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Abstract

We illustrate a Bayesian shape restricted regression method in making inference on the
time course expression profile of a virus gene, using data from microarray experiments.
The prior is introduced through Bernstein polynomials so as to take into consideration the
geometry of the regression functions, which are assumed to be zero initially, increasing after
a while and staying positive later on. A reversible jump Metropolis-Hastings algorithm is
used to generate the posterior distribution. We evaluate the performance of this method in
a simulation study and illustrate its use by analyzing the microarray data of a virus gene.
One advantage of this method is that it offers an assessment of the strength of the evidence
provided by the data in favor of hypothesis on the shape of the regression function; for
example, the hypothesis that it is unimodal. Another advantage of this approach is that
estimates of many salient features of the profile like onset time, inflection point, maximum
value, time to maximum value, etc. can be obtained immediately.
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1. Introduction

It is generally believed that genes of a virus have their time course expression level being

zero initially, then increasing after a while and finally decreasing; because viruses don’t

have cells, their genes start to express only after getting into cells, and cells may eventually

malfunction when infected. Based on microarray expression data of virus genes taken at

several time points, it is now possible and of interest to study the time course expression

profile of a virus gene; for example, to assess whether it is unimodal and to estimate salient

features of the profile like onset time, inflection point, maximum value, time to maximum

value, etc. Using expression data described in Jiang et al. (2006), this paper addresses these

problems in the framework of Bayesian shape restricted regression; we will introduce priors

on a space of continuous functions satisfying certain shape restrictions, use Markov chain

Monte Carlo methods for the inference, and then analyze the expression data so as to profile

the time course expression of a virus gene. In fact, it seems to us that the profile of a virus

gene provides an excellent example for the illustration of the strength of Bayesian approach

to shape restricted inference.

The data are obtained from single color cDNA microarray experiments with external con-

trols and are normalized using these external controls; mRNA samples of baculovirus genes

were taken at 16 different time points during the 72 hours following infection; the sample

for each time point is hybridized to a single chip that has exactly four spots for each of the

156 genes of baculovirus. Details of the experiments are in Jiang et al. (2006). Preliminary

examination of the data suggests that 2 of these genes seem to have their expression levels

being zero finally as well as initially and the rest 154 genes being zero only initially, probably

because no data were taken at time points beyond 72 hours and the life cycle of baculovirus

is longer than 72 hours, according to Friesen and Miller (2001). Since the main purpose

of this paper is to illustrate a Bayesian method under shape restriction, we only study the

profile of the gene lef2, whose expression at the 72 hour time point is positive, based only

on the data for this gene. Other genes, including those two whose expression levels being

zero before the 72 hour time point, can be studied similarly or with some modification and
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refinement of the method.

In order to facilitate the discussion, we introduce some notations. Let A denote the set

of all continuously differentiable functions on [0,1] that are zero initially, start to increase

after a while, and stay positive onward except possibly at the point 1. We assume that given

F in A,

Yjk = F (Xk) + εjk, (1.1)

where {Xk | k = 0, · · · , K} are constant design points in [0,1], {Yjk | j = 1, · · · ,mk, k =

0, · · · , K} are response variables, and {εjk | j = 1, · · · ,mk, k = 0, · · · , K} are independent

errors with εjk being normal with mean µ and variance

σ2
k = σ2(F (Xk) + µ)(1 +Xk(1−Xk)

2), (1.2)

for every j = 1, · · · ,mk.

In the microarray experiments in this paper, Xk represents a time point at which the

mRNA sample is taken; for j = 1, · · · ,mk, Yjk is the expression level, in terms of fluorescent

intensity, obtained at the jth spot of the gene for the sample taken at time point Xk.

More specifically, let [0,1] denote the time period of 72 hours, then K = 15, mk = 4,

(X0, X1, · · · , X15)=(0, 1/216, 1/108, 1/72, 1/36, 1/24, 1/12, 1/8, 1/6, 5/24, 1/4, 1/3, 5/12,

2/3, 5/6, 1).

