Skip to main content

Advertisement

Log in

Development and Characterization of Saturated Fatty Acid-Engineered, Silica-Coated Lipid Vesicular System for Effective Oral Delivery of Alfa-Choriogonadotropin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present study was designed to develop an efficient, safe, and patient-friendly dosage form, for oral delivery of alfa-choriogonadotropin, used in the treatment of female reproductive infertility. Silica-coated, saturated fatty acid (dipalmitoylphosphatidylcholine (DPPC))-engineered, nanolipidic vesicular (NLVs) system was developed for systemic delivery of therapeutic peptide, alfa-choriogonadotropin, through oral route. DPPC-based NLVs were formulated using the technique of thin-film hydration and were coated with silica to form a homogeneous surface silica shell. The formulated silica-coated NLVs were evaluated for physicochemical and physiologic stability under simulated conditions and were optimized based on physicochemical parameters like particle size, zeta potential, polydispersity index (PDI), entrapment efficiency, and in vitro release profile. Silica-coated, DPPC-based NLVs imparted physicochemical stability to entrapped alfa-choriogonadotropin against the biological environment prevailing in the human gastrointestinal tract (GIT). In vivo, subchronic animal toxicity studies were performed to assess the safety of the designed dosage form. Results of in vitro characterization and in vivo pharmacokinetic studies of fabricated formulation revealed that the silica-coated, DPPC-based NLV formulation was not only stable in human GIT but was also as efficacious as a marketed parenteral formulation for the systemic delivery of alfa-choriogonadotropin. In vivo toxicity studies revealed that silica-coated NLVs did not alter hematological and serum biochemical parameters. The histopathological studies also depicted no macroscopic changes in major organs; thus, the developed formulation was proven to be nontoxic and equally efficient as a marketed parenteral formulation for the delivery of alfa-choriogonadotropin with added benefits of possible self-medication, more patient acceptability, and no chances of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DPPC:

Dipalmitoylphosphatidylcholine

NLVs:

Nanolipidic vesicles

GIT:

Gastrointestinal tract

PDI:

Polydispersity index

DLS:

Dynamic light scattering

ELS:

Electrophoretic light scattering

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

RBC:

Red blood cell count

HBG:

Hemoglobin concentration

PLT:

Platelet count

MCV:

Mean corpuscular volume

WBC:

Total white blood cells

DLC:

Differential leukocyte count

MON:

Monocytes

NEU:

Neutrophils

LYM:

Lymphocytes

GPT:

Glutamic pyruvic transaminase

GOT:

Serum glutamic oxaloacetic transaminase

CRE:

Creatinine

PRO:

Total protein

ALB:

Albumin

CHO:

Cholesterol

TRIG:

Triglycerides

GLU:

Glucose

ALP:

Alkaline phosphate

LHCG:

Luteinizing hormone/choriogonadotropin receptors

References

  1. Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26. https://doi.org/10.1093/humupd/dmv016.

    Article  PubMed  Google Scholar 

  2. Bahamondes L, Makuch MY. Infertility care and the introduction of new reproductive technologies in poor resource settings. Reprod Biol Endocrinol. 2014 Sep 8;12:87. https://doi.org/10.1186/1477-7827-12-87.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Menning B. The emotional needs of infertile couples. Fertil Steril. 1980;34(4):313–9.

    Article  CAS  Google Scholar 

  4. Kraft AD, Palombo J, Mitchell D, Dean C, Meyers S, Schmidt AW. The psychological dimensions of infertility. Am J Orthop. 1980;50(4):618–28. https://doi.org/10.1111/j.1939-0025.1980.tb03324.x [CrossRef] [Google Scholar].

    Article  Google Scholar 

  5. Seibel MM, Taymor ML. Emotional aspects of infertility. Fertil Steril. 1982;37(2):137–45 [Google Scholar].

    Article  CAS  Google Scholar 

  6. Greil AL. Infertility and psychological distress: a critical review of the literature. Soc Sci Med. 1997;11(11):1506–12 [Google Scholar].

    Google Scholar 

  7. Mazina O, Allikalt A, Tapanainen JS, Salumets A, Rinken A. Determination of biological activity of gonadotropins hCG and FSH by Förster resonance energy transfer based biosensors. Sci Rep. 2017;7:42219. https://doi.org/10.1038/srep42219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ovidrel. Available at: https://www.rxlist.com/ovidrel-drug.htm. Accessed 10 March 2020.

