Skip to main content

Advertisement

Log in

Enhancement of Therapies for Glioblastoma (GBM) Using Nanoparticle-based Delivery Systems

  • Review Article
  • Theme: NIPTE Research and Perspective: Advances in Nanotechnology-Based Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumor. Current FDA-approved treatments include surgical resection, radiation, and chemotherapy, while hyperthermia, immunotherapy, and most relevantly, nanoparticle (NP)-mediated delivery systems or combinations thereof have shown promise in preclinical studies. Drug-carrying NPs are a promising approach to brain delivery as a result of their potential to facilitate the crossing of the blood–brain barrier (BBB) via two main types of transcytosis mechanisms: adsorptive-mediated transcytosis (AMT) and receptor-mediated transcytosis (RMT). Their ability to accumulate in the brain can thus provide local sustained release of tumoricidal drugs at or near the site of GBM tumors. NP-based drug delivery has the potential to significantly reduce drug-related toxicity, increase specificity, and consequently improve the lifespan and quality of life of patients with GBM. Due to significant advances in the understanding of the molecular etiology and pathology of GBM, the efficacy of drugs loaded into vectors targeting this disease has increased in both preclinical and clinical settings. Multitargeting NPs, such as those incorporating multiple specific targeting ligands, are an innovative technology that can lead to decreased off-target effects while simultaneously having increased accumulation and action specifically at the tumor site. Targeting ligands can include antibodies, or fragments thereof, and peptides or small molecules, which can result in a more controlled drug delivery system compared to conventional drug treatments. This review focuses on GBM treatment strategies, summarizing current options and providing a detailed account of preclinical findings with prospective NP-based approaches aimed at improving tumor targeting and enhancing therapeutic outcomes for GBM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):829–48.

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  4. Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate glioblastoma: clinical challenges and advances. Clin Transl Med. 2018;7(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vigneswaran K, Neill S, Hadjipanayis CG. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med. 2015;3(7).

  6. Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol. 2007;114(5):443–58.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tso C-L, Freije WA, Day A, Chen Z, Merriman B, Perlina A, et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res. 2006;66(1):159.

    Article  CAS  PubMed  Google Scholar 

  8. Kabat GC, Etgen AM, Rohan TE. Do steroid hormones play a role in the etiology of glioma? Cancer Epidemiol Biomark Prev. 2010;19(10):2421–7.

    Article  CAS  Google Scholar 

  9. Zhang YY, Ruan LX, Zhang S. Rapid progression of glioblastoma multiforme: a case report. Oncol Lett. 2016;12(6):4803–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology. 1999;1(1):44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14.

    Article  PubMed  Google Scholar 

  12. Mahvash M, Hugo H-H, Maslehaty H, Mehdorn HM, Stark AM. Glioblastoma multiforme in children: report of 13 cases and review of the literature. Pediatr Neurol. 2011;45(3):178–80.

    Article  PubMed  Google Scholar 

  13. Larjavaara S, Mäntylä R, Salminen T, Haapasalo H, Raitanen J, Jääskeläinen J, et al. Incidence of gliomas by anatomic location. Neuro-oncology. 2007;9(3):319–25.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme. Brain. 2007;130(10):2596–606.

    Article  PubMed  Google Scholar 

  15. Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko IV, et al. Aberrant signaling pathways in glioma. Cancers (Basel). 2011;3(3):3242–78.

    Article  CAS  Google Scholar 

  16. Mishra SS, Behera SK, Dhir MK, Senapati SB. Cerebellar giant cell glioblastoma multiforme in an adult. J Neurosci Rural Pract. 2014;5(3):295–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Robert M, Wastie M. Glioblastoma multiforme: a rare manifestation of extensive liver and bone metastases. Biomed Imaging Interv J. 2008;4(1):e3–e.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ray A, Manjila S, Hdeib AM, Radhakrishnan A, Nock CJ, Cohen ML, et al. Extracranial metastasis of gliobastoma: Three illustrative cases and current review of the molecular pathology and management strategies. Mol Clin Oncol. 2015;3(3):479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Romero-Rojas AE, Diaz-Perez JA, Amaro D, Lozano-Castillo A, Chinchilla-Olaya SI. Glioblastoma metastasis to parotid gland and neck lymph nodes: fine-needle aspiration cytology with histopathologic correlation. Head Neck Pathol. 2013;7(4):409–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Widjaja A, Mix H, Golkel C, Flemming P, Egensperger R, Holstein A, et al. Uncommon metastasis of a glioblastoma multiforme in liver and spleen. Digestion. 2000;61(3):219–22.