The variance structure in (1.2) is a simple way to take into consideration the observa-

tion that for single color cDNA microarray experiments, larger intensities often incur larger

variances, and the observation that, according to the data, given the same expression level,

larger Xk(1 − Xk)
2 seems to correspond to larger variance of intensities at Xk. The rea-

son for not assuming εjk having zero mean is that there are always background intensities

due to non-specific hybridization and hence E(Yjk) may not be zero even when the expres-

sion level F (Xk) is 0. Another possible way to take care of background noise is to assume

Yjk = µ+F (Xk)+εjk, with µ the intercept and εjk has mean 0. These are further elaborated

in the Remarks in Section 4.

Formulating as an inference problem for Bayesian shape restricted regression model, we

introduce priors by Bernstein polynomials. For integers 0 ≤ i ≤ n, let ϕi,n(t) = Cn
i t

i(1−t)n−i,
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where Cn
i = n!/(i!(n − i)!). The set {ϕi,n | i = 0, · · · , n} is called the Bernstein basis for

polynomials of order up to n. Let B = [0, 1]×
⋃∞

n=1({n}×Rn+1). Define F : B× [0, 1] −→ R1

by

F(c, n, b0,n, · · · , bn,n; t) =
n

∑

i=0

bi,nϕi,n(
t− c

1− c
)I(c,1](t), (1.3)

where (c, n, b0,n, · · · , bn,n) ∈ B and t ∈ [0, 1]. We also denote (1.3) by Fc,bn(t) if bn =

(b0,n, · · · , bn,n). We will see in Section 2 that Fc,bn(·) is a member of A if 0 = b0,n = b1,n ≤

minl=2,···,nbl,n < maxl=2,···,nbl,n, and every member of A can be approximated by Fc,bn(·) sat-

isfying these restrictions on bn. These suggest that by means of (1.3), Bernstein polynomials

can be used to introduce priors on A with large enough support.

We note that Bayesian shape restricted inference with priors introduced by Bernstein

polynomials was studied by Chang et al. (2005), which provides a smooth estimate of an

increasing failure rate based on right censored data, and by Chang et al. (2006), which

compares the Bernstein polynomial method with the density-regression method (Dette et al.

2006) in estimating an isotonic regression function and a convex regression function. It was

shown there that these priors easily take into consideration geometric information, select

only smooth functions, can have large support, and can be easily specified.

The present paper indicates that the expression profile of a virus gene can also be studied

by random Bernstein polynomials. In particular, we will test the hypothesis on the shape of

the time course expression profile; for example, we will examine whether it is unimodal on

the region [0,τ ] for some τ < 1. In fact, by calculating both the posterior probability and the

prior probability that it is unimodal on [0,τ ], we offer an assessment of the strength of the

evidence in favor of the hypothesis. We note that this direct approach to hypothesis testing

is markedly different from the frequentist p-value approach, as discussed in Kass and Raftery

(1995) and Lavine and Schervish (1999), for example. We will also estimate salient features

of the profile like onset time, inflection point, maximum value, time to maximum value, etc.,

utilizing the fact that derivative of a polynomial has a closed form. We note that these

properties and features are of particular interest to biologists; for example, based on onset

time and time to maximum, Jiang et al. (2006) clustered the 156 genes of baculovirus; it
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would be desirable to make use of all these properties and features in the study of baculovirus.

There is a large literature on shape restricted inference since Hildreth (1954) and Brunk

(1955). Most of them treat isotonic and concave regressions from the frequentist viewpoint.

Readers are referred to Gijbels (2003) for an excellent review and to Dette et al. (2006)

for some of the more recent developments. For Bayesian approach, there are the works of

Lavine and Mockus (1995), Dunson (2005) and Chang et al. (2006), among others. This

paper illustrates the use of Bernstein polynomial in investigating the strength of the evidence

provided by the data in favor of hypothesis on the shape of the regression function and in

estimating its salient features.

This paper is organized as follows. Section 2 presents the Bernstein polynomial geometry

and the regression model. Algorithms for Bayesian inference are given in the Appendix.

Section 3 presents a simulation study to demonstrate the numerical performance. Section

4 illustrates the method by analyzing the data for the gene lef2 . Section 5 provides a brief

discussion on future investigations.

2. Bayesian inference

2.1. Bernstein polynomial geometry

Let Fc,a(t) =
∑n

i=0 aiϕi,n(
t−c
1−c

)I(c,1](t), where a = (a0, · · · , an). Proposition 1 provides

a sufficient condition on a under which Fc,a is a smooth function that is zero initially, in-

creases after a while and stays positive later on. Proposition 2 complements Proposition 1

and provides Bernstein-Weierstrass type approximations for functions of the desired shape

restriction. In this paper, derivatives at 0 and 1 are meant to be one-sided. All the proofs

of the propositions in this paper are omitted, because they are similar to those in Chang et

al. (2005) and Chang et al. (2006).

Proposition 1. Let n ≥ 3 and c ∈ [0, 1). If 0 = a0 = a1 ≤ minl=2,···,nal < maxl=2,···,nal, then

Fc,a is continuously differentiable, constantly 0 on [0, c], and larger than 0 on (c, 1).

Let In = {Fc,a | c ∈ [0, 1), a = (a0, · · · , an) satisfying 0 = a0 = a1 ≤ minl=2,···,nal <

maxl=2,···,nal}. Then we have
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Proposition 2. Let D =
⋃∞

n=3 In. Let A denote the set of all continuously differentiable

real-valued functions F defined on [0, 1] satisfying the property that there exists c ∈ [0, 1)

such that F = 0 on [0, c] and F (t) > 0 for c < t < 1. For two continuously differentiable

functions f and g, define d(f, g) = ‖f − g‖∞ + ‖f ′ − g′‖∞, where ‖ · ‖∞ is the sup-norm for

functions on [0, 1]. Then D is dense in A, under d.

2.2. Bayesian regression

We now introduce probability distributions on A by the mapping F defined in (1.3)

and probabilities on B. The following represents a convenient and flexible way to introduce

priors. Let π1 be a probability density function on [0,1], π2 be a probability mass function

on the set of positive integers {3, 4, · · ·}, π3(·|{n} × Rn+1) be a probability density function

on Rn+1. The probability density/mass functions π1, π2 and π3 jointly define a probability

on B by the product π1(c) × π2(n) × π3(bn|{n} × Rn+1). This in turn defines a probability

measure π̃ on A by (1.3). To complete the prior specification, we need also a probability

density π4 on R1 for µ, the mean of εjk. Then π = π̃ × π4 is the prior we use for Bayesian

inference. In accordance with (1.1), given B = (c, n, bn, µ) ∈ B × R1, the likelihood for the

data {(Xk, Yjk) | j = 1, · · · ,mk, k = 0, · · · , K} is

K
∏

k=0

mk
∏

j=1

gk(Yjk − Fc,bn(Xk)),

where gk is the normal density of εjk specified in (1.2).

Thus the posterior density ν of the parameter (c, n, bn, µ) given the data is proportional

to
K
∏

k=0

mk
∏

j=1

gk(Yjk − Fc,bn(Xk))π(c, n, bn, µ),

where (c, n, bn) ∈ B and µ ∈ R1.

Because the parameter space consists of subspaces of different dimension, we propose a

reversible jump Metropolis-Hastings (RJMH) algorithm, as discussed in Green (1995), to

generate posterior distributions for inference. Details of the algorithm are in the Appendix.
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The following proposition shows that the support of the Bernstein prior can be quite

large.