  9. Choriogonadotropin alfa. Available at: https://www.drugbank.ca/drugs/DB00097. Accessed 10 March 2020.

  10. Jolene LL, Michael DK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2010;26:2700–7. https://doi.org/10.1016/j.bmc.2017.06.052.

    Article  CAS  Google Scholar 

  11. Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4:1443–67. https://doi.org/10.4155/tde.13.104.

    Article  CAS  PubMed  Google Scholar 

  12. Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: challenges and novel formulation approaches. Adv Drug Deliv Rev. 2018;126:67–95. https://doi.org/10.1016/j.addr.2018.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Škalko-Basnet N. Biologics: the role of delivery systems in improved therapy. Biologics. 2014;8:107–14. https://doi.org/10.2147/BTT.S38387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70:269–77. https://doi.org/10.4103/0250-474x.42967.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Delivery. 2013;20:237–46. https://doi.org/10.3109/10717544.2013.819611.

    Article  CAS  PubMed  Google Scholar 

  16. Hamman JH, Enslin GM, Kotze AF. Oral delivery of peptide drugs: barriers and developments. BioDrugs. 2005;19(3):165–77.

    Article  CAS  Google Scholar 

  17. Pattnaik S, Swain K, Singh SP, Kumar Sirbaiya A. 8-Lipid vesicles: potentials as drug delivery systems. Nanoeng Biomater Adv Drug Deliv. 2020;163–180. https://doi.org/10.1016/B978-0-08-102985-5.00008-5.

  18. Porter CJH, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60:673–91.

    Article  CAS  Google Scholar 

  19. Subramanian N, Ghosal SK. Enhancement of gastrointestinal absorption of poorly water soluble drugs via lipid based systems. Indian J Exp Biol. 2004 Nov;42(11):1056–65.

    CAS  PubMed  Google Scholar 

  20. Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano. 2015;9:3540–57. https://doi.org/10.1021/acsnano.5b00510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahmoudi R, Ashraf Mirahmadi-Babaheidri S, Delaviz H, Fouani MH, Alipour M, Jafari Barmak M, et al. RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells. J Biomater Appl. 2020 Aug;17:885328220949367. https://doi.org/10.1177/0885328220949367.

    Article  CAS  Google Scholar 

  22. Mousavizadeh A, Shirazi MS, Alipour M, Bardania H. Intercalation of curcumin into liposomal chemotherapeutic agent augments apoptosis in breast cancer cells. J Biomater Appl. 2020;6:885328220976331–1018. https://doi.org/10.1177/0885328220976331.

    Article  CAS  Google Scholar 

  23. Raj R, Raj PM, Ram A. Lipid based noninvasive vesicular formulation of cytarabine: nanodeformable liposomes. Eur J Pharm Sci. 2016;88:83–90. https://doi.org/10.1016/j.ejps.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  24. Kotla NG, Chandrasekar B, Rooney P, Sivaraman G, Larrañaga A, Krishna KV, et al. Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents. ACS Biomater Sci Eng. 2017;3:1262–72. https://doi.org/10.1021/acsbiomaterials.6b00681.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida T, Yoshioka Y, Takahashi H, et al. Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Res Lett. 2014;9(1):532. Published 2014 Sep 26. https://doi.org/10.1186/1556-276X-9-532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. LaBauve AE, Rinker TE, Noureddine A, Serda RE, Howe JY, Sherman MB, et al. Lipid-coated mesoporous silica nanoparticles for the delivery of the ML336 antiviral to inhibit encephalitic alphavirus infection. Sci Rep. 2018;8:13990. https://doi.org/10.1038/s41598-018-32033-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhatt AB, Barnes TJ, Prestidge CA. Silica nanoparticle stabilization of liquid crystalline lipid dispersions: impact on enzymatic digestion and drug solubilization. Curr Drug Deliv. 2015;12(1):47–55. https://doi.org/10.2174/1567201811666140822115619.

    Article  CAS  PubMed  Google Scholar 

  28. Tan A, Simovic S, Davey AK, Rades T, Boyd BJ, Prestidge CA. Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems. Mol Pharm. 2010;7(2):522–32. https://doi.org/10.1021/mp9002442.

    Article  CAS  PubMed  Google Scholar 

  29. Antimisiaris SG. Preparation of DRV liposomes. In: D’Souza G, editor. Liposomes. methods in molecular biology. New York: Humana Press; 2017. p. 1522. https://doi.org/10.1007/978-1-4939-6591-5_3.

