Skip to main content

Advertisement

Log in

Study of Top-down and Bottom-up Approaches by Using Design of Experiment (DoE) to Produce Meloxicam Nanocrystal Capsules

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In order to investigate the correlation among energy input–related, drug-related, and stabilizer-related aspects for both top-down and bottom-up nanocrystal production, meloxicam nanosuspensions (NS) were produced by using three different methods (low-energy wet milling, high-pressure homogenization, and precipitation) and each method was optimized by using design of experiment (DoE). Box-Behnken design of 3 factors and 3 levels was applied for the optimization of each method. All the three models were found to be significant and the optimized process parameters were used for production of NS, respectively. Interestingly, by comparison of the top-down and bottom-up approaches, the influence of energy input (homogenization pressure or milling speed) from the instruments seemed not significant for top-down compared with bottom-up for this drug. Different mechanisms of homogenization (relatively high energy zone) and milling (relatively low energy zone) led to obtained various significant correlations for each method. Capsules containing nanocrystals were successfully produced by using a novel method applying NS (after wet bead milling and homogenization processes) as wetting agent for direct capsuling and showed superiority regarding as dissolution rate compared with the traditional two-step method (freeze-dried powder used for capsuling as the first step). Different NS preparation methodologies proved to have a direct influence on the following capsuling process and consequently, in the dissolution rate. This study also proved that residual DMSO in nanosuspension after precipitation process could affect the freeze-drying process, which might further alter the redispersion and influence the downstream processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li M, Alvarez P, Bilgili E. A microhydrodynamic rationale for selection of bead size in preparation of drug nanosuspensions via wet stirred media milling. Int J Pharm. 2017;524(1–2):178–92. https://doi.org/10.1016/j.ijpharm.2017.04.001.

    Article  CAS  PubMed  Google Scholar 

  2. Liu T, Muller RH, Moschwitzer JP. Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension. Expert Opin Drug Deliv. 2015;12(11):1741–54. https://doi.org/10.1517/17425247.2015.1057566.

    Article  CAS  PubMed  Google Scholar 

  3. Pensel P, Paredes A, Albani CM, Allemandi D, Sanchez Bruni S, Palma SD, et al. Albendazole nanocrystals in experimental alveolar echinococcosis: Enhanced chemoprophylactic and clinical efficacy in infected mice. Vet Parasitol. 2018:78–84.

  4. Castro SG, Bruni SFS, Urbizu LP, Confalonieri A, Ceballos L, Lanusse CE, et al. Enhanced dissolution and systemic availability of albendazole formulated as solid dispersions. Pharm Dev Technol. 2013;18(2):434–42. https://doi.org/10.3109/10837450.2012.693509.

    Article  CAS  PubMed  Google Scholar 

  5. Paredes AJ, Bruni SS, Allemandi D, Lanusse C, Palma SD. Albendazole nanocrystals with improved pharmacokinetic performance in mice. Ther Deliv. 2018;9(2):89–97. https://doi.org/10.4155/tde-2017-0090.

    Article  CAS  PubMed  Google Scholar 

  6. Sattar A, Chen D, Jiang L, Pan Y, Tao Y, Huang L, et al. Preparation, characterization and pharmacokinetics of cyadox nanosuspension. Sci Rep. 2017;7(1):2289. https://doi.org/10.1038/s41598-017-02523-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu T, Yao GL, Liu XT, Yin HP. Preparation nanocrystals of poorly soluble plant compounds using an ultra-small-scale approach. AAPS PharmSciTech. 2017;18(7):2610–7. https://doi.org/10.1208/s12249-017-0742-0.

    Article  CAS  PubMed  Google Scholar 

  8. Attari Z, Bhandari A, Jagadish PC, Lewis S. Enhanced ex vivo intestinal absorption of olmesartan medoxomil nanosuspension: preparation by combinative technology. Saudi Pharm J. 2016;24(1):57–63. https://doi.org/10.1016/j.jsps.2015.03.008.

    Article  PubMed  Google Scholar 

  9. Paredes AJ, Llabot JM, Bruni SS, Allemandi D, Palma SD. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying. Drug Dev Ind Pharm. 2016;42(10):1564–70. https://doi.org/10.3109/03639045.2016.1151036.

    Article  PubMed  Google Scholar 

  10. Medarevic D, Djuris J, Ibric S, Mitric M, Kachrimanis K. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int J Pharm. 2018;540(1–2):150–61. https://doi.org/10.1016/j.ijpharm.2018.02.011.