    Article  CAS  PubMed  Google Scholar 

  21. Tysnes BB, Mahesparan R. Biological mechanisms of glioma invasion and potential therapeutic targets. J Neuro-Oncol. 2001;53(2):129–47.

    Article  CAS  Google Scholar 

  22. Davis ME. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20(5 Suppl):S2–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alphandéry E. Glioblastoma treatments: an account of recent industrial developments. Front Pharmacol. 2018;9(879).

  24. Michael JS, Lee B-S, Zhang M, Yu JS. Nanotechnology for treatment of glioblastoma multiforme. J Transl Int Med. 2018;6(3):128–33.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saucier-Sawyer JK, Deng Y, Seo Y-E, Cheng CJ, Zhang J, Quijano E, et al. Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. J Drug Target. 2015;23(7-8):736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.

    Article  CAS  PubMed  Google Scholar 

  28. Zinn PO, Colen RR. Imaging genomic mapping in glioblastoma. Neurosurgery. 2013;60(CN_suppl_1):126–30.

    Article  PubMed  Google Scholar 

  29. Rick J, Chandra A, Aghi MK. Tumor treating fields: a new approach to glioblastoma therapy. J Neuro-Oncol. 2018;137(3):447–53.

    Article  Google Scholar 

  30. Bomzon Ze, Wenger C, Proescholdt M, Mohan S. Tumor-treating fields at EMBC 2019: a roadmap to developing a framework for TTfields dosimetry and treatment planning. 2021. p. 3-17.

  31. Stark AM, van de Bergh J, Hedderich J, Mehdorn HM, Nabavi A. Glioblastoma: clinical characteristics, prognostic factors and survival in 492 patients. Clin Neurol Neurosurg. 2012;114(7):840–5.

    Article  PubMed  Google Scholar 

  32. Serventi J, Behr J. Surgery and evidence-based treatments in patients with newly diagnosed high-grade glioma. Semin Oncol Nurs. 2018;34(5):443–53.

    Article  PubMed  Google Scholar 

  33. Kazda T, Bulik M, Pospisil P, Lakomy R, Smrcka M, Slampa P, et al. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging. NeuroImage: Clinical. 2016;11:316–21.

    Article  Google Scholar 

  34. Frey D, Schilt S, Strack V, Zdunczyk A, Rösler J, Niraula B, et al. Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-oncology. 2014;16(10):1365–72.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mueller WM, Yetkin FZ, Hammeke TA, Morris GL 3rd, Swanson SJ, Reichert K, et al. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39(3):515–20 discussion 20-1.

    Article  CAS  PubMed  Google Scholar 

  36. Pallud J, Rigaux-Viode O, Corns R, Muto J, Lopez Lopez C, Mellerio C, et al. Direct electrical bipolar electrostimulation for functional cortical and subcortical cerebral mapping in awake craniotomy. Practical considerations. Neurochirurgie. 2017;63(3):164–74.

    Article  CAS  PubMed  Google Scholar 

  37. Sankey EW, Tsvankin V, Grabowski MM, Nayar G, Batich KA, Risman A, et al. Operative and peri-operative considerations in the management of brain metastasis. Cancer Med. 2019;8(16):6809–31.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fuller CD, Choi M, Forthuber B, Wang SJ, Rajagiriyil N, Salter BJ, et al. Standard fractionation intensity modulated radiation therapy (IMRT) of primary and recurrent glioblastoma multiforme. Radiat Oncol. 2007;2:26.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mann J, Ramakrishna R, Magge R, Wernicke AG. Advances in radiotherapy for glioblastoma. Front Neurol. 2017;8:748.

    Article  PubMed  Google Scholar 

  40. Sousa F, Moura RP, Moreira E, Martins C, Sarmento B. Chapter two-therapeutic monoclonal antibodies delivery for the glioblastoma treatment. In: Donev R, editor. Advances in protein chemistry and structural biology. 112: Academic Press; 2018. p. 61-80.

