Skip to main content
Log in

QbD Enabled Development and Evaluation of Pazopanib Loaded Nanoliposomes for PDAC Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14–39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the relevant data are reported within the paper and/or supplementary file. The data presented in this study are available on request to the corresponding author.

Abbreviations

ANOVA :

Analysis of variance

CCD:

Central composite design

CMA:

Critical material attributes

CPP:

Critical process parameters

CQA:

Critical quality attributes

DSPG-Na:

1,2-Distearoyl-sn-glycero-3-phospho-rac-glycerol, sodium salt

HSPC:

Hydrogenated soy phosphatidylcholine

mPEG-2000-DSPE:

N-(Carbonyl-methoxypolyethylenglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine

PDAC:

Pancreatic ductal adenocarcinoma

PZP:

Pazopanib hydrochloride

PZP-LIP:

Pazopanib-loaded liposomes

PZP-LIP-PEG:

PEGylated pazopanib-loaded liposomes

QbD:

Quality-by-Design

QTPP:

Quality target product profile

RSM:

Response surface methodology

VEGF:

Vascular endothelial growth factor

References

  1. WHO. Cancer - Key facts [Internet]. 2022 [cited 2023 Mar 6]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 6 Feb 2024.

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clinic. 2018;68(6):394–424.

  3. Hidalgo M, Cascinu S, Kleeff J, Labianca R, Löhr JM, Neoptolemos J, et al. Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology. 2015;15(1):8–18.

    Article  PubMed  Google Scholar 

  4. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.

    Article  CAS  PubMed  Google Scholar 

  5. Moorcraft SY, Khan K, Peckitt C, Watkins D, Rao S, Cunningham D, et al. FOLFIRINOX for locally advanced or metastatic pancreatic ductal adenocarcinoma: The royal marsden experience. Clin Colorectal Cancer. 2014;13(4):232–8.

    Article  PubMed  Google Scholar 

  6. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, et al. A Randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350(12):1200–10.

    Article  CAS  PubMed  Google Scholar 

  7. Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 Randomized Trial. JAMA. 2013;310(14):1473.

    Article  CAS  PubMed  Google Scholar 

  8. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.

    Article  CAS  PubMed  Google Scholar 

  9. Komar G, Kauhanen S, Liukko K, Seppänen M, Kajander S, Ovaska J, et al. Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res. 2009;15(17):5511–7.

    Article  CAS  PubMed  Google Scholar 

  10. Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007;6(4):1186–97.

    Article  CAS  PubMed  Google Scholar 

  11. Panchal K, Sahoo RK, Gupta U, Chaurasiya A. Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol. 2021;95:107508.

    Article  CAS  PubMed  Google Scholar 

  12. Paulson AS, Tran Cao HS, Tempero MA, Lowy AM. Therapeutic advances in pancreatic cancer. Gastroenterology. 2013;144(6):1316–26.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Ji S, Zhang B, Liu J, Qin Y, Xu J, et al. Role of angiogenesis in pancreatic cancer biology and therapy. Biomed Pharmacother. 2018;108:1135–40.

    Article  CAS  PubMed  Google Scholar 

  14. Luo J, Guo P, Matsuda K, Truong N, Lee A, Chun C, et al. Pancreatic cancer cell-derived vascular endothelial growth factor is biologically active in vitro and enhances tumorigenicityin vivo. Int J Cancer. 2001;92(3):361–9.

    Article  CAS  PubMed  Google Scholar 

  15. ClinicalTrials.gov. Gemcitabine and Pazopanib in Metastatic Pancreatic Cancer [Internet]. 2015 [cited 2023 Mar 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT01080248. Accessed 6 Feb 2024.

  16. Olson P, Chu GC, Perry SR, Nolan-Stevaux O, Hanahan D. Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma. Proc Natl Acad Sci USA [Internet]. 2011 Dec 6 [cited 2023 Jul 7];108(49). Available from: https://pnas.org/doi/full/10.1073/pnas.1111079108.

  17. Miyamoto S, Kakutani S, Sato Y, Hanashi A, Kinoshita Y, Ishikawa A. Drug review: Pazopanib. Jpn J Clin Oncol. 2018;48(6):503–13.

    Article  PubMed  Google Scholar 

  18. Cerbone L, Sternberg CN. Second-Generation Tyrosine Kinase Inhibitors (Pazopanib) in Renal Cell Carcinoma: Current Status. In: Bukowski RM, Figlin RA, Motzer RJ, editors. Renal Cell Carcinoma [Internet]. New York, NY: Springer New York; 2015 [cited 2024 Feb 6]. p. 207–16. Available from: https://link.springer.com/10.1007/978-1-4939-1622-1_9.

  19. Shinde A, Panchal K, Katke S, Paliwal R, Chaurasiya A. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives. Therapies. 2022;77(4):425–43.

    Article  Google Scholar 

  20. Podar K, Tonon G, Sattler M, Tai YT, LeGouill S, Yasui H, et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci USA. 2006;103(51):19478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. USFDA. Votrient® (Pazopanib) - Package insert [Internet]. 2009 [cited 2023 Mar 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022465s031s032lbl.pdf. Accessed 6 Feb 2024.

  22. CDER F. Clinical pharmacology and biopharmaceutics review(s) [Internet]. 2008 [cited 2022 May 14]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022465s000_clinpharmr.pdf. Accessed 6 Feb 2024.

  23. Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Liposomal nanomedicine for breast cancer therapy. Nanomedicine. 2011;6(6):1085–100.

    Article  CAS  PubMed  Google Scholar 

  24. Schwendener RA, Schott H. Liposome Formulations of Hydrophobic Drugs. In: Weissig V, editor. Liposomes [Internet]. Totowa, NJ: Humana Press; 2010 [cited 2023 Mar 6]. p. 129–38. (Methods in Molecular Biology; vol. 605). Available from: http://link.springer.com/10.1007/978-1-60327-360-2_8.

  25. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1992;1113(2):171–99.

    Article  CAS  PubMed  Google Scholar 

  26. Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res. 2016;26(4):276–87.

    Article  CAS  PubMed  Google Scholar 

  27. Al-Amin M, Bellato F, Mastrotto F, Garofalo M, Malfanti A, Salmaso S, et al. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: formulation challenges. IJMS. 2020;21(5):1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panchal K, Katke S, Dash SK, Gaur A, Shinde A, Saha N, et al. An expanding horizon of complex injectable products: development and regulatory considerations. Drug Deliv and Transl Res. 2023;13(2):433–72.

    Article  Google Scholar 

  29. Woodbury DJ, Richardson ES, Grigg AW, Welling RD, Knudson BH. Reducing liposome size with ultrasound: bimodal size distributions. J Liposome Res. 2006;16(1):57–80.

    Article  CAS  PubMed  Google Scholar 

  30. Bonde GV, Ajmal G, Yadav SK, Mittal P, Singh J, Bakde BV, et al. Assessing the viability of Soluplus® self-assembled nanocolloids for sustained delivery of highly hydrophobic lapatinib (anticancer agent): Optimisation and in-vitro characterisation. Colloids Surf, B. 2020;185:110611.

    Article  CAS  Google Scholar 

  31. Panigrahi KC, Patra CN, Rao MEB. Quality by design enabled development of oral self-nanoemulsifying drug delivery system of a novel calcimimetic cinacalcet HCl using a porous carrier: In Vitro and In Vivo Characterisation. AAPS PharmSciTech. 2019;20(5):216.

  32. Garg NK, Tyagi RK, Singh B, Sharma G, Nirbhavane P, Kushwah V, et al. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1. Int J Pharm. 2016;499(1–2):301–20.

    Article  CAS  PubMed  Google Scholar 

  33. Escudero-Ortiz V, Pérez-Ruixo JJ, Valenzuela B. Development and validation of an HPLC-UV method for pazopanib quantification in human plasma and application to patients with cancer in routine clinical practice. Ther Drug Monit. 2015;37(2):172–9.

    Article  CAS  PubMed  Google Scholar 

  34. Panchal K, Reddy A, Paliwal R, Chaurasiya A. Dynamic intervention to enhance the stability of PEGylated Ibrutinib loaded lipidic nano-vesicular systems: transitioning from colloidal dispersion to lyophilized product. Drug Deliv and Transl Res [Internet]. 2024 Mar 8 [cited 2024 Mar 16]; Available from: https://link.springer.com/10.1007/s13346-024-01555-4. Accessed 6 Feb 2024.

  35. Malvern. ZETASIZER NANO Series [Internet]. Available from: https://www.malvernpanalytical.com/en/assets/MRK1839_tcm50-17228.pdf.

  36. Herbrink M, Schellens J, Beijnen J, Nuijen B. Thermal study of pazopanib hydrochloride. J Therm Anal Calorim. 2017;130(3):1491–9.

    Article  CAS  Google Scholar 

  37. Pardhi VP, Verma T, Flora SJS, Chandasana H, Shukla R. Nanocrystals: An overview of fabrication, characterization and therapeutic applications in drug delivery. CPD. 2019;24(43):5129–46.

    Article  Google Scholar 

  38. Sadzuka Y, Nakade A, Hirama R, Miyagishima A, Nozawa Y, Hirota S, et al. Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing liposome. Int J Pharm. 2002;238(1–2):171–80.

    Article  CAS  PubMed  Google Scholar 

  39. Shimada K, Miyagishima A, Sadzuka Y, Nozawa Y, Mochizuki Y, Ohshima H, et al. Determination of the thickness of the fixed aqueous layer around polyethyleneglycol-coated liposomes. J Drug Target. 1995;3(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  40. Singh. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. IJN. 2010;101.