Proposition 3. Assume π1 has support [0, 1], π2(n) > 0 for every n = 3, 4, · · ·, and

π3(bn|{n} × Rn+1) has support Bn on an infinite subsequence of n. Here Bn = {bn ∈ Rn+1 :

Fc,bn ∈ In for some c ∈ [0, 1)}. Let F be a continuously differentiable real-valued function de-

fined on [0, 1] satisfying the property that there exists c̃ ∈ [0, 1) such that F = 0 on [0, c̃] and

F (t) > 0 for c̃ < t < 1. Then π̃{(c, n, bn) ∈ [0, 1)×
⋃∞

n=3({n}×Bn) : ‖Fc,bn −F‖∞ < ε} > 0

for every ε > 0.

3. A simulation study

We now explore the numerical performance of the Bayesian method in a simulation study,

whose model and design points are motivated by the virus gene expression data. We consider

the Bayesian regression model (1.1) with the true regression function

F (t) = 200(t− 0.02)5/2(1− 0.7t)5I(0.02,1](t).

As in Section 1, (X0, X1, · · · , X15)=(0, 1/216, 1/108, 1/72, 1/36, 1/24, 1/12, 1/8, 1/6,

5/24, 1/4, 1/3, 5/12, 2/3, 5/6, 1), mk = 4, for every k = 0, 1, · · · , 15; for j = 1, 2, 3, 4

and k = 0, 1, · · · , 15, we assume that εjk are independently normally distributed with mean

E(εjk) = 0.0039 and variance given by

σ2
k = 0.0366(F (Xk) + 0.0039)(1 +Xk(1−Xk)

2).

Using the notations in Section 2, we specify the following priors for inference. Let

π2(3) =
∑3

n=0 C
n0
n pn(1 − p)n0−n and π2(n) = Cn0

n pn(1 − p)n0−n, for n = 4, 5, · · · , n0. Let

q be Uniform(q1,q2) whose support contains the true regression function F and is non-

negative; let a0 = a1 = 0 and let a2, a3, · · · , an be a random sample of size n − 1 from

q; the conditional distribution of π3(· |{n} × Rn+1) is defined to be that of (a0, a1, · · · , an).

Let π1 be Uniform(π11, π12) and π4 be Uniform(π41, π42). Here q1, q2, π11, π12, π41 and
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π42 are defined as follows. Let Y (0) ≤ Y (1) ≤ · · · ≤ Y (15) be the order statistics for

{Y 0, Y 1, · · · , Y 15}, where Y k =
∑4

j=1 Yjk/4. Let Yj[k′] = Yjk and X[k′] = Xk, if Y (k′) = Y k.

Denote by Y(1[k]) ≤ Y(2[k]) ≤ Y(3[k]) ≤ Y(4[k]) the order statistics of {Y1[k], Y2[k], Y3[k], Y4[k]}.

Then q1 = π11 = π41 = 0, q2 = Y(4[15]), π12 = X[15] and π42 = 2Y 0. We choose p = 0.5 and

n0 = 25, 45, 60 in this simulation study.

We use the algorithm (RJMH), in the Appendix, with γ = 0.35, M = q2, and estimated

σ2
k’s to generate the posterior distribution. We note that this choice of γ allows relatively

large probabilities of changing the order of the polynomial and, for the sampling of x(t+1),

σ2
k is defined to be

σ̂2
k = σ̂2(F̂ (Xk) + µ)(1 +Xk(1−Xk)

2),

where σ̂2 =
∑15

k=0(σ̃
2
k/µ̃k)/16, F̂ (Xk) = Fx(t)(Xk) with x(t) denoting the current state and

µ is the background noise in the current state x(t). Here σ̃2
k =

∑4
j=1(Yjk − Y k)

2/3 and

µ̃k = Y k(1 +Xk(1−Xk)
2).

We run 5 RJMH chains with initial values chosen randomly from the prior and monitor

convergence by the Gelman-Rubin statistic R̂, following the suggestion in Gelman and Rubin

(1992) and Gelman et al. (2004), pp. 294–297. The Gelman-Rubin statistics R̂ is calculated

for six estimands of interest, which are onset time (Ton), time to maximum (Tmax), maxi-

mum (Max), time at which the slope is highest (Tslope), the highest slope (Slope), and the

area under curve (L1-norm). Each of the five chains was run with 200,000 updates; all the R̂

based on the second halves of these 5 sequences are less that 1.1; the 500,000 updates from

the second halves of these 5 sequences are considered sample from the posterior distribution,

which form the basis for inference. Table 1a presents the initial values of the onset time, the

order of the polynomial and the average of the background noise µ in the 5 chains; Table 1b

gives the R̂.

