Skip to main content
Log in

In Vitro and In Vivo Evaluation of SP94 Modified Liposomes Loaded with N-14NCTDA, a Norcantharimide Derivative for Hepatocellular Carcinoma-Targeting

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this research is to develop a liposomal drug delivery system, which can selectively target hepatocellular carcinoma (HCC) to deliver the antitumor agent N-14NCTDA, a C14 alkyl chain norcantharimide derivative of norcantharidin. N-14NCTDA-loaded liposomes were successfully prepared by lipid membrane hydration and extrusion methods. SP94, a targeting peptide for HCC cells, was attached to the liposomes loaded with N-14NCTDA by the post-insertion method to obtain SP94 modified liposomes (SP94-LPs). SP94-LPs had a significant cytotoxicity against Hep G2 cells with the IC50 of 15.395 ± 0.89 μg/mL, which is lower than that of NCTD-S (IC50 = 20.863 ± 0.56 μg/mL) and GAL-LPs (IC50 = 24.589 ± 1.02 μg/mL). Compared with conventional liposomes (Con-LPs), SP94-LPs showed greater cellular uptake in Hep G2 cells. Likewise, significant tumor suppression was achieved in H22 tumor-bearing mice which were treated with SP94-LPs. The tumor inhibition rate (IRw) of SP94-LPs was 82 ± 0.98%, obviously higher than that of GAL-LPs (69 ± 1.39%), Con-LPs (60 ± 2.78%), and NCTD-S (51 ± 3.67%). SP94-LPs exhibited a significant hepatocellular carcinoma-targeting activity in vitro and in vivo, which will provide a new alternative for hepatocellular carcinoma treatment in future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen M, Zhou X, Chen R, Wang J, Ye RD, Wang Y, et al. Nano-carriers for delivery and targeting of active ingredients of Chinese medicine for hepatocellular carcinoma therapy. Mater Today. 2019;25:66-87.

  2. Bei YY, Chen XY, Liu Y, Xu JY, Wang WJ, Gu ZL, et al. Novel norcantharidin-loaded liver targeting chitosan nanoparticles to enhance intestinal absorption. Int J Nanomed. 2012;7:1819–27.

  3. Anna PS, Agnieszka SC. New norcantharidin analogs: synthesis and anticancer activity. Arch Pharm. 2015;348(12):897–907.

    Google Scholar 

  4. Thaqi A, Scott JL, Gilbert J, Sakoff JA, Mccluskey A. Synthesis and biological activity of Delta-5,6-norcantharimides: importance of the 5,6-bridge. Eur J Med Chem. 2010;45(5):1717–23.

    CAS  Google Scholar 

  5. Xu X, Li Y, Wang F, Lv L, Liu J, Li M, et al. Synthesis, in vitro and in vivo evaluation of new norcantharidin-conjugated hydroxypropyltrimethyl ammonium chloride chitosan derivatives as polymer therapeutics. Int J Pharm. 2013;453(2):610–9.

    CAS  Google Scholar 

  6. Sun ZX, Ma QW, Zhao TD, Wei YL, Wang GS, Li JS. Apoptosis induced by norcantharidin in human tumor cells. World J Gastroenterol. 2000;6(2):263–5.

    CAS  Google Scholar 

  7. Yang P-Y, Chen M-F, Kao Y-H, Hu D-N, Chang F-R, Wu Y-C. Norcantharidin induces apoptosis of breast cancer cells: involvement of activities of mitogen activated protein kinases and signal transducers and activators of transcription. Toxicol in Vitro. 2011;25(3):699–707.

    Google Scholar 

  8. Wang Q, Zhang L, Hu W, Hu Z-H, Bei Y-Y, Xu J-Y, et al. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomedicine. 2010;6(2):371–81.

    CAS  Google Scholar 

  9. Lu K, Cao M, Mao W, Sun X, Tang J, Shen Y, et al. Targeted acid-labile conjugates of norcantharidin for cancer chemotherapy. J Mater Chem. 2012;22(31):15804–11.

    CAS  Google Scholar 

  10. Wang S, Guo S. Disodium norcantharidate-loaded poly(ɛ-caprolactone) microspheres: II. Modification of morphology and release behavior. Int J Pharm. 2008;353(1–2):15–20.

    CAS  Google Scholar 

  11. Zhang J, Tang Y, Li S, Liao C, Guo X. Targeting of the B-lineage leukemia stem cells and their progeny with norcantharidin encapsulated liposomes modified with a novel CD19 monoclonal antibody 2E8 in vitro. J Drug Target. 2010;18(9):675–87.

    Google Scholar 

  12. Liu X, Heng WS, Paul, Li Q, Chan LW. Novel polymeric microspheres containing norcantharidin for chemoembolization. J Control Release 2006;116(1):35–41.

  13. Zhou D-h, Zhang J, Zhang G, Gan Z-h. Effect of surface charge of polymeric micelles on in vitro cellular uptake. Chin J Polym Sci. 2013;31(9):1299–309.

    CAS  Google Scholar 

  14. Ma J, Teng H, Wang J, Zhang Y, