
A MAJORIZATION-MINIMIZATION APPROACH TO

VARIABLE SELECTION USING SPIKE AND SLAB

PRIORS: SUPPLEMENTARY MATERIAL

SA. Some remarks on the log-sum function. We briefly discuss

properties of the log-sum function stated in (3.7). First, note that log(1 +

τ−1
3 |βj |) = log(τ3+|βj |)−log(τ3). By multiplying −1 to the sum

∑p
j=1 log(τ3+

|βj |) and let τ3 → 0, one obtains the logarithm of the product of 1/|βj | over

j = 1, 2, · · · , p. As pointed out by Tipping [7], the term 1/|βj | is an improper

version of Student’s t density. A rather different way is to see the log-sum

function
∑p

j=1 log(1 + τ−1
3 |βj |) as a product of logarithm of the generalized

Pareto density, which has a parametric form given by

pGP(z) =
1

a2

(
1 +

a3(z − a1)

a2

)−(1/a3+1)

for z ∈ (a1,∞), a1 ∈ (−∞,∞), a2 ∈ (0,∞), and a3 ∈ (−∞,∞). By multi-

plying −2 and adding a constant term −p log τ3 to
∑p

j=1 log(1 + τ−1
3 |βj |), it

becomes log
∏p

j=1 τ−1
3 (1 + |βj |/τ3)

−2, which is a logarithm of the product of

generalized Pareto densities with location parameter a1 = 0, scale parameter

a2 = τ3, and shape parameter a3 = 1.

The following two propositions state the relationships between the log-

sum function and the l0 and l1 norms. The first one states that the error rate
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between the log-sum function and the l0 norm measured by an l1 distance

is of order − log τ3 as τ3 → 0. Proofs of the two propositions will be given

in Appendix B.

Proposition SA.1. Define g1(βj ; τ3) = log(1 + τ−1
3 |βj |)/ log(1 + τ−1

3 )

and g2(βj) = I(βj 6= 0). Then for τ3 ∈ [0, 1), there exists a positive constant

C1 such that

∣∣∣∣g1(β; τ3) − g2(β)
∣∣∣∣

1
≤ C1

(
p

− log τ3

)
.(SA.1)

A graphical representation of Proposition SA.1 can be found in Figure

1. The next proposition states that the log-sum function can do better in

approximating the l0 norm than the l1 norm as τ3 → 0. On the other hand,

results in this proposition also implies that the log-sum function approaches

to l1 norm as τ3 → ∞. Sriperumbudur et al. [6] gave another heuristic

argument for this property.

Proposition SA.2. With the same notation used in Proposition SA.1,

for βj 6= 0 and s ∈ [0, 1], we have

lim
τ3→0

g1(βj ; τ3)

|βj |s
= |βj |

−s,

and

lim
τ3→∞

g1(βj ; τ3)

|βj |s
= |βj |

1−s.
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Therefore, limτ3→0 g1(βj ; τ3) = I(βj 6= 0) and limτ3→∞ g1(βj ; τ3) = |βj |.

SB. Connection with other approaches. Fuchs [5], Donoho et al.

[3], and Tropp [8] independently showed that under some regular conditions,

regression coefficients estimated with the l0 norm constraint can be approx-

imated by those estimated with the l1 norm constraint. The advantage of

using the l1 norm instead of the l0 norm as a constraint on regression coeffi-

cients is that minimization with an l1 norm constraint is a convex optimiza-

tion problem while the minimization problem with an l0 norm constraint is

combinatorial in nature.

However, as shown by Fan and Li [4], the l1 norm tends to provide larger

penalty values to large coefficients and smaller penalty values to small coef-

ficients. Therefore large coefficients tend to be biased estimated while zero-

valued coefficients tend to be estimated with non-zero values. On the other

hand, the l0 norm provides equal penalty values to all coefficients, therefore

is more likely to shrink small coefficients to zero and keep large coefficients

unchanged. Candés et al. [1] proposed a reweighted l1 approach for sparse

recovery. They showed that the l0 norm can be better approximated by the

sum of some log functions than the conventional l1 norm. Sriperumbudur

et al. [6] further explored the idea and used a modified log-sum function to

approximate the l0 norm in solving sparse generalized eigenvalue problems
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related to principal component analysis, canonical correlation analysis, and

Fisher’s discriminant analysis.

We have noticed that the use of binary indicators for variable selection

has been studied by Yuan and Lin under the name of non-negative gar-

rotte estimator [10]. However, the estimation procedure associated to the

non-negative garrotte estimator is quite different from the BAVA-MIO esti-

mation proposed in this paper. In Yuan and Lin’s proposal, the non-negative

garrotte estimation is carried out via a two stage procedure. In the first stage,

least squares estimation is proposed to obtain an initial estimate for each

regression coefficient. In the second stage, a soft-thresholding estimation is

proposed to obtain an estimate for the binary indicator associated to each

regression coefficient. Under the soft-thresholding estimation, the estimate

for the binary indicator is continuous on the interval between 0 and 1. In

this sense, the non-negative garrotte estimation can be seen as a shrinkage

estimation on the least squares estimate.