  41. Patel SJ, Shapiro WR, Laske DW, Jensen RL, Asher AL, Wessels BW, et al. Safety and feasibility of convection-enhanced delivery of cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery. 2005;56(6):1243–53.

    Article  PubMed  Google Scholar 

  42. Barbarite E, Sick JT, Berchmans E, Bregy A, Shah AH, Elsayyad N, et al. The role of brachytherapy in the treatment of glioblastoma multiforme. Neurosurg Rev. 2017;40(2):195–211.

    Article  PubMed  Google Scholar 

  43. Tanaka M, Ino Y, Nakagawa K, Tago M, Todo T. High-dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison. Lancet Oncol. 2005;6(12):953–60.

    Article  PubMed  Google Scholar 

  44. Thibouw D, Truc G, Bertaut A, Chevalier C, Aubignac L, Mirjolet C. Clinical and dosimetric study of radiotherapy for glioblastoma: three-dimensional conformal radiotherapy versus intensity-modulated radiotherapy. J Neuro-Oncol. 2018;137(2):429–38.

    Article  Google Scholar 

  45. Yanagihara TK, Saadatmand HJ, Wang TJC. Reevaluating stereotactic radiosurgery for glioblastoma: new potential for targeted dose-escalation. J Neuro-Oncol. 2016;130(3):397–411.

    Article  Google Scholar 

  46. Adeberg S, Harrabi SB, Verma V, Bernhardt D, Grau N, Debus J, et al. Treatment of meningioma and glioma with protons and carbon ions. Radiat Oncol. 2017;12(1):193.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kinzel A, Ambrogi M, Varshaver M, Kirson ED. Tumor treating fields for glioblastoma treatment: patient satisfaction and compliance with the second-generation Optune(®) system. Clin Med Insights Oncol. 2019;13:1179554918825449-.

  48. Kessler AF, Frömbling GE, Gross F, Hahn M, Dzokou W, Ernestus R-I, et al. Effects of tumor treating fields (TTFields) on glioblastoma cells are augmented by mitotic checkpoint inhibition. Cell Death Discov. 2018;4:12-.

  49. Buonerba C, Di Lorenzo G, Marinelli A, Federico P, Palmieri G, Imbimbo M, et al. A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit Rev Oncol Hematol. 2011;80(1):54–68.

    Article  PubMed  Google Scholar 

  50. Levrero F, Daga A, Ravetti JL, Corv‘o R, Fella M, Marcello D, et al. 224. Irradiation of glioma initiating cells-driven orthotopic glioblastoma after delivering of ATM inhibitor KU60019 as a radiosensitizer. Physica Medica 2018;56:200.

  51. Vecchio D, Daga A, Carra E, Marubbi D, Raso A, Mascelli S, et al. Pharmacokinetics, pharmacodynamics and efficacy on pediatric tumors of the glioma radiosensitizer KU60019. Int J Cancer. 2015;136(6):1445–57.

    Article  CAS  PubMed  Google Scholar 

  52. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  53. Tamura R, Tanaka T, Miyake K, Yoshida K, Sasaki H. Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response. Brain Tumor Pathology. 2017;34(2):62–77.

    Article  CAS  PubMed  Google Scholar 

  54. Riccione KA, Gedeon P, Sanchez-Perez L, Sampson JH. Chapter 11-checkpoint blockade immunotherapy for glioblastoma: progress and challenges. In: Sampson JH, editor. Translational immunotherapy of brain tumors. San Diego: Academic Press; 2017. p. 261–300.

    Chapter  Google Scholar 

  55. Reardon DA, Kaley TJ, Dietrich J, Lim M, Dunn GP, Gan HK, et al. Phase 2 study to evaluate the clinical efficacy and safety of MEDI4736 (durvalumab) in patients with glioblastoma (GBM). J Clin Oncol. 2016;34(15_suppl):TPS2080–TPS.

    Article  Google Scholar 

  56. Martino EC, Misso G, Pastina P, Costantini S, Vanni F, Gandolfo C, et al. Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Dis. 2016;2:16025.