The posterior probability and the prior probability that the parameter represents a uni-

modal curve on the interval [0,τ ] for τ = 0.6667, 0.8333, 1.0000 are reported in Table 1c;

the last two rows give respectively the ratio of the posterior probability to the prior prob-

ability and the Bayes factor. Table 1c presents a strong evidence, provided by the data, in
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favor of the unimodality of the regression function. The posterior probability and the prior

probability that the parameter represents a curve that is increasing before reaching to its

global maximum are reported in Table 1d; the last two rows give respectively the ratio of

the posterior probability to the prior probability and the Bayes factor.

Table 1e reports the Ton, Tmax, Max, Tslope, Slope, L1-norm and Tend of the mode of

the posterior distribution; Table 1e also reports the mean, standard deviation and support

of Ton, Tmax, Max, Tslope, Slope, L1-norm and Tend on the sample respectively from the

posterior and prior distributions. Here Tend is the largest time point τ so that the profile is

unimodal on [0,τ ]. The true values of these quantities are also included in Table 1e, which

shows that these estimates are quite accurate.

We also carried out the analysis with the order n0 = 45, 60 and all the other specifications

in the prior unchanged. The results are quite close to each other and thus omitted.

4. Profile for the gene lef2

We now analyze the microarray data described in the introduction; the data is presented

in Table 2. This is the normalized data and it was preprocessed as follows. The average of

the fluorescence signal intensities of the external RNA spiked-in controls with predetermined

quantities of input mRNA was used to carry out a global normalization; namely, the value

in each entry of Table 2 is equal to the fluorescence intensity at the spot divided by this

average. We note this is different from the normalization procedure described in Jiang et al.

(2006).

The prior distribution and the parameters in the algorithm (RJMH) in this analysis are

exactly the same as those in Section 3. We also run 5 chains with randomly chosen initial

values; each chain has length 200,000 and the 500,000 updates from the second halves of

these 5 sequences are considered sample from the posterior distribution, which form the

basis for inference. The results are contained in Table 3a–e; each entry in these tables bears

exactly the same meaning as that in the corresponding entry in Table 1a–e; the polynomial

order n0 for Table 3a–e is 25. The results for polynomial order n0 = 45 and 60 are very close

to those in Table 3 and hence omitted.
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Since biological knowledge together with properties of Bernstein polynomial given in

Section 2 indicates that the prior is reasonable for the study of time course expression profile

of a virus gene, we think it is appropriate to study the hypothesis of the unimodality of the

expression profile on [0,τ ] based on the posterior probability and the prior probability of

its being unimodal on [0,τ ]; in particular, it seems that both its ratio and the Bayes factor

can be used to represent the strength of the evidence provided by the data in favor of the

hypothesis.

According to Table 3c, the Bayes factor and the ratio of the posterior probability to the

prior probability are quite large for the hypothesis that the expression profile is unimodal on

[0, 0.6667], or before the 48 hour time point; according to Table 3e, the standard deviation

and support of the posterior distribution of each estimand are much smaller than those of

the corresponding prior distribution. The former indicates that the data strongly suggest

the expression profile is unimodal before the 48 hour time point, and the latter indicates

that the data help capture the features on the expression profile.

Knowing that there are relatively less design points near 1 and the infected cells, which

are synchronized at the beginning of the experiment, become less synchronized at later stage,

it seems reasonable to see in Table 3c that the posterior probability decreases as τ approaches

1. It would be interesting to incorporate the information regarding synchronization into the

model to improve this approach.