We have also noticed that the objective function stated in (3.15) is similar

to the one used to obtain the adaptive elastic net recently developed by Zou

and Zhang [11]. However, the weights used in the adaptive elastic net objec-

tive are fixed while in (3.15) the weights are iteratively changed throughout

the optimization procedure. In addition, the adaptive elastic net did not see
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the l1 norm with adaptive weights as an approximation to the l0 norm.

APPENDIX A: DERIVATION OF THE SOFT-THRESHOLDING

OPERATOR REPRESENTATION

In obtaining the BAVA-MIO estimator, the soft-thresholding operator

(3.16) is used to build a coordinate descent algorithm for approximating the

minimizer of the objective function (3.15). Generally speaking, a coordinate

algroithm is an iteration procedure aiming to minimize an objective function

coordinate-wisely. Here the word ”coordinate-wisely” means that at each

iteration only one coordinate of the minimizer is considered for optimization

given that all other coordinates are fixed. Here we focus on the jth coordinate

and derive an explicit form for the soft-thresholding operator (3.16). For

simplicity, we drop the index m1 in (3.16) and let ρ = ρλ,κ,σ2 φ̃. Define

β+
j = βj if βj ≥ 0 and β+

j = 0 if βj < 0. Further define β−
j = βj if

βj ≤ 0 and β−
j = 0 if βj > 0. With the definitions given above, we can

write |βj | = β+
j − β−

j and βj = β+
j + β−

j . Since we only focus on the jth

coordinate, we rewrite the l2 loss ||y − Xβ||22 as
∑n

i=1(r̃i,−j − xijβj)
2 for

notation convenience, where r̃i,−j = yi −
∑

j′ 6=j xij′ β̃j′ and β̃j′ ’s are fixed

constants. Note that given all other coordinates are fixed, the problem of

minimizing the objective function (3.15) with respect to βj is equivalent to
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the following constrained optimization problem:

minimize
n∑

i=1

(
r̃i,−j − xij(β

+
j + β−

j )

)2

subject to (β+
j + β−

j )2 ≤ t1, (β
+
j − β−

j ) ≤ t2,−β+
j ≤ 0, β−

j ≤ 0.(A.1)

The Lagrangian associated to problem (A.1) is given by

L(β+
j , β−

j , λ, ρ, ρ1, ρ2) =
n∑

i=1

(
r̃i−j − xij(β

+
j + β−

j )

)2

+λ[(β+
j + β−

j )2 − t1] + ρ(β+
j − β−

j − t2)

+ρ1(−β+
j ) + ρ2β

−
j .

The KKT conditions associated to problem (A.1) are given by

(β+
j + β−

j )2 − t1 ≤ 0, λ[(β+
j + β−

j )2 − t1] = 0,

β+
j − β−

j − t2 ≤ 0, ρ(β+
j − β−

j − t2) = 0,

−β+
j ≤ 0, ρ1(−β+

j ) = 0,

β−
j ≤ 0, ρ2β

−
j = 0,

λ, ρ, ρ1, ρ2 ≥ 0,

−2
n∑

i=1

xij r̃i,−j + 2β+
j

n∑

i=1

x2
ij + 2λβ+

j + ρ − ρ1 = 0,

−2
n∑

i=1

xij r̃i,−j + 2β−
j

n∑

i=1

x2
ij + 2λβ−

j − ρ + ρ2 = 0.(A.2)

For the third line in the KKT conditions (A.2), the complementary slackness

condition further implies that β+
j > 0 if and only if ρ1 = 0, and β+

j = 0 if
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and only if ρ1 > 0. A similar argument can be applied to the fourth line in

(A.2). With the arguments given above, the sixth and seventh lines in (A.2)

jointly imply that

∣∣∣∣
n∑

i=1

xij r̃i,−j

∣∣∣∣ ≤
ρ

2
(A.3)

if and only if βj = 0, and otherwise if and only if βj 6= 0. Now with condition

(A.3) and the sixth line in (A.2), we can derive a closed form solution for

β+
j , which is given by

β̃+
j =

( n∑

i=1

x2
ij + λ

)−1( n∑

i=1

xij r̃i,−j −
ρ

2

)

+

.(A.4)

A similar argument can be applied to derive a closed form solution for β−
j ,

which is given by

β̃−
j =

( n∑

i=1

x2
ij + λ

)−1( n∑

i=1

xij r̃i,−j +
ρ

2

)

−

.(A.5)

Combining (A.4) and (A.5), we get

β̃j =

( n∑

i=1

x2
ij + λ

)−1

ST

( n∑

i=1

xij r̃i,−j ,
ρ

2

)
,(A.6)

where ST (a, b) is a soft-thresholding operator defined by ST (a, b) = sign(a)(|a|−

b)+.
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APPENDIX B: PROOFS OF PROPOSITION SA.1 AND

PROPOSITION SA.2

Proof of Proposition SA.1. Note that

g1(βj ; τ3) − g2(βj) =
log(1 + τ−1

3 |βj |)

log(1 + τ−1
3 )

− I(βj 6= 0)

=
log(1 + τ−1

3 |βj |) − I(βj 6= 0) log(1 + τ−1
3 )

log(1 + τ−1
3 )

=
log(τ3 + |βj |) − I(βj 6= 0) log(τ3 + 1)

− log(τ3) + log(τ3 + 1)

+
(I(βj 6= 0) − 1) log(τ3)

− log(τ3) + log(τ3 + 1)
.