    Article  CAS  Google Scholar 

  57. Kandalaft LE, Motz GT, Busch J, Coukos G. Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Curr Top Microbiol Immunol. 2011;344:129–48.

    CAS  PubMed  Google Scholar 

  58. Elamin YY, Rafee S, Toomey S, Hennessy BT. Immune effects of bevacizumab: killing two birds with one stone. Cancer Microenviron. 2015;8(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  59. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.

    Article  CAS  PubMed  Google Scholar 

  60. Hasselbalch B, Lassen U, Hansen S, Holmberg M, Sørensen M, Kosteljanetz M, et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro-oncology. 2010;12(5):508–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Westphal M, Heese O, Steinbach JP, Schnell O, Schackert G, Mehdorn M, et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 2015;51(4):522–32.

    Article  CAS  PubMed  Google Scholar 

  62. Nitta Y, Shimizu S, Shishido-Hara Y, Suzuki K, Shiokawa Y, Nagane M. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 2016;5(3):486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Glaser T, Han I, Wu L, Zeng X. Targeted nanotechnology in glioblastoma multiforme. Front Pharmacol. 2017;8(166).

  64. Verma J, Lal S, Van Noorden CJF. Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma. Int J Nanomedicine. 2014;9:2863–77.

    PubMed  PubMed Central  Google Scholar 

  65. Baumann F, Bjeljac M, Kollias SS, Baumert BG, Brandner S, Rousson V, et al. Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J Neuro-Oncol. 2004;67(1):191–200.

    Article  Google Scholar 

  66. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491–504.

    Article  CAS  PubMed  Google Scholar 

  67. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, et al. Mechanisms of Chemoresistance to Alkylating Agents in Malignant Glioma. Clin Cancer Res. 2008;14(10):2900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, et al. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol. 2009;27(8):1262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. Jama. 2015;314(23):2535–43.

    Article  CAS  PubMed  Google Scholar 

  70. Reithmeier T, Graf E, Piroth T, Trippel M, Pinsker MO, Nikkhah G. BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors. BMC Cancer. 2010;10:30.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chaichana KL, Zaidi H, Pendleton C, McGirt MJ, Grossman R, Weingart JD, et al. The efficacy of carmustine wafers for older patients with glioblastoma multiforme: prolonging survival. Neurol Res. 2011;33(7):759–64.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Holdhoff M, Ye X, Supko JG, Nabors LB, Desai AS, Walbert T, et al. Timed sequential therapy of the selective T-type calcium channel blocker mibefradil and temozolomide in patients with recurrent high-grade gliomas. Neuro-oncology. 2017;19(6):845–52.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Keir ST, Friedman HS, Reardon DA, Bigner DD, Gray LA. Mibefradil, a novel therapy for glioblastoma multiforme: cell cycle synchronization and interlaced therapy in a murine model. J Neuro-Oncol. 2013;111(2):97–102.

    Article  CAS  Google Scholar 

  74. Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol. 2010;28(17):2817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Odia Y, Iwamoto FM, Moustakas A, Fraum TJ, Salgado CA, Li A, et al. A phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas. J Neuro-Oncol. 2016;127(1):127–35.

    Article  CAS  Google Scholar 

  76. Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS. Experience with irinotecan for the treatment of malignant glioma. Neuro-oncology. 2009;11(1):80–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gruber ML, Buster WP. Temozolomide in combination with irinotecan for treatment of recurrent malignant glioma. Am J Clin Oncol. 2004;27(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  78. Gürten B, Yenigül E, Sezer A, Malta S. Complexation and enhancement of temozolomide solubility with cyclodextrins. Braz J Pharm Sci. 2018;54.

  79. Cardoso FL, Brites D, Brito MA. Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64(2):328–63.

    Article  CAS  PubMed  Google Scholar 

  80. van der Vring JA, Bernink PJ, van der Wall EE, van Velhuisen DJ, Braun S, Kobrin I. Evaluating the safety of mibefradil, a selective T-type calcium antagonist, in patients with chronic congestive heart failure. Clin Ther. 1996;18(6):1191–206.