Remarks on the model.

i) A more sophisticated model that takes into consideration both the technological and

biological variations might replace (1.1) by

Yjk = F (Xk) + µj + εjk, (4.1)

with εjk being independent and normal with mean 0 and variance

σ2
jk = σ2(F (Xk) + µj)(1 +Xk(1−Xk)

2).

The reason that we use (1.1), instead of (4.1), are two fold. First, data in Table 2 do
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not indicate obvious spot bias. Second, we wish to use a simpler model so as to keep

the main ideas of the paper in focus.

ii) The variance structure (1.2) and the details of the prior specification in the above data

analysis are motivated by the crude estimates obtained from the data points given in

Table 2. In fact, we considered σ̃2
k/µ̃

ξ
k for ξ = 0, 0.5, 1, and 2 for µ̃k larger than the

background noise value, and found, when ξ = 1, σ̃2
k/µ̃

ξ
k as a function in k varies the

least. We also note that we analyzed the data with Xk(1−Xk)
2 replaced by Xk(1−Xk)

and obtained similar results.

iii) If there are biological replicates available, we may extend (1.1) as follows. Let Yjkh

denote the expression level for the hth biological replicate at the jth spot for the sample

taken at time point Xk. An appropriate model might be

Yjkh = F (Xk) + µh + εjkh.

Here {εjkh | j = 1, · · · ,mk, k = 0, · · · , K, h = 1, · · · , H} are independent normal random

variables with mean 0 and variance

σ2
kh = σ2

h(F (Xk) + µh)(1 +Xk(1−Xk)
2).

iv) Readers are referred to Altman (2005), Lee (2004) and Parmigiani et al. (2003) and

references therein for statistical approaches dealing with replication in microarray ex-

periments.

5. Discussion

We illustrated a Bayesian shape restricted regression method for the inference on the time

course expression profile of a virus gene. The simulation study and the analysis of a real

dataset seem to suggest that this method is useful in the study of virus gene expression, which

in turn can be used to study the mechanism of the regulation of virus gene transcription.
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As a method for shape restricted regression model, it features an assessment of the

strength of the evidence provided by the data in favor of a hypothesis on its shape and

convenient estimates of its salient features. We hope these features would make Bayesian

approach to other shape restricted inference problems, including isotonic regression and

concave regression, even more appealing.

Our Bayesian method is suitable for the inference on the time expression profile of a single

virus gene. To extend our method for the simultaneous analysis of many genes deserves

our attention and is under investigation in the framework of hierarchical Bayesian models.

Simultaneous analysis of all 156 genes would allow the use of shrinkage-type approaches that

pool information across genes, and thus lead to more efficient estimators. This, in turn,

would enhance our understanding of the regulation of virus gene transcription. The results

of these studies will be reported elsewhere.
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Appendix: algorithm (RJMH for the posterior)

Let B(n) = {(c, n, a0, · · · , an, µ) | c ∈ [0, 1), (a0, · · · , an) ∈ Bn, µ ∈ R1} and the current

state x(t) = (c, n, a0, · · · , an, µ) ∈ B(n). We describe the transition from x(t) ∈ B(n) to a new

point x(t+1) as follows.

Randomly select one of three types of moves, say H, H+, or H−. Here H is a transition

of element in B(n), H
+ a transition of element from B(n) to B(n+1), and H− a transition of

element from B(n) to B(n−1), respectively. The probabilities of selecting the three different

types of moves H, H+, and H−, when the current state of the Markov chain is in B(n), are

respectively denoted by P n
H , P

n
H+ , and P n

H− . We set P 3
H− = P n0

H+ = 0, P n
H = 1− P n

H+ − P n
H− ,

P n
H+ = γmin{1, π2(n+1)

π2(n)
}, and P n

H− = γmin{1, π2(n−1)
π2(n)

}, where γ is a sample parameter.
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Suppose that 0 ≤ F < M .