For the case of βj = 0,

log(1 + τ−1
3 |βj |)

log(1 + τ−1
3 )

− I(βj 6= 0) =
log(τ3) − log(τ3)

− log(τ3) + log(τ3 + 1)
= 0.(B.1)

For the case of βj 6= 0,

log(1 + τ−1
3 |βj |)

log(1 + τ−1
3 )

− I(βj 6= 0) =
log(τ3 + |βj |) − log(τ3 + 1)

− log(τ3) + log(τ3 + 1)
.(B.2)

The numerator in (B.2) is bounded from below and from above with βj 6= 0

and τ3 ∈ [0, 1), therefore there exist two positive constants C2, C3 ∈ R such

that

−∞ < −C2 ≤ log(τ3 + |βj |) − log(τ3 + 1) ≤ C3 < ∞,

for j = 1, 2, · · · , p, and we can bound the numerator in a way that

| log(τ3 + |βj |) − log(τ3 + 1)| ≤ C1,(B.3)
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where C1 = C2 ∨ C3. Further note that for τ3 ∈ [0, 1), the denominator

in (B.2) is always greater than zero. Therefore by using (B.1), (B.3) and

the fact that the denominator in (B.2) is a positive constant, we can bound

||g1(β; τ3) − g2(β)||1 in a way such that

||g1(β; τ3) − g2(β)||1 =
p∑

j=1

∣∣∣∣
log(1 + τ−1

3 |βj |)

log(1 + τ−1
3 )

− I(βj 6= 0)

∣∣∣∣

≤
p∑

j=1

C1

∣∣∣∣
1

− log τ3 + log(τ3 + 1)

∣∣∣∣

≤ C1

(
p

− log τ3

)
,

which completes the proof.

Proof of Proposition SA.2. By direct calculation, we have

lim
τ3→0

g1(βj ; τ3)

|βj |s
=

1

|βj |s
× lim

τ3→0

− log(τ3) + log(τ3 + |βj |)

[− log(τ3) + log(τ3 + 1)]
=

1

|βj |s
× 1 = |βj |

−s.

On the other hand,

lim
τ3→∞

g1(βj ; τ3)

|βj |s
=

1

|βj |s
× lim

τ3→∞

[
τ3 log

(
τ3 + |βj |

τ3

)][
τ3 log

(
τ3 + 1

τ3

)]−1

= |βj |
−s ×

log exp(|βj |)

log exp(1)

= |βj |
1−s,

which completes the proof.

APPENDIX C: PROOF OF THEOREM 5.1

We will use the following notations in the proof. For two vector a =

(a1, a2, · · · , ap) and b = (b1, b2, · · · , bp), the notation |a| ≤ |b| means pairwise
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inequalities hold for elements in a and b, i.e. |aj | ≤ |bj | for j = 1, 2, · · · , p.

Similar operations are applicable to |a| > |b|, |a| ≥ |b|, |a| < |b| and the

function max(a, b). In addition, let 1∗p∗ denote the p∗-dimensional vector

with entries all equal to 1.

Proof of Theorem 5.1. Define ŵτ3 = β̂τ3 −β. The sign consistency implies

that if βj > 0, then ŵτ3
j = β̂τ3

j − βj > −βj should hold; if βj < 0, ŵτ3
j =

β̂τ3
j − βj < −βj should hold; if βj = 0, ŵτ3

j = β̂τ3
j − βj = 0 should hold. In

addition, it can be shown that ŵτ3 is the minimizer of the following function

L(w) = ||ǫ − Xw||22 + λ||w + β||22 + ρ
p∑

j=1

log(1 + τ−1
3 |w + βj |)

log(1 + τ−1
3 )

,

where ǫ = y − Xβ. It means that ŵτ3 is the solution for the following

subgradient equations:

2





XT
S0

XS0
XT

S0
XSc

0

XT
ScXS0

XT
Sc

0

XSc

0









ŵτ3
S0

ŵτ3
Sc

0



− 2





XT
S0

ǫ

XT
Sc

0

ǫ





+2λ





β̂τ3
S0

β̂τ3
Sc

0









sign(β̂τ3
S0

)/(τ3 + |β̂τ3
S0
|)

sign(β̂τ3
Sc

0

)/(τ3 + |β̂τ3
Sc

0

|)




ρ

log(1 + τ−1
3 )

= 0.

Then following conditions are necessary and sufficient for event E0,τ3 :

E1 =

{
β : XT

S0
XS0

ŵτ3
S0

− XT
S0

ǫ + λ(ŵτ3
S0

+ βS0
)

= −
ρ · sign(βS0

)

2(τ3 + |ŵτ3
S0

+ βS0
|) log(1 + τ−1

3 )

}
,
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and

E3 =

{
β : −

ρ

2τ3 log(1 + τ−1
3 )

1∗|Sc

0
| ≤ XT

Sc

0

XS0
ŵτ3

S0
− XT

Sc

0

ǫ

≤
ρ

2τ3 log(1 + τ−1
3 )

1∗|Sc

0
|

}
.