    Article  PubMed  Google Scholar 

  81. Nance E, Zhang C, Shih TY, Xu Q, Schuster BS, Hanes J. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano. 2014;8(10):10655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pourgholi F, hajivalili M, Farhad J-N, Kafil HS, Yousefi M. Nanoparticles: novel vehicles in treatment of glioblastoma. Biomed Pharmacother 2016;77:98-107.

  83. Sun J, Guo M, Pang H, Qi J, Zhang J, Ge Y. Treatment of malignant glioma using hyperthermia. Neural Regen Res. 2013;8(29):2775–82.

    PubMed  PubMed Central  Google Scholar 

  84. Dewhirst M, Stauffer PR, Das S, Craciunescu OI, Vujaskovic Z. Chapter 21-hyperthermia. In: Gunderson LL, Tepper JE, editors. Clinical radiation oncology (Fourth Edition). Philadelphia: Elsevier; 2016. p. 381-98.e6.

  85. Coluccia D, Fandino J, Schwyzer L, O’Gorman R, Remonda L, Anon J, et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound. 2014;2:17-.

  86. Gong W, Wang Z, Liu N, Lin W, Wang X, Xu D, et al. Improving efficiency of adriamycin crossing blood brain barrier by combination of thermosensitive liposomes and hyperthermia. Biol Pharm Bull. 2011;34(7):1058–64.

    Article  CAS  PubMed  Google Scholar 

  87. Gian Franco Baronzio M.D. E. Dieter Hager M.D. PD, D.Sc. Hyperthermia in cancer treatment: a primer2006.

  88. Lagman C, Chung LK, Pelargos PE, Ung N, Bui TT, Lee SJ, et al. Laser neurosurgery: a systematic analysis of magnetic resonance-guided laser interstitial thermal therapies. J Clin Neurosci. 2017;36:20–6.

    Article  PubMed  Google Scholar 

  89. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33–56.

    Article  PubMed  Google Scholar 

  90. Khan VR, Brown IR. The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones. 2002;7(1):73–90.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42.

    Article  CAS  PubMed  Google Scholar 

  92. Thomas AA, Ernstoff MS, Fadul CE. Immunotherapy for the treatment of glioblastoma. Cancer J. 2012;18(1):59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang L, Guo G, Niu X-y, Liu J Dendritic cell-based immunotherapy treatment for glioblastoma multiforme Biomed Res Int 2015;2015:717530.

  94. Polyzoidis S, Ashkan K. Dendritic cell immunotherapy for glioblastoma. Expert Rev Anticancer Ther. 2014;14(7):761–3.

    Article  CAS  PubMed  Google Scholar 

  95. Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb). 2014;6(1):9–26.

    Article  CAS  Google Scholar 

  96. Alphandéry E. Nano-therapies for glioblastoma treatment. cancers (Basel). 2020;12(1).

  97. Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:147–57.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Huile Gao XJ. Brain delivery using nanotechnology. In: Li Di EHK, editor. Blood-brain barrier in drug discovery2015.

  99. Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6(6):585–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jingyan L, Cristina S. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol Rev. 2013;2(3):241–57.

    Article  Google Scholar 

  101. Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm. 2007;344(1-2):103–9.

    Article  CAS  PubMed  Google Scholar 

  102. Li S-D, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2009;1788(10):2259–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao J, Zhang B, Shen S, Chen J, Zhang Q, Jiang X, et al. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J Colloid Interface Sci. 2015;450:396–403.

    Article  CAS  PubMed  Google Scholar 

  104. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252(1-2):263–6.

    Article  CAS  PubMed  Google Scholar 

  105. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;16(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tan JS, Butterfield DE, Voycheck CL, Caldwell KD, Li JT. Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats. Biomaterials. 1993;14(11):823–33.

    Article  CAS  PubMed  Google Scholar 

  107. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7.

    Article  CAS  PubMed  Google Scholar 

  108. Laginha KM, Verwoert S, Charrois GJ, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res. 2005;11(19 Pt 1):6944–9.

    Article  CAS  PubMed  Google Scholar 

  109. Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Release. 2016;227:23–37.

    Article  CAS  PubMed  Google Scholar 

  110. Koo YEL, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58(14):1556–77.

    Article  CAS  PubMed  Google Scholar 

  111. Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv. 2013;4(6):687–704.

