ∈ Ii}

n
1/2
i

+
biI{π(l) ∈ Ii}

n
1/2
i

]
·
k∑
j=1

[
ajI{l ∈ Ij}

n
1/2
j

+
bjI{π(l) ∈ Ij}

n
1/2
j

]

=
k∑
i=1

a2
i

ni
I{l ∈ Ii}+

k∑
i=1

k∑
j=1

ai

n
1/2
i

bj

n
1/2
j

I{l ∈ Ii, π(l) ∈ Ij}

+
k∑
i=1

k∑
j=1

biaj

n
1/2
i n

1/2
j

I{π(l) ∈ Ii, l ∈ Ij}+
k∑
i=1

b2i
ni
I{π(l) ∈ Ii} .

Certainly,

max
l=1,...,N

C2
n,l = OP (1/N)→ 0 .

Furthermore,

N∑
l=1

C2
n,l =

k∑
i=1

a2
i

ni

N∑
l=1

I{l ∈ Ii}+

k∑
i=1

k∑
j=1

ai

n
1/2
i

bj

n
1/2
j

N∑
l=1

I{l ∈ Ii, π(l) ∈ Ij}

+

k∑
i=1

k∑
j=1

biaj

n
1/2
i n

1/2
j

N∑
l=1

I{π(l) ∈ Ii, l ∈ Ij}+

k∑
i=1

b2i
ni

N∑
l=1

I{π(l) ∈ Ii}

=
k∑
i=1

(a2
i+b

2
i )+

k∑
i=1

k∑
j=1

ai

n
1/2
i

bj

n
1/2
j

N∑
l=1

[I{l ∈ Ii, π(l) ∈ Ij}+I{π(l) ∈ Ii, l ∈ Ij}] .

Now, the term

(S22) An(i, j) ≡
N∑
l=1

I{l ∈ Ii, π(l) ∈ Ij}

represents the the ni indices in Ii such that, after permuted by π, are in

Ij ; hence, its distribution is that of the hypergeometric distribution when

sampling ni observations from N , of which nj are “special”. The expectation

of (S22) is then ninj/N . Hence,

E[An(i, j)/ni]→ pj

and V ar[An(i, j)/ni] = O(1/ni), implying

An(i, j)/ni
P→ pj .
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It follows that

(S23)
N∑
l=1

C2
n,l

P→
k∑
i=1

(a2
i + b2i ) + 2

k∑
i=1

k∑
j=1

aibjp
1/2
i p

1/2
j .

Of course, the right side of (S23) is nonnegative. By the Cauchy-Schwarz

inequality,

|
k∑
i=1

aip
1/2
i | ≤ [

k∑
i=1

a2
i ]

1/2 ,

with equality if and only if ai = cp
1/2
i for some constant c. It follows that

the right side of (S23) is greater than or equal to (A1/2 − B1/2)2, where

A =
∑

i a
2
i and B =

∑
i b

2
i , and is equal to 0 if and only if A = B, i.e.

ai = cp
1/2
i and bi = −cp1/2

i .

When the right side of (S23) is positive, we have that the condition (S21)

holds, and so

(S24)
N∑
l=1

Cn,lfP̄ (Z̄l)
d→ N(0, σ2[

k∑
i=1

(a2
i + b2i ) + 2

k∑
i=1

k∑
j=1

aibjp
1/2
i p

1/2
j ]) .

But, even if the right side of (S23) is zero, we can still claim
∑

l Cn,lfP̄ (Z̄l)

converges in distribution to N(0, 0), i.e., it converges in probability to 0.

To see why,
∑

l Cn,lfP̄ (Z̄l) has mean 0 and variance σ2
∑

lE(C2
n,l). But the

above argument showing
∑

l C
2
n,l converges to 0 in probability (in this case

only) shows that its expectation does as well.