We will restrict our discussion on the following case:

E2 =

{
β : |ŵτ3

S0
| < |βS0

|

}
.(C.1)

Remember that S0 = {j : βj 6= 0}, therefore if (C.1) holds, then β̂τ3
S0

6= 0

will hold. To see why it is, let us consider the case when βj > 0. Given that

βj > 0, the event E2 implies −βj < ŵτ3
j = β̂τ3

j − βj < βj , which further

implies β̂τ3
j can not be zero. Moreover, β̂τ3

j has some value greater than zero.

The same argument can be applied to the case when βj < 0. Technically we

express |β̂τ3
S0
| = δ and given (C.1), δ > 0 almost surely.

To continue our proof, we first solve the equations in E1 to obtain a

representation for ŵτ3
S in terms of CSS0

and DS0
. The representation is given

by

ŵτ3
S = n−1C−1

SS0

(
n1/2DS0

−
ρ · sign(βS0

)

2(τ3 + δ) log(1 + τ−1
3 )

− λβS0

)
.(C.2)

Then by plugging (C.2) on the left hand side of E2, we obtain the following
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inequality:

∣∣∣∣n
−1/2C−1

SS0
DS0

− n−1C−1
SS0

(
ρ · sign(βS0

)

2(τ3 + δ) log(1 + τ−1
3 )

+ λβS0

)∣∣∣∣

≤ n−1/2|C−1
SS0

DS0
|

+
ρ

2n

∣∣∣∣C
−1
SS0

(
sign(βS0

)

(τ3 + δ) log(1 + τ−1
3 )

+
2λ

ρ
βS0

)∣∣∣∣

(C.3)

If the right hand side of (C.3) is smaller than |βS0
|, then E2 will hold. Denote

the event by E′
2. Equivalently, E′

2 can be written as

E′
2 =

{
β : |C−1

SS0
DS0

| < n1/2|βS0
|

−
ρ

2n1/2

∣∣∣∣C
−1
SS0

(
sign(βS0

)

(τ3 + δ) log(1 + τ−1
3 )

+
2λ

ρ
βS0

)∣∣∣∣

}
.

Obviously, E′
2 ⊆ E1 ∩ E2. On the other hand, by plugging (C.2) in the

middle term of E3 and taking absolute value on it, we obtain the following

inequality:

∣∣∣∣n
1/2CScS0

C−1
SS0

DS0

−CScS0
C−1

SS0

(
ρ · sign(βS0

)

2(τ3 + δ) log(1 + τ−1
3 )

+ λβS0

)
− n1/2DSc

0

∣∣∣∣

≤ n1/2

∣∣∣∣CScS0
C−1

SS0
DS0

− DSc

0

∣∣∣∣

+

∣∣∣∣CScS0
C−1

SS0

(
ρ · sign(βS0

)

2(τ3 + δ) log(1 + τ−1
3 )

+ λβS0

)∣∣∣∣.(C.4)

If the right hand side of (C.4) is smaller than ρ[2τ3 log(1+τ−1
3 )]−11∗|Sc

0
|, then
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E3 will hold. Denote the event by E′
3. Equivalently, E′

3 can be written as

E′
3

=

{
β : |CScS0

C−1
SS0

DS0
− DSc

0
| ≤

ρ

2τ3 log(1 + τ−1
3 )n1/2

×

(
1∗|S∗

0
| −

∣∣∣∣CScS0
C−1

SS0

(
τ3 · sign(βS0

)

(τ3 + δ)
+

2τ3 log(1 + τ−1
3 )λ

ρ
βS0

)∣∣∣∣

)}
.

(C.5)

Obviously E′
3 ⊆ E1 ∩ E3.

Note that E2 is a restricted event, and since E1 and E3 are necessary and

sufficient for E0,τ3 , we have E1∩E2∩E3 ⊆ E0,τ3 . Now by using the fact that

P(E1 ∩ E2 ∩ E3) ≥ P(E′
2 ∩ E′

3), we have

P(E0,τ3) ≥ P(E′
2 ∩ E′

3)

= 1 − P(E′,c
2 ∪ E′,c

3 )

≥ 1 −
[
P(E′,c

2 ) + P(E′,c
3 )
]

Here E′,c
2 and E′,c

3 are the complements of E′
2 and E′

3, respectively. To bound

the probability P(E′,c
2 ) + P(E′,c

3 ), first note that by Assumption 2 and the

assumption that p ∝ nα, we have ||DS0
||∞ ≤ ||DS0

||1 = n−1/2||XT
S0

ǫ|| ≤

n−1/2||XT ǫ||1 = O(n−1/2p) = O(nα−1/2). Then

||C−1
SS0

DS0
||∞ ≤ Λmin(CSS0

)−1||DS0
||∞ < c10n

α−1/2

by Assumption 1, where c10 is a positive finite constant. In addition, by

Assumption 3, the second term on the right hand side of the inequality in
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E′
2 will goes to 0 as n → ∞. Therefore for E′,c

2 , we have

P(E′,c
2 ) ≤ P

(
||C−1

SS0
DS0

||∞ ≥ n1/2 max
j

|βj |

)

≤ P

(
c10n

α−1/2 ≥ n1/2 max
j

|βj |

)
→ 0(C.6)

for 0 < α < 1 as n → ∞. On the other hand, for the term on the left hand

side of the ineuqality in E′
3, we have

||CScS0
C−1

SS0
DS0

− DSc

0
||∞

≤ ||CScS0
DS0

||∞Λmin(CSS0
)−1 + ||DSc

0
||∞

≤ n−1||DSc

0
||∞

Λmax(X
T
S0

XS0
)

n−1[Λmin(XT
S0

XS0
) + λ]

+ ||DSc

0
||∞,

(C.7)

which is also bounded from above by Assumption 1 and Assumption 2.