    Article  CAS  PubMed  Google Scholar 

  11. Sahibzada MUK, Sadiq A, Faidah HS, Khurram M, Amin MU, Haseeb A, et al. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des Devel Ther. 2018;12:303–12. https://doi.org/10.2147/DDDT.S156123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kakran M, Sahoo NG, Tan IL, Li L. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanopart Res. 2012;14(3). doi: Unsp 757. https://doi.org/10.1007/S11051-012-0757-0.

  13. Liu T, Muller RH, Moschwitzer JP. Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency. Drug Dev Ind Pharm. 2018;44(2):233–42. https://doi.org/10.1080/03639045.2017.1386207.

    Article  CAS  PubMed  Google Scholar 

  14. dos Santos AM, Carvalho FC, Teixeira DA, Azevedo DL, de Barros WM, Gremiao MPD. Computational and experimental approaches for development of methotrexate nanosuspensions by bottom-up nanoprecipitation. Int J Pharm. 2017;524(1–2):330–8. https://doi.org/10.1016/j.ijpharm.2017.03.068.

    Article  CAS  PubMed  Google Scholar 

  15. Sinha B, Muller RH, Moschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453(1):126–41. https://doi.org/10.1016/j.ijpharm.2013.01.019.

    Article  CAS  PubMed  Google Scholar 

  16. Liu T, Muller RH, Moschwitzer JP. Systematical investigation of a combinative particle size reduction technology for production of resveratrol nanosuspensions. AAPS PharmSciTech. 2017;18(5):1683–91. https://doi.org/10.1208/s12249-016-0612-1.

    Article  CAS  PubMed  Google Scholar 

  17. Chudiwal SS, Dehghan MH. Quality by design approach for development of suspension nasal spray products: a case study on budesonide nasal suspension. Drug Dev Ind Pharm. 2016;42(10):1643–52. https://doi.org/10.3109/03639045.2016.1160108.

    Article  CAS  PubMed  Google Scholar 

  18. Parmentier J, Tan EH, Low A, Moschwitzer JP. Downstream drug product processing of itraconazole nanosuspension: factors influencing drug particle size and dissolution from nanosuspension-layered beads. Int J Pharm. 2017;524(1–2):443–53. https://doi.org/10.1016/j.ijpharm.2017.04.012.

    Article  CAS  PubMed  Google Scholar 

  19. Sun W, Ni R, Zhang X, Li LC, Mao SR. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation. Drug Dev Ind Pharm. 2015;41(6):927–33. https://doi.org/10.3109/03639045.2014.914528.

    Article  CAS  PubMed  Google Scholar 

  20. Cal K, Sollohub K. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 2010;99(2):575–86. https://doi.org/10.1002/jps.21886.

    Article  CAS  PubMed  Google Scholar 

  21. Chin WWL, Parmentier J, Widzinski M, Tan EH, Gokhale R. A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci. 2014;103(10):2980–99. https://doi.org/10.1002/jps.24098.

    Article  CAS  PubMed  Google Scholar 

  22. Colombo M, Orthmann S, Bellini M, Staufenbiel S, Bodmeier R. Influence of drug brittleness, nanomilling time, and freeze-drying on the crystallinity of poorly water-soluble drugs and its implications for solubility enhancement. AAPS PharmSciTech. 2017;18(7):2437–45. https://doi.org/10.1208/s12249-017-0722-4.

    Article  CAS  PubMed  Google Scholar 

  23. Zaman M, Hanif M, Shaheryar ZA. Development of tizanidine HCl-meloxicam loaded mucoadhesive buccal films: in-vitro and in-vivo evaluation. PLoS One. 2018;13(3):e0194410. https://doi.org/10.1371/journal.pone.0194410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Louati K, Bargaoui I, Safta F. Development and validation of ultra-performance liquid chromatography method for the determination of meloxicam and its impurities in active pharmaceutical ingredients. Ann Pharm Fr. 2018;76(3):187–200. https://doi.org/10.1016/j.pharma.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  25. Gottlieb IJ, Tunick DR, Mack RJ, McCallum SW, Howard CP, Freyer A, et al. Evaluation of the safety and efficacy of an intravenous nanocrystal formulation of meloxicam in the management of moderate-to-severe pain after bunionectomy. J Pain Res. 2018;11:383–93. https://doi.org/10.2147/JPR.S149879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ochi M, Kawachi T, Toita E, Hashimoto I, Yuminoki K, Onoue S, et al. Development of nanocrystal formulation of meloxicam with improved dissolution and pharmacokinetic behaviors. Int J Pharm. 2014;474(1–2):151–6. https://doi.org/10.1016/j.ijpharm.2014.08.022.