    Article  CAS  PubMed  Google Scholar 

  112. Shah N, Chaudhari K, Dantuluri P, Murthy RSR, Das S. Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic®P85, an in vitro cell line and in vivo biodistribution studies on rat model. J Drug Target. 2009;17(7):533–42.

    Article  CAS  PubMed  Google Scholar 

  113. Pereverzeva E, Treschalin I, Bodyagin D, Maksimenko O, Langer K, Dreis S, et al. Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: focus on cardio-and testicular toxicity. Int J Pharm. 2007;337(1-2):346–56.

    Article  CAS  PubMed  Google Scholar 

  114. Gao H, Xiong Y, Zhang S, Yang Z, Cao S, Jiang X. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharm. 2014;11(3):1042–52.

    Article  CAS  PubMed  Google Scholar 

  115. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  PubMed  Google Scholar 

  117. Gou N, Onnis-Hayden A, Gu AZ. Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis. Environ Sci Technol. 2010;44(15):5964–70.

    Article  CAS  PubMed  Google Scholar 

  118. Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol. 2009;4(12):876–83.

    Article  CAS  PubMed  Google Scholar 

  119. Ramalho MJ, Sevin E, Gosselet F, Lima J, Coelho MAN, Loureiro JA, et al. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm. 2018;545(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  120. Guo W, Li A, Jia Z, Yuan Y, Dai H, Li H. Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Eur J Pharmacol. 2013;718(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  121. Zhao Z, Hu Y, Hoerle R, Devine M, Raleigh M, Pentel P, et al. A nanoparticle-based nicotine vaccine and the influence of particle size on its immunogenicity and efficacy. Nanomedicine. 2017;13(2):443–54.

    Article  CAS  PubMed  Google Scholar 

  122. Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33(32):8167–76.

    Article  CAS  PubMed  Google Scholar 

  123. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, et al. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3(1):2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sunoqrot S, Bugno J, Lantvit D, Burdette JE, Hong S. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J Control Release. 2014;191:115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Santos SD, Xavier M, Leite DM, Moreira DA, Custodio B, Torrado M, et al. PAMAM dendrimers: blood-brain barrier transport and neuronal uptake after focal brain ischemia. J Control Release. 2018;291:65–79.

    Article  CAS  PubMed  Google Scholar 

  126. Gaillard PJ, Appeldoorn CC, Rip J, Dorland R, van der Pol SM, Kooij G, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Control Release. 2012;164(3):364–9.

    Article  CAS  PubMed  Google Scholar 

  127. Li Y, He H, Jia X, Lu W-L, Lou J, Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33(15):3899–908.

    Article  CAS  PubMed  Google Scholar 

  128. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Mirovascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994;54(13):3352.

    CAS  PubMed  Google Scholar 

  129. Wang X, Zhang Q, Lv L, Fu J, Jiang Y, Xin H, et al. Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy. Drug Delivery. 2017;24(1):1401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Feng X, Yao J, Gao X, Jing Y, Kang T, Jiang D, et al. Multi-targeting peptide-functionalized nanoparticles recognized vasculogenic mimicry, tumor neovasculature, and glioma cells for enhanced anti-glioma therapy. ACS Appl Mater Interfaces. 2015;7(50):27885–99.

    Article  CAS  PubMed  Google Scholar 

  131. Gaillard PJ, Appeldoorn CCM, Dorland R, van Kregten J, Manca F, Vugts DJ, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One. 2014;9(1):e82331.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Demeule M, Régina A, Ché C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 2008;324(3):1064.

    Article  CAS  PubMed  Google Scholar 

  133. Song Y, Huang Z, Xu J, Ren D, Wang Y, Zheng X, et al. Multimodal SPION-CREKA peptide based agents for molecular imaging of microthrombus in a rat myocardial ischemia-reperfusion model. Biomaterials. 2014;35(9):2961–70.

    Article  CAS  PubMed  Google Scholar 

  134. Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8(1):1–10.

    Article  CAS  Google Scholar 

  135. Borgognoni C, Kim J, Zucolotto V, Harald F, Riehemann K. Human macrophage responses to metal-oxide nanoparticles: a review. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46:1–10.