Further note that since τ3 ∝ n−1, therefore for τ3 = c8n
−1 with 0 < c8 < ∞

we have

τ3 log(1 + τ−1
3 )n1/2 =

log(1 + n/c8)
c8

n1/2
→ 0(C.8)

as n → ∞. In addition, the last term on the right hand side of the inequality

in E′
3 also approaches to 0 as n → ∞ under the assumption that τ3 ∝

n−1. This event guarantees that the quantity on the right hand side of the

inequality in E′
3 will remain non-negative as n → ∞. Therefore by using
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(C.7), we can bound the probability of E′,c
3 by

P(E′,c
3 )

≤ P

(
||DSc

0
||∞

Λmax(X
T
S0

XS0
)

Λmin(XT
S0

XS0
) + λ

+ ||DSc

0
||∞ >

ρ

2τ3 log(1 + τ−1
3 )n1/2

)
,

(C.9)

which will approach to 0 for 0 < α < 1/2 as n → ∞ by (C.8) and the

assumption that ||DSc

0
||∞ ≤ n−1/2||XT ǫ||1 = O(nα−1/2). By (C.6) and (C.9),

when 0 < α < 1/2 and τ3 ∝ n−1, we have P(E′,c
2 ) + P(E′,c

3 ) → 0, therefore

P(E0,τ3) → 1 as n → ∞, which completes the proof.

The following proposition summarizes the invariance of the BAVA-MIO

estimator under the Irrepresentable Condition.

Corollary C.1. Assume that δ > 0, τ3 ∝ n−1 and

1∗|Sc

0
| · 0 <

∣∣∣∣CScS0
C−1

SS0

(
sign(βS0

)

(τ3 + δ)

)∣∣∣∣ < 1∗|Sc

0
| · ∞.(C.10)

Then given Assumptions 1 and 3 hold, for estimator defined in (5.1), the

inequality stated in E′
3 will hold under the following condition:

1∗|Sc

0
| ≤

∣∣CScS0
C−1

SS0
sign(βS0

)
∣∣ < 1∗|Sc

0
| · ∞.(C.11)

Proof of Corollary C.1. We start the proof by defining

α1 = max

(
1,

|CScS0
C−1

SS0
sign(βS0

)|

|CScS0
C−1

SS0
[sign(βS0

)(τ3 + δ)−1]|

)
.

α2 = max

(
1,

|CScS0
C−1

SS0
[sign(βS0

)(τ3 + δ)−1]|

|CScS0
C−1

SS0
sign(βS0

)|

)
.
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Given Assumption 1, we have α1 < ∞, and given (C.11), we have α2 < ∞.

The second term on the right hand side of the inequality in E′
3 can be

bounded from below in a way such that

1∗|Sc

0
| −

∣∣∣∣CScS0
C−1

SS0

(
τ3 · sign(βS0

)

(τ3 + δ)
+

2τ3 log(1 + τ−1
3 )λ

ρ
βS0

)∣∣∣∣

≥ 1∗|Sc

0
| −

∣∣∣∣CScS0
C−1

SS0

(
τ3 · sign(βS0

)

(τ3 + δ)

)∣∣∣∣

−
2τ3 log(1 + τ−1

3 )λ

ρ

∣∣CScS0
C−1

SS0
βS0

∣∣

(C.12)

The final term on the right hand side of (C.12) approaches to zero as n → ∞

given that τ3 ∝ n−1 and Assumption 3 holds. The first two terms on the

right hand side of (C.12) can be bounded in a way such that

1∗|Sc

0
| −

∣∣∣∣CScS0
C−1

SS0

(
τ3 · sign(βS0

)

(τ3 + δ)

)∣∣∣∣

≥ 1 − τ3α1

∣∣∣∣CScS0
C−1

SS0

(
sign(βS0

)

(τ3 + δ)

)∣∣∣∣

= 1∗|Sc

0
| − τ3 max

(
|CScS0

C−1
SS0

[sign(βS0
)(τ3 + δ)−1]|,

|CScS0
C−1

SS0
sign(βS0

)|
)

= 1∗|Sc

0
| − τ3 max

(
|CScS0

C−1
SS0

[sign(βS0
)(τ3 + δ)−1]|

|CScS0
C−1

SS0
sign(βS0

)|
, 1

)

×|CScS0
C−1

SS0
sign(βS0

)|

= 1∗|Sc

0
| − τ3α2|CScS0

C−1
SS0

sign(βS0
)|,

(C.13)
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Given that τ3 ∝ n−1, the second term on the right hand side of (C.13)

approaches to 1∗|Sc

0
| · 0 as n → ∞, which implies that E′

3 can still hold under

(C.11), i.e. the Irrepresentable Condition is violated.