    Chapter  Google Scholar 

  30. Dwivedi N, Arunagirinathan MA, Sharma S, Bellare J. Silica-coated liposomes for insulin delivery. J Nanomater. 2010;2010:1–9. https://doi.org/10.1155/2010/652048.

    Article  CAS  Google Scholar 

  31. Mohanraj VJ, Barnes TJ, Prestidge CA. Silica nanoparticle coated liposomes: a new type of hybrid nanocapsule for proteins. Int J Pharm. 2010;392:285–93. https://doi.org/10.1016/j.ijpharm.2010.03.061.

    Article  CAS  PubMed  Google Scholar 

  32. Askes SHC, Leeuwenburgh VC, Pomp W, Arjmandi-Tash H, Tanase S, Schmidt T, et al. Water-dispersible silica-coated upconverting liposomes: can a thin silica layer protect TTA-UC against oxygen quenching? ACS Biomater Sci Eng. 2017;3:322–34. https://doi.org/10.1021/acsbiomaterials.6b00678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomedicine. 2012;7:5995–6002. https://doi.org/10.2147/IJN.S38043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rohan SGI, Jasmin VP, Monpara D, Vavia PR. Liposils: an effective strategy for stabilizing paclitaxel loaded liposomes by surface coating with silica. Eur J Pharm Sci. 2018;122:51–63. https://doi.org/10.1016/j.ejps.2018.06.025.

    Article  CAS  Google Scholar 

  35. Malakouti-Nejad M, Bardania H, Aliakbari F, Baradaran-Rafii A, Elahi E, Monti D, et al. Formulation of nanoliposome-encapsulated bevacizumab (Avastin): statistical optimization for enhanced drug encapsulation and properties evaluation. Int J Pharm. 2020;590:119895. https://doi.org/10.1016/j.ijpharm.2020.119895.

    Article  CAS  PubMed  Google Scholar 

  36. Sek L, Porter CJ, Kaukonen AM, Charman WN. Evaluation of the in vitro digestion profiles of long and medium chain glycerides and the phase behavior of the lipolytic products. J Pharm Pharmacol. 2002;54:29–41.

    Article  CAS  Google Scholar 

  37. Shah V, Choudhury BK. Fabrication, physicochemical characterization, and performance evaluation of biodegradable polymeric microneedle patch system for enhanced transcutaneous flux of high molecular weight therapeutics. AAPS PharmSciTech. 2017;18:2936–48. https://doi.org/10.1208/s12249-017-0774-5.

    Article  CAS  PubMed  Google Scholar 

  38. Gupta V, Trivedi P. Ex vivo localization and permeation of cisplatin from novel topical formulations through excised pig, goat, and mice skin and in vitro characterization for effective management of skin-cited malignancies. Artif Cells Nanomed Biotechnol. 2015;43(6):373–82. https://doi.org/10.3109/21691401.2014.893523.

    Article  CAS  PubMed  Google Scholar 

  39. Liu T, Li L, Teng X, Huang X, Liu H, Chen D, et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials. 2011;32:1657–68.

    Article  CAS  Google Scholar 

  40. S.M. Griffey. Gross necropsy with histology, University of California. Available at: https://mmpc.org/shared/document.aspx?id=132&doctype=Protocol. Aceessed 20 Feb 2019.

  41. Santonocito D, Sarpietro MG, Carbone C, et al. Curcumin containing PEGylated solid lipid nanoparticles for systemic administration: a preliminary study. Molecules. 2020;25(13):2991. Published 2020 Jun 30. https://doi.org/10.3390/molecules25132991.

    Article  CAS  PubMed Central  Google Scholar 

  42. Pornpattananangkul D, Olson S, Aryal S, Sartor M, Huang CM, Vecchio K, et al. Stimuli-responsive liposome fusion mediated by gold nanoparticles. ACS Nano. 2010;4(4):1935–42. https://doi.org/10.1021/nn9018587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors of the current research findings are thankful to LIPOID, Germany, for generously providing the gift samples of saturated lipid (DPPC), used in the engineering of the presented drug delivery technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viral Shah.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, V., Jobanputra, A., Saxena, B. et al. Development and Characterization of Saturated Fatty Acid-Engineered, Silica-Coated Lipid Vesicular System for Effective Oral Delivery of Alfa-Choriogonadotropin. AAPS PharmSciTech 22, 118 (2021). https://doi.org/10.1208/s12249-021-01985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01985-0

KEY WORDS

Navigation