  41. Wang Y, Zhang Y, Yang J, Ni X, Liu S, Li Z, et al. Genomic sequencing of key genes in mouse pancreatic cancer cells. CMM. 2012;12(3):331–41.

    Article  CAS  Google Scholar 

  42. Obiedallah MM, Mironov MA, Belyaev DV, Ene A, Vakhrusheva DV, Krasnoborova SY, et al. Optimization, characterization, and cytotoxicity studies of novel anti-tubercular agent-loaded liposomal vesicles. Sci Rep. 2024;14(1):524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bryła A, Juzwa W, Weiss M, Lewandowicz G. Lipid nanoparticles assessment by flow cytometry. Int J Pharm. 2017;520(1–2):149–57.

    Article  PubMed  Google Scholar 

  44. Liu Y, Mei Z, Mei L, Tang J, Yuan W, Srinivasan S, et al. Analytical method development and comparability study for Am Bisome® and generic Amphotericin B liposomal products. Eur J Pharm Biopharm. 2020;157:241–9.

    Article  CAS  PubMed  Google Scholar 

  45. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article  CAS  PubMed  Google Scholar 

  46. Vollath D, Fischer FD, Holec D. Surface energy of nanoparticles – influence of particle size and structure. Beilstein J Nanotechnol. 2018;23(9):2265–76.

    Article  Google Scholar 

  47. Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem. 2017;409(24):5779–87.

    Article  CAS  PubMed  Google Scholar 

  48. Labhasetwar V, Mohan MS, Dorle AK. A study on zeta potential and dielectric constant of liposomes. J Microencapsul. 1994;11(6):663–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kirby BJ, Hasselbrink EF. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis. 2004;25(2):187–202.

    Article  CAS  PubMed  Google Scholar 

  50. Joseph E, Singhvi G. Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. In: Nanomaterials for Drug Delivery and Therapy [Internet]. Elsevier; 2019 [cited 2023 Mar 6]. p. 91–116. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128165058000072. Accessed 6 Feb 2024.

  51. Kim JY, Kim JK, Park JS, Byun Y, Kim CK. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials. 2009;30(29):5751–6.

    Article  CAS  PubMed  Google Scholar 

  52. Qi XR, Zhao, Zhuang. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. IJN. 2011;3087.

  53. Abdelbary AA, Li X, El-Nabarawi M, Elassasy A, Jasti B. Effect of fixed aqueous layer thickness of polymeric stabilizers on zeta potential and stability of aripiprazole nanosuspensions. Pharm Dev Technol. 2013;18(3):730–5.

    Article  CAS  PubMed  Google Scholar 

  54. Panwar P, Pandey B, Lakhera PC, Singh KP. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int J Nanomedicine. 2010;9(5):101–8.

    Google Scholar 

  55. Talevi A, Ruiz ME. Korsmeyer-Peppas, Peppas-Sahlin, and Brazel-Peppas: Models of drug release. In: The ADME Encyclopedia [Internet]. Cham: Springer International Publishing; 2021 [cited 2024 Mar 16]. p. 1–9. Available from: https://link.springer.com/10.1007/978-3-030-51519-5_35-1.

  56. Yeh MK, Hsin-I Chang, Ming-Yen Cheng. Clinical development of liposome based drugs: formulation, characterization, and therapeutic efficacy. IJN. 2011;49.

Download references

Acknowledgements

The author (Dr. Akash Chaurasiya) is grateful to Parenteral Drug Association, India Chapter, for extending financial support. The authors are also thankful to use the facilities at the DST-FIST facility, Department of Pharmacy and Central Analytical Laboratory at BITS Pilani, Hyderabad Campus.

Funding

This study was funded by Parenteral Drug Association, India Chapter.

Author information

Authors and Affiliations

Authors

Contributions

The idea for the article was conceptualized by Akash Chaurasiya. The experimental work and data analysis was done by Aishwarya Shinde, Kanan Panchal, Sucharitha Enakolla, Sonali Singh, Parameswar Patra and was supervised by Akash Chaurasiya and Kanan Panchal. The article was drafted by Aishwarya Shinde, Kanan Panchal & Akash Chaurasiya. The article is critically reviewed and revised by Rishi Paliwal and Akash Chaurasiya.

Corresponding author

Correspondence to Akash Chaurasiya.

Ethics declarations

Conflicts of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Aishwarya Shinde and Kanan Panchal contributed equally to this paper (Co-First Authors).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 548 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, A., Panchal, K., Patra, P. et al. QbD Enabled Development and Evaluation of Pazopanib Loaded Nanoliposomes for PDAC Treatment. AAPS PharmSciTech 25, 97 (2024). https://doi.org/10.1208/s12249-024-02806-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02806-w

Keywords

Navigation