APPENDIX D: PROOF OF THEOREM 5.2

We first prove the following Lemma.

Lemma D.1. Assume S 6= S0. Then given Assumptions 4 to 6 hold,

there exist some positive constants n∗ and ξ such that

log f(yn| MS0
) − log f(yn| MS) + log f(MS0

) − log f(MS) > nξ.

for n > n∗.

Proof of Lemma D.1. For the Bayesian hierarchical model stated in (3.1),

the Bayes’ factor between MS and MS0
is given by

BF(MS ,MS0
; yn)

=
f(yn| γ, τ1, τ2, λ)

f(yn| γ0, τ1, τ2, λ)

=
|λ−1XT

S0
XS0

+ I|S0||
1/2

|λ−1XT
S XS + I|S||1/2

Γ((n + 2τ1)/2)

Γ((n + 2τ1)/2)

×

[
(yn)T

(
XS0

XT
S0

+ λIn
)−1

yn + 2λ−1τ2
][(n+2τ1)/2]

[
(yn)T

(
XSXT

S + λIn
)−1

yn + 2λ−1τ2
][(n+2τ1)/2]

=

[
(yn)T

(
XS0

XT
S0

+ λIn
)−1

yn + 2λ−1τ2

(yn)T
(
XSXT

S + λIn
)−1

yn + 2λ−1τ2

][(n+2τ1)/2]

×H(X, γ, γ0, λ),(D.1)
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where H(X, γ, γ0, λ) is some function that collects the remainder terms.

It can be shown that under Assumption 1, H(X, γ, γ0, λ) is bounded. By

Assumption 6, we can bound the term (yn)T
(
XS0

XT
S0

+λIn
)−1

yn from above

in a way such that

(yn)T (XS0
XT

S0
+ λIn

)−1
yn ≤

(yn)T yn

Λmin(XS0
XT

S0
) + λ

≤
(yn)T yn

Λmin(XS0
XT

S0
)

< (yn)T (XSXT
S + λIn

)−1
yn,(D.2)

which further implies that

(yn)T
(
XS0

XT
S0

+ λIn
)−1

yn

(yn)T
(
XSXT

S + λIn
)−1

yn
< 1.(D.3)

The inequality (D.3) implies that the logarithm of Bayes’s factor (D.1) is

bounded away from above for all n. Define

K1 =
1

2
log

(
(yn)T

(
XS0

XT
S0

+ λIn
)−1

yn + 2λ−1τ2

(yn)T
(
XSXT

S + λIn
)−1

yn + 2λ−1τ2

)

K2 = τ1K1 + log H(X, γ, γ0, λ).

We can express the logarithm of Bayes’ factor (D.1) in terms of K1 and K2

as

log BF(MS ,MS0
; yn) = log f(yn| MS) − log f(yn| MS0

)

= nK1 + K2.(D.4)
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Since K1 < 0 and K2 is bounded, (D.4) will converge to −∞ as n → ∞.

From (D.4) we can see that

log f(yn| MS0
) − log f(yn| MS) + log f(MS0

) − log f(MS)

= −nK1 − K2 + log
f(MS0

)

f(MS)

= n

(
− K1 −

K2 − log f(MS0
) + log f(MS)

n

)
.

Let K3 = K2 − log f(MS0
) + log f(MS). Note that −K1 > 0, therefore, for

K3 < 0, we let ξ∗ such that 0 < ξ∗ < −K1. For K3 > 0, we choose some

n∗ < n so that −K1 − K3/n > −K1 − K3/n∗ = ξ∗∗ > 0. Let ξ = ξ∗ ∧ ξ∗∗

and n∗ satisfying the condition given above, we complete the proof.

Proof of Theorem 5.2. Note that the posterior probability P(MS0
| yn)

can be expressed in terms of Bayes’ factors as

P(MS0
| yn) = 1 −

∑
S′ 6=S0

BF(MS′ ,MS0
; yn)f(MS′)

∑
S∈S BF(MS ,MS0

; yn)f(MS)
.(D.5)

The first step for proving the theorem is to bound the tail probability (D.5)

from below. We focus on deriving an upper bound for the second term on the

right hand side of (D.5). One trick to derive this upper bound is to derive

a lower bound for the denominator and an upper bound for the numerator.

Define

S1 =

{
S : log BF(MS ,MS0

; yn) ≥ −
nξ

2

}
.
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Now for the denominator, we have

∑

S∈S

BF(MS ,MS0
; yn)f(MS)

=
∑

S∈S1

BF(MS ,MS0
; yn)f(MS) +

∑

S∈Sc

1

BF(MS ,MS0
; yn)f(MS)

≥ |S1|
∑

S∈S1

1

|S1|
exp[log BF(MS ,MS0

; yn) + log f(MS)].(D.6)

Since (D.6) is a sum of convex functions, a lower bound can be derived in a

way such that

|S1|
∑

S∈S1

1

|S1|
exp[log BF(MS ,MS0

; yn) + log f(MS)]

≥ |S1| exp

{
1

|S1|

∑

S∈S1

log BF(MS ,MS0
; yn) +

1

|S1|

∑

S∈S1

log f(MS)

}

= |S1| exp

{
−

1

|S1|

∑

S∈S1

log
f(yn| MS0

)

f(yn| MS)
+

1

|S1|

∑

S∈S1

log f(MS)

}
.(D.7)

Now we turn to derive an upper bound for the numerator. Define

S̃ = arg max
S′∈S\S0

{
log BF(MS′ ,MS0

; yn) + log f(MS′)

}
.