    Google Scholar 

  136. Ambruosi A, Gelperina S, Khalansky A, Tanski S, Theisen A, Kreuter J. Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul. 2006;23(5):582–92.

    Article  CAS  PubMed  Google Scholar 

  137. Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer. 2004;109(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  138. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res. 1999;16(10):1564–9.

    Article  CAS  PubMed  Google Scholar 

  139. Borchard G, Audus KL, Shi F, Kreuter J. Uptake of surfactant-coated poly(methyl methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers. Int J Pharm. 1994;110(1):29–35.

    Article  CAS  Google Scholar 

  140. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995;674(1):171–4.

    Article  CAS  PubMed  Google Scholar 

  141. Wohlfart S, Khalansky AS, Gelperina S, Maksimenko O, Bernreuther C, Glatzel M, et al. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PloS one. 2011;6(5):e19121-e.

  142. Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV. Hypersensitization of multidrug resistant human ovarian carcinoma cells by Pluronic P85 block copolymer. Bioconjug Chem. 1996;7(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  143. Zhirnov AE, Demina TV, Krylova OO, Grozdova ID, Melik-Nubarov NS. Lipid composition determines interaction of liposome membranes with Pluronic L61. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2005;1720(1):73–83.

    Article  CAS  Google Scholar 

  144. Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, et al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm. 2010;74(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  145. Kannan R, Chakrabarti R, Tang D, Kim KJ, Kaplowitz N. GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res. 2000;852(2):374–82.

    Article  CAS  PubMed  Google Scholar 

  146. Kannan R, Kuhlenkamp JF, Jeandidier E, Trinh H, Ookhtens M, Kaplowitz N. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J Clin Invest. 1990;85(6):2009–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lindqvist A, Rip J, Gaillard PJ, Bjorkman S, Hammarlund-Udenaes M. Enhanced brain delivery of the opioid peptide DAMGO in glutathione pegylated liposomes: a microdialysis study. Mol Pharm. 2013;10(5):1533–41.

    Article  CAS  PubMed  Google Scholar 

  148. Xin H, Chen L, Gu J, Ren X, wei Z, Luo J, et al. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: in vitro and in vivo evaluation. Int J Pharm 2010;402(1):238-247.

  149. Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng M-Q, Duong N, et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci U S A. 2013;110(29):11751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95(8):4607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Calzolari A, Larocca LM, Deaglio S, Finisguerra V, Boe A, Raggi C, et al. Transferrin receptor 2 is frequently and highly expressed in glioblastomas. Transl Oncol. 2010;3(2):123–34.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Mintz A, Gibo DM, Slagle-Webb B, Christensen ND, Debinski W. IL-13Ralpha2 is a glioma-restricted receptor for interleukin-13. Neoplasia. 2002;4(5):388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu C, Li B, Cheng Y, Lin J, Hao J, Zhang S, et al. MiR-21 plays an important role in radiation induced carcinogenesis in BALB/c mice by directly targeting the tumor suppressor gene Big-h3. Int J Biol Sci. 2011;7(3):347–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Seo Y-E, Suh H-W, Bahal R, Josowitz A, Zhang J, Song E, et al. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials. 2019;201:87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247-.

  157. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–37.

    Article  CAS  PubMed  Google Scholar 

  158. Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Luong D, Kesharwani P, Deshmukh R, Mohd Amin MCI, Gupta U, Greish K, et al. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016;43:14–29.

    Article  CAS  PubMed  Google Scholar 

  160. Ferretti C, Blengio M, Ghi P, Racca S, Genazzani E, Portaleone P. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors. Life Sci. 1988;42(24):2457–65.

    Article  CAS  PubMed  Google Scholar 

  161. Kayyali R, Marriott C, Wiseman H. Tamoxifen decreases drug efflux from liposomes: Relevance to its ability to reverse multidrug resistance in cancer cells? FEBS Lett. 1994;344(2):221–4.

    Article  CAS  PubMed  Google Scholar 

  162. Lu C, Xing MMQ, Zhong W. Shell cross-linked and hepatocyte-targeting nanoparticles containing doxorubicin via acid-cleavable linkage. Nanomedicine. 2011;7(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  163. Choi J, Kim G, Cho SB, Im H-J. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnol. 2020;18(1):122.