In general, we can now conclude that

(Vn,1, . . . , Vn,k, V
′
n,1, . . . , V

′
n,k)

d→ (V, V ′)

is asymptotically multivariate normal with mean 0 (and each of V and V ′

are k-vectors). Moreover, by appropriate choices of constants ai and bi, we

can read off the covariance matrix from the limiting variance in (S24). In

particular, by taking ai = 1 and aj = 0 if j 6= i and taking bj = 0 for

all j, yields V ar(Vn,i) = σ2. Also, Cov(Vn,i, Vn,j) = 0 if i 6= j. Similarly,

V ar(V ′n,j) = σ2, and for i 6= j, (by taking ai = 1 = bj and the rest of the

constants 0),

(S25) Cov(Vn,i, V
′
n,j) = σ2(pipj)

1/2 .
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Of course, the statistic Tn,0 that is of current interest is indeed a function

of the Vn,i; however, the fact that the covariances in (S25) are nonzero

would not allow us to conclude the asymptotic independence of Tn,0(Z)

and Tn,0(Zπ). So we first need to consider a simple transformation of the

Vn,i and V ′n,j . For i = 1, . . . , k, define

Wn,i ≡ n1/2
i (f̄P̄ (Z̄n,i)− f̄P̄ (Z̄N ))

= Vn,i − n1/2
i f̄P̄ (Z̄N ) = Vn,i − (ni/N)1/2

k∑
m=1

p1/2
m Vn,m .

Similarly,

W ′n,j = V ′n,j − (nj/N)1/2
k∑

m=1

p1/2
m V ′n,m .

The joint asymptotic multivariate normality of the Vn,i together with the

V ′n,j implies the joint asymptotic multivariate normality of the Wn,i together

with the W ′n,j . Indeed,

(Wn,1, . . . ,Wn,k,W
′
n,1, . . . ,W

′
n,k)

d→ (W1, . . . ,Wk,W
′
1, . . . ,W

′
k) ,

where

Wi = Vi − p1/2
i

k∑
m=1

p1/2
m Vm

and

W ′j = V ′j − p
1/2
j

k∑
m=1

p1/2
m V ′m .

Importantly,

Cov(Wi,W
′
j) = Cov(Vi − p1/2

i

k∑
m=1

p1/2
m Vm, V

′
j − p

1/2
j

k∑
m=1

p1/2
m V ′m)

= Cov(Vi, V
′
j )− p1/2

j

k∑
m=1

p1/2
m Cov(Vi, V

′
m)− p1/2

i

k∑
m=1

p1/2
m Cov(Vm, V

′
j )

+(pipj)
1/2

k∑
l=1

k∑
m=1

(plpm)1/2Cov(Vl, V
′
m)
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= σ2[(pipj)
1/2 − p1/2

j

k∑
m=1

p
1/2
i pm − p1/2

i

k∑
m=1

p
1/2
j pm + (pipj)

1/2
k∑
l=1

k∑
m=1

plpm]

= σ2[(pipj)
1/2 − (pipj)

1/2 − (pipj)
1/2 + (pipj)

1/2] = 0 .

It follows that (W1, . . . ,Wk) and (W ′1, . . . ,W
′
k) are independent. But since

Tn,0(Z̄) =
1

σ2

k∑
i=1

W 2
n,i

d→ 1

σ2

k∑
i=1

W 2
i

and

Tn,0(Z̄π) =
1

σ2

k∑
i=1

(W ′n,i)
2 d→ 1

σ2

k∑
i=1

(W ′i )
2 ,

it now follows that Tn,0(Z̄) and Tn,0(Z̄π) are asymptotically independent.

Moreover, by Lemma 3.1, Tn,0(Z) is asymptotically Chi-squared with k − 1

degrees of freedom. Since, Tn,0(Zπ) has the same distribution as Tn,0(Z), it

has the same limiting distribution as well.