An upper bound for the numerator can be derived in a way that

∑

S′ 6=S0

exp

{
log BF(MS′ ,MS0

; yn) + log f(MS′)

}

≤ 2p max
S′∈S\S0

exp

{
log BF(MS′ ,MS0

; yn) + log f(MS′)

}

≤ 2p exp

(

max
S′∈S\S0

{
log BF(MS′ ,MS0

; yn) + log f(MS′)

})

= 2p exp

{
log BF(MS̃ ,MS0

; yn) + log f(MS̃)

}
.(D.8)
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Further define

c3 =
1

|S1|
exp

{
−

1

|S1|

∑

S∈S1\S0

log f(MS)

}
.(D.9)

Here |S1| is the number of elements in S1. Obviously 0 ≤ c3 < ∞. Now with

(D.7), (D.8), (D.9), the result of Lemma (D.1) and the assumption that

p ∝ nα, the tail probability on the right hand side of (D.5) can be bounded

from below in a way such that

1 −

∑
S′ 6=S0

exp[log BF(MS′ ,MS0
; yn) + log f(MS′)]

∑
S∈S exp[log BF(MS ,MS0

; yn) + log f(MS)]

≥ 1 − 2pc3 exp

{
− log

f(yn| MS0
)

f(yn| MS̃)

+ log
f(MS̃)

f(MS0
)

+
1

|S1|

∑

S∈S1

log
f(yn| MS0

)

f(yn| MS)

}

≥ 1 − c3 exp

{
p log 2 −

[
log

f(yn| MS0
)

f(yn| MS̃)
− log

f(MS̃)

f(MS0
)

]
+

nξ

2

}

≥ 1 − c3 exp

(
c11n

α log 2 −
nξ

2

)
,

= 1 − c3 exp

{
−

nα

2

(
n1−αξ − c11 log 4

)}
,

(D.10)

where c11 is a finite positive constant. Now by (D.10), we can see that for

0 < α < 1, the probability P(MS0
| yn) → 1 as n → ∞, therefore the proof

is completed.
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APPENDIX E: PROOF OF THEOREM 5.3

Proof of Theorem 5.3. First define the ridge estimator β̂ridge by

β̂ridge = arg min

{
||y − Xβ||22 + λ||β||22

}

Note that the ridge estimator has a closed form solution that β̂ridge =

(XT X + λIp)
−1XT y. The definitions of β̂τ3 and β̂ridge imply that

||y − Xβ̂τ3 ||22 + λ||β̂τ3 ||22 − ||y − Xβ̂ridge||22 − λ||β̂ridge||22

= (β̂τ3)T (XT X + λIp)β̂
τ3

−(β̂ridge)T (XT X + λIp)β̂
ridge

−2yT Xβ̂τ3 + 2yT Xβ̂ridge.(E.1)

The last two terms on the right hand side of (E.1) can be rearranged as

− 2yT Xβ̂τ3 + 2yT Xβ̂ridge

= −2(β̂ridge)T (XT X + λIp)β̂
τ3

+2(β̂ridge)T (XT X + λIp)β̂
rigde.

Therefore

||y − Xβ̂τ3 ||22 + λ||β̂τ3 ||22 − ||y − Xβ̂ridge||22 − λ||β̂ridge||22

= (β̂τ3 − β̂ridge)T (XT X + λIp)(β̂
τ3 − β̂ridge),
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and in turn,

(Λmin(X
T X) + λ)||β̂τ3 − β̂ridge||22

≤ (β̂τ3 − β̂ridge)T (XT X + λIp)(β̂
τ3 − β̂ridge)

= ||y − Xβ̂τ3 ||22 + λ||β̂τ3 ||22

−||y − Xβ̂ridge||22 − λ||β̂ridge||22

≤ ρ1

p∑

j=1

log

(
1 + τ−1

3 |β̂ridge|

1 + τ−1
3 |β̂τ3 |

)
,(E.2)

by definition of β̂τ3 , where ρ1 = ρ[log(1 + τ−1
3 )]−1. Rearranging (E.2) we

have

||β̂τ3 − β̂ridge||22 ≤
ρ1

Λmin(XT X) + λ

p∑

j=1

log

(
1 + τ−1

3 |β̂ridge
j |

1 + τ−1
3 |β̂τ3

j |

)
.(E.3)

Let Ŝ denote the estimated index set of β̂τ3
j 6= 0. By using the inequality

log θ ≤ θ − 1 for θ > 0, we can bound the right hand side of (E.3) in a way

such that

ρ1

p∑

j=1

log

(
1 + τ−1

3 |β̂ridge
j |

1 + τ−1
3 |β̂τ3

j |

)
≤ ρ1

∑

j∈Ŝ

(
τ3 + |β̂ridge

j |

τ3 + |β̂τ3
j |

− 1

)

+ρ
∑

j∈Ŝc

log(1 + τ−1
3 |β̂ridge

j |)

log(1 + τ−1
3 )

= ρ
∑

j∈Ŝ

|β̂ridge
j | − |β̂τ3

j |

(τ3 + |β̂τ3 |) log(1 + τ−1
3 )

+ρ
∑

j∈Ŝc

log(1 + τ−1
3 |β̂ridge

j |)

log(1 + τ−1
3 )

.