If the move of type H is selected, then

1. select k randomly from {0, 1, · · · , n} so that there is 1/3 probability of choosing 0 or

1; there is 1/3(n− 1) probability of choosing any one of {2, 3, · · · , n};

2. if k = 0, then generate W ∼ π4 and let y(t) be the vector x(t) with µ replaced by W ;

if k = 1, then generate W ∼ π1 and let y(t) be the vector x(t) with c replaced by W ; if

2 ≤ k ≤ n, then generate W ∼ Uniform(0,M) and let y(t) be the vector x(t) with ak

replaced by W ;

3. set the next state

x(t+1) =







y(t) ,with prob. ρ = min{1,
ν(y(t))

ν(x(t))
},

x(t) , o.w.

If the move of type H+ is selected, then

1. select k randomly from {1, 2, · · · , n} and generate W ∼ Uniform(0,M);

2. let

y(t) =







(c, n+ 1, a0, a1, · · · , ak,W, ak+1, · · · , an, µ), if k = {1, 2, · · · , n− 1},

(c, n+ 1, a0, a1, · · · , ak, ak+1, · · · , an,W, µ), if k = n;

3. set the next state

x(t+1) =







y(t) ,with prob. ρ = min{1,
ν(y(t))× π2(n)×M

ν(x(t))× π2(n+ 1)
},

x(t) , o.w.

If the move of type H− is selected, then

1. select k uniformly from {2, 3, · · · , n};

2. let y(t) = (c, n− 1, a0, a1, · · · , ak−1, ak+1, · · · , an, µ);
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3. set the next state

x(t+1) =







y(t) ,with prob. ρ = min{1,
ν(y(t))× π2(n)

ν(x(t))× π2(n− 1)×M
},

x(t) , o.w.
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Table 1. Simulation study for F (t) = 200(t− 0.02)5/2(1− 0.7t)5I(0.02,1](t) with n0 = 25.

Chain c n µ
1 0.20123 5 0.00003
2 0.04928 7 0.00025
3 0.28551 10 0.00038
4 0.39481 14 0.00028
5 0.16573 18 0.00005

Table 1a. Initial values of the five chains.

Estimand R̂
Ton 1.0232
Tmax 1.0035
Max 1.0016
Tslope 1.0051
Slope 1.0106

L1-norm 1.0004

Table 1b. Gelman-Rubin statistics of the six estimands of interest.

[0, τ ] [0, 0.6667] [0, 0.8333] [0, 1.0000]
Po 1.0000 0.9961 0.7641
Pr 0.4567 0.3555 0.1738

Po/Pr 2.1896 2.8020 4.3964
Bf ∞ 463.0354 15.3950

Table 1c. Posterior probability (Po), prior probability (Pr), the ratio of Po to Pr,
and the Bayes factor (Bf) of being unimodal on [0,τ ].
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Po 1.0000
Pr 0.4299

Po/Pr 2.3261
Bf ∞

Table 1d. Posterior probability (Po), prior probability (Pr), the ratio of Po to Pr, and the Bayes factor
(Bf) that it is increasing before reaching its global maximum.

Estimand Mode Mean Standard Support
(True) deviation
Ton Posterior 0.0004 0.0170 0.0079 (0.0000, 0.0358)

(0.0200) Prior 0.2084 0.1202 (0.0000, 0.4166)
Tmax Posterior 0.5000 0.4897 0.0222 (0.3750, 0.6157)
(0.4895) Prior 0.8156 0.2008 (0.1759, 1.0000)
Max Posterior 3.5274 3.3187 0.1430 (2.6498, 3.8282)

(3.7077) Prior 2.9024 0.6259 (0.8620, 4.2663)
Tslope Posterior 0.2176 0.2057 0.0142 (0.0972, 0.3194)
(0.2291) Prior 0.4949 0.3264 (0.0463, 1.0000)
Slope Posterior 12.1214 11.9005 0.7933 (8.5898, 15.7563)

(12.9943) Prior 19.5399 12.7743 (2.7513, 116.0165)
L1-norm Posterior 2.0014 1.9265 0.0723 (0.9078, 2.2280)
(2.0281) Prior 1.3447 0.3653 (0.2556, 2.5731)
Tend Posterior 1.0000 0.9941 0.0210 (0.5231, 1.0000)

(1.0000) Prior 0.9548 0.0970 (0.3333, 1.0000)

Table 1e. The mode, mean, standard deviation and support of the posterior probability distribution and
the prior probability distribution of Ton, Tmax, Max, Tslope, Slope, L1-norm and Tend.
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Table 2. The data of the gene lef2.

Xk y1k y2k y3k y4k

0 0.0024 0.0057 0.0022 0.0044
1/216 0.0011 0.0004 0.0011 0.0005
1/108 0.0015 0.0010 0.0018 0.0013
1/72 -0.0004 0.0000 0.0004 0.0008
1/36 0.0012 0.0012 0.0017 0.0010
1/24 0.0017 0.0021 0.0020 0.0020
1/12 0.0123 0.0136 0.0107 0.0107
1/8 0.1576 0.1573 0.1291 0.1449
1/6 0.2715 0.2246 0.2644 0.2584
5/24 0.1237 0.1251 0.0850 0.1186
1/4 1.8829 1.5837 1.1372 1.2720
1/3 2.7286 2.2877 3.0697 2.7389
5/12 4.2684 2.7731 3.1413 3.0366
2/3 2.1904 2.1640 2.4436 2.4903
5/6 1.1919 1.1907 1.2578 1.2287
1 1.0117 0.9564 0.9913 0.8631
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Table 3. Data analysis for the gene lef2 with n0 = 25.

Chain c n µ
1 0.2012 5 0.0005
2 0.0493 7 0.0044
3 0.2855 10 0.0067
4 0.3948 14 0.0050
5 0.1657 18 0.0009

Table 3a. Initial values of the five chains.

Estimand R̂
Ton 1.0217
Tmax 1.0036
Max 1.0002
Tslope 1.0033
Slope 1.0135

L1-norm 1.0028

Table 3b. Gelman-Rubin statistics of the six estimands of interest.

[0, τ ] [0, 0.6667] [0, 0.8333] [0, 1.0000]
Po 0.9999 0.8618 0.0346
Pr 0.4567 0.3555 0.1738

Po/Pr 2.1894 2.4242 0.1991
Bf 11895.0700 11.3051 0.1702

Table 3c. Posterior probability (Po), prior probability (Pr), the ratio of Po to Pr,
and the Bayes factor (Bf) of being unimodal on [0,τ ].
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Po 1.0000
Pr 0.4299

Po/Pr 2.3261
Bf ∞

Table 3d. Posterior probability (Po), prior probability (Pr), the ratio of Po to Pr, and the Bayes factor
(Bf) that it is increasing before reaching its global maximum.

Estimand Mode Mean Standard Support
deviation

Ton Posterior 0.0739 0.0734 0.0037 (0.0497, 0.0804)
Prior 0.2084 0.1202 (0.0000, 0.4166)

Tmax Posterior 0.4444 0.4570 0.0140 (0.4028, 0.5093)
Prior 0.8156 0.2008 (0.1759, 1.0000)

Max Posterior 3.4330 3.3976 0.1208 (2.9256, 3.8310)
Prior 2.9035 0.6261 (0.8623, 4.2679)

Tslope Posterior 0.2778 0.2790 0.0054 (0.2593, 0.3009)
Prior 0.4949 0.3264 (0.0463, 1.0000)

Slope Posterior 17.4965 16.7663 0.6313 (14.7583, 20.0061)
Prior 19.5474 12.7792 (2.7524, 116.0608)

L1-norm Posterior 1.5539 1.5832 0.0699 (0.9294, 1.8167)
Prior 1.3452 0.3655 (0.2557, 2.5741)

Tend Posterior 0.8519 0.8956 0.0566 (0.6019, 1.0000)
Prior 0.9548 0.0970 (0.3333, 1.0000)

Table 3e. The mode, mean, standard deviation and support of the posterior probability distribution and
the prior probability distribution of Ton, Tmax, Max, Tslope, Slope, L1-norm and Tend.
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