    Article  CAS  PubMed  Google Scholar 

  27. Yu Q, Wu XY, Zhu QG, Wu W, Chen ZJ, Li Y, et al. Enhanced transdermal delivery of meloxicam by nanocrystals: preparation, in vitro and in vivo evaluation. Asian J Pharm Sci. 2018;13(6):518–26. https://doi.org/10.1016/j.ajps.2017.10.004.

    Article  PubMed  Google Scholar 

  28. Xia DN, Quan P, Piao HZ, Piao HY, Sun SP, Yin YM, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–34. https://doi.org/10.1016/j.ejps.2010.04.006.

    Article  CAS  PubMed  Google Scholar 

  29. Singh SK, Srinivasan KK, Gowthamarajan K, Singare DS, Prakash D, Gaikwad NB. Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Eur J Pharm Biopharm. 2011;78(3):441–6. https://doi.org/10.1016/j.ejpb.2011.03.014.

    Article  CAS  PubMed  Google Scholar 

  30. Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16. https://doi.org/10.1016/j.ejpb.2005.05.009.

    Article  CAS  PubMed  Google Scholar 

  31. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40. https://doi.org/10.1016/j.addr.2010.12.007.

    Article  CAS  PubMed  Google Scholar 

  32. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713. https://doi.org/10.1016/j.addr.2006.09.017.

    Article  CAS  PubMed  Google Scholar 

  33. Iurian S, Bogdan C, Tomuta I, Szabo-Revesz P, Chvatal A, Leucuta SE, et al. Development of oral lyophilisates containing meloxicam nanocrystals using QbD approach. Eur J Pharm Sci. 2017;104:356–65. https://doi.org/10.1016/j.ejps.2017.04.011.

    Article  CAS  PubMed  Google Scholar 

  34. Kurti L, Kukovecz A, Kozma G, Ambrus R, Deli MA, Szabo-Revesz P. Study of the parameters influencing the co-grinding process for the production of meloxicam nanoparticles. Powder Technol. 2011;212(1):210–7. https://doi.org/10.1016/j.powtec.2011.05.018.

    Article  CAS  Google Scholar 

  35. Liu T, Muller RH, Moschwitzer JP. Consideration of the solid state for resveratrol nanocrystal production. Powder Technol. 2018;332:63–9. https://doi.org/10.1016/j.powtec.2018.03.028.

    Article  CAS  Google Scholar 

  36. Choi J-Y, Yoo JY, Kwak H-S, Nam BU, Lee J. Role of polymeric stabilizers for drug nanocrystal dispersions. Curr Appl Phys. 2005;5(5):472–4.

    Article  Google Scholar 

  37. Noolkar SB, Jadhav NR, Bhende SA, Killedar SG. Solid-state characterization and dissolution properties of meloxicam-Moringa coagulant-PVP ternary solid dispersions. AAPS PharmSciTech. 2013;14(2):569–77. https://doi.org/10.1208/s12249-013-9941-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jafar M, Mhg D, Shareef A. Enhancement of dissolution and anti-inflammatory effect of meloxicam using solid dispersions. Int J Appl Pharm. 2010;2(1):22–7.

    CAS  Google Scholar 

  39. Siow CRS, Wan Sia Heng P, Chan LW. Application of freeze-drying in the development of oral drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1595–608. https://doi.org/10.1080/17425247.2016.1198767.

    Article  CAS  PubMed  Google Scholar 

  40. Du J, Li XG, Zhao HX, Zhou YQ, Wang LL, Tian SS, et al. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm. 2015;495(2):738–49. https://doi.org/10.1016/j.ijpharm.2015.09.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Tao Liu received financial support from A Project of Shandong Province Higher Educational Science and Technology Program (project no. J18KA269), Shandong Provincial Key R&D Program (project no. 2019GSF107006), and Qingdao Source Innovation Program (project no. 19-6-2-38-cg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Yu, X. & Yin, H. Study of Top-down and Bottom-up Approaches by Using Design of Experiment (DoE) to Produce Meloxicam Nanocrystal Capsules. AAPS PharmSciTech 21, 79 (2020). https://doi.org/10.1208/s12249-020-1621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-1621-7

KEY WORDS

Navigation