(E.4)
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Note that the second term on the right hand side of (E.4) approaches to

ρ|Ŝc| as τ3 → 0 with β̂ridge
j 6= 0 for j ∈ Ŝc. In addition, the term

1

(τ3 + |β̂τ3 |) log(1 + τ−1
3 )

→ 0

as τ3 → 0 given that β̂τ3
j 6= 0 for j ∈ Ŝ. Therefore

lim
τ3→0

ρ1

p∑

j=1

log

(
1 + τ−1

3 |β̂ridge
j |

1 + τ−1
3 |β̂τ3

j |

)
≤ ρ|Ŝc|.(E.5)

By using the inequality (E.5) with β̂BMIO = limτ3→0 β̂τ3 and |Ŝc| ≤ p, we

have

||β̂ridge − β̂BMIO||
2
2 ≤

ρp

Λmin(XT X) + λ
(E.6)

In addition, as shown in the Theorem 1 of Zou and Zhang [11], the quantity

||β̂ridge − β0||
2
2 can be bounded by

||β̂ridge − β0||
2
2 ≤

2λ2||β0||2 + 2pΛmax(X
T X)σ2

(Λmin(XT X) + λ)2
(E.7)

By using the results in (E.6), (E.7) and Assumption 1, we can bound the

quantity EY [||β̂BMIO − β0||
2
2] in a way such that

EY [||β̂BMIO − β0||
2
2]

≤ 2EY [||β̂BMIO − β̂ridge||22] + 2EY [||β̂ridge − β0||
2
2]

≤
2ρp(Λmin(X

T X) + λ)

(Λmin(XT X) + λ)2
+

4λ2||β0||
2
2 + 4pΛmax(X

T X)σ2

(Λmin(XT X) + λ)2

≤
2ρpnc2 + 4λ2||β0||

2
2 + 4pnc2σ

2

(nc1 + λ)2

≤
2ρpc2 + 4n−1λ2||β0||

2
2 + 4pc2σ

2

nc2
1

.(E.8)
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Further by using Markov’s inequality, the probability P(||β̂BMIO−β0||
2
2 > ξn)

can be bounded by

P

(
||β̂BMIO − β0||

2
2 > ξn

)
≤

2ρpc2 + 4n−1λ2||β0||
2
2 + 4pc2σ

2

nc2
1ξn

≤
2pρc2 + 4n−1λ2pc4 + 4pc2c5

nc2
1ξn

≤
2pρc2 + 4λ2pc4 + 4pc2c5

nc2
1ξn

(E.9)

for n > 1. We let c7 = (2ρc2 + 4λ2c4 + 4c2c5)/c2
1, then with the assumption

that p ∝ nα, the right hand side of (E.9) becomes c7p(ξnn)−1= c7c12n
α−1ξ−1

n ,

where c12 is a positive finite constant. Then (E.9) can be re-expressed as

P

(
||β̂BMIO − β0||

2
2 > ξn

)
≤ c13 exp

{
− log(n1−αξn)

}
,(E.10)

where c13 = c7c12. If ξn ∝ n−α∗

, then n1−αξn ∝ n1−(α+α∗). Then under the

condition 0 < α∗ < α < 1/2, the term n1−(α+α∗) → ∞ as n → ∞. Therefore

if 0 < α∗ < α < 1/2, the right hand side of (E.10) will approach to 0, which

completes the proof.
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Fig 1. The absolute difference between the l0 norm and its log-sum approximation.
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Fig 2. Heapmaps based on GAP (the generalized association plots) for the S-FPR (left) and
rankings of the S-FPR (right) of the five estimation approaches under the 45 simulation
scenarios.

The heatmaps are generated by using the graphical software GAP (Gen-

eralized Associated Plots), which was developed by Wu, Tien and Chen [9]

as companion software to [2]. The GAP-based heatmaps further suggest that

using BAVA-MIO estimation can lead to more accurate variable selection.
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Fig 3. Results of the BAVA-MIO estimation for Golub’s gene expression data. The training
and test errors, and the number of included variables at logarithm scale along the regu-
larization path under the three BAVA-MIO estimations are shown in the first panel and
second panel, respectively, while the estimated label probabilities for the total 72 patients
under the three BAVA-MIO estimations are shown in the bottom panel. Left: λ

∗ = 0.05;
Center λ

∗ = 0.1; Right λ
∗ = 0.5. Top: the CV error and test error against the tuning pa-

rameter; Middle: logarithm of the number of selected genes against the tuning parameter;
Bottom: scatter plot for estimated label probabilities. The vertical dash line in each plot in
the top two panels indicates where the tuning parameter is selected.
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