Next, we show the same result with Tn,1 replaced by Tn,0. However, by

the fact that Z and Zπ have the same distribution,

Tn,1(Z̄π)− Tn,0(Z̄π)
d
= Tn,1(Z̄)− Tn,0(Z̄) ,

and so by the proof of Lemma 3.1,

Tn,1(Z̄π)− Tn,0(Z̄π)
P→ 0 .

Writing Tn,1 = Tn,0 + [Tn,1−Tn,0], we can then apply Slutsky’s Theorem for

Randomization distributions to conclude that R̂n,1(·) has the same limiting

behavior as R̂n,0(·).
The proof is now complete under the assumption that all N observa-

tions are i.i.d. We now argue, using the coupling argument in Section sec-

tion:coupling, that the behavior of the permutation distribution under gen-

eral P1, . . . , Pk is the same as when all observations are i.i.d. with distribution

given by the mixture distribution P̄ . So, construct Z, Z̄ and Z̄π0 as in the

coupling construction. By Lemma 5.1, it now suffices to show that, for a

random permutation π,

(S26) Tn,1(Zπ)− Tn,1(Z̄ππ0)
P→ 0 .
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Write

(S27)

Tn,1(Z) =

k∑
i=1

1

σ̂2
n,i

[
n

1/2
i f̄Pi(Xn,i)−

∑k
j=1 n

1/2
j f̄Pi(Xn,i)(n

1/2
i n

1/2
j /N)/σ̂2

n,j∑k
j=1(nj/N)/σ̂2

n,j

]2

+oP (1) .

Then, Tn,1(Zπ) is computed by replacing

n
1/2
i f̄Pi(Xn,i) = n

1/2
i f̄Pi(Z) = n

−1/2
i

N∑
l=1

fPi(ZlI{l ∈ Ii})

with

n
1/2
i f̄Pi(Zπ) = n

−1/2
i

N∑
l=1

fPi(ZlI{π(l) ∈ Ii})

and σ̂2
n,i(Z) = σ̂2

n,i(ZlI{l ∈ Ii}) gets replaced by

σ̂2
n,i(Zπ) ≡ σ̂2

n,i(ZlI{π(l) ∈ Ii}) .

Note that the last oP (1) term in (S27) can be “negligible” by the Slutusky’s

Theorem for randomization distributions.

From (S27), it now suffices to show that, for each i,

(S28) n
1/2
i f̄Pi(Zπ)− n1/2

i f̄Pi(Z̄ππ0)
P→ 0

and

(S29) σ̂2
n,i(Zπ)− σ̂2

n,i(Z̄ππ0)
P→ 0 .

To show (S28), first note that the left side has mean 0; so, it suffices to

show its variance tends to 0. Now, remember that Zπ and Z̄ππ0 differ in at

most D = OP (N1/2) entries. But, conditional on π, π0 and the multinomial

variables (N1, . . . , Nk) in the coupling construction, for indices l where Zl 6=
Z̄π0(l),

V ar
(
fPi(Zl)− fPi(Z̄π0(l))|π, π0, N1, . . . , Nk

)
≤ 2V .

where V = max(σ2
1(fP1), . . . , σ2

k(fPk
)). But the left side of (S28) is

n
−1/2
i

N∑
l=1

[fPi(Zl)− fPi(Z̄π0(l))]I{π(l) ∈ Ii} ,
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and the sum here is conditionally a sum of at most D independent variables

with variance ≤ 2V . Hence, the variance of the left side of (S28) is condi-

tionally at most 2V D/ni, and hence the unconditional variance is at most

2V E(D)/ni → 0.

To show (S29), note that for i = 1, . . . , k,

σ̂2
n,i

(
Z̄1, . . . , Z̄ni

) P→ σ2(fP̄ ) ,

which implies σ̂2
n,i(Z̄π·π0))

P→ σ2. It also follows by Lemma 5.3 that

σ̂2
n,i

(
Zπ(l)I{π(l) ∈ Ii}

) P→ σ2(fP̄ ) .

Thus, the result (S29) now follows. �
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