    Article  Google Scholar 

  164. Rosa S, Connolly C, Schettino G, Butterworth KT, Prise KM. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol. 2017;8(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kievit FM, Wang K, Ozawa T, Tarudji AW, Silber JR, Holland EC, et al. Nanoparticle-mediated knockdown of DNA repair sensitizes cells to radiotherapy and extends survival in a genetic mouse model of glioblastoma. Nanomedicine. 2017;13(7):2131–9.

    Article  CAS  PubMed  Google Scholar 

  166. Timbie KF, Afzal U, Date A, Zhang C, Song J, Wilson Miller G, et al. MR image-guided delivery of cisplatin-loaded brain-penetrating nanoparticles to invasive glioma with focused ultrasound. J Control Release. 2017;263:120–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhao Y-Z, Lin Q, Wong HL, Shen X-T, Yang W, Xu H-L, et al. Glioma-targeted therapy using Cilengitide nanoparticles combined with UTMD enhanced delivery. J Control Release. 2016;224:112–25.

    Article  CAS  PubMed  Google Scholar 

  168. Kovacs Z, Werner B, Rassi A, Sass JO, Martin-Fiori E, Bernasconi M. Prolonged survival upon ultrasound-enhanced doxorubicin delivery in two syngenic glioblastoma mouse models. J Control Release. 2014;187:74–82.

    Article  CAS  PubMed  Google Scholar 

  169. Bekeredjian R, Kroll RD, Fein E, Tinkov S, Coester C, Winter G, et al. Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol. 2007;33(10):1592–8.

    Article  PubMed  Google Scholar 

  170. Luo Z, Jin K, Pang Q, Shen S, Yan Z, Jiang T, et al. On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl Mater Interfaces. 2017;9(37):31612–25.

    Article  CAS  PubMed  Google Scholar 

  171. Jamali Z, Khoobi M, Hejazi SM, Eivazi N, Abdolahpour S, Imanparast F, et al. Evaluation of targeted curcumin (CUR) loaded PLGA nanoparticles for in vitro photodynamic therapy on human glioblastoma cell line. Photodiagn Photodyn Ther. 2018;23:190–201.

    Article  CAS  Google Scholar 

  172. Fourniols T, Randolph LD, Staub A, Vanvarenberg K, Leprince JG, Préat V, et al. Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma. J Control Release. 2015;210:95–104.

    Article  CAS  PubMed  Google Scholar 

  173. Hu Q, Gao X, Gu G, Kang T, Tu Y, Liu Z, et al. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG–PLA nanoparticles loaded with paclitaxel. Biomaterials. 2013;34(22):5640–50.

    Article  CAS  PubMed  Google Scholar 

  174. Kang T, Zhu Q, Jiang D, Feng X, Feng J, Jiang T, et al. Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment. Biomaterials. 2016;101:60–75.

    Article  CAS  PubMed  Google Scholar 

  175. Zhan C, Wei X, Qian J, Feng L, Zhu J, Lu W. Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. J Control Release. 2012;160(3):630–6.

    Article  CAS  PubMed  Google Scholar 

  176. Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev. 2012;64(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  177. Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A. 1999;96(9):5177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Stapleton PA. Toxicological considerations of nano-sized plastics. AIMS Environ Sci. 2019;6(5):367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

K.W. acknowledges support from the Government Pharmaceutical Organization (GPO) scholarship. J.C.Q. acknowledges support from the Alfred P. Sloan Foundation, the University of Iowa Graduate College, and the American Association for University Women. A.K.S acknowledges support from the Cancer Center support grant (P30 CA086862) and the Lyle and Sharon Bighley Chair in Pharmaceutical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasger K. Salem.

Additional information

Guest Editors: Xiuling Lu and Aliasger K Salem

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiwatchaitawee, K., Quarterman, J.C., Geary, S.M. et al. Enhancement of Therapies for Glioblastoma (GBM) Using Nanoparticle-based Delivery Systems. AAPS PharmSciTech 22, 71 (2021). https://doi.org/10.1208/s12249-021-01928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01928-9

KEY WORDS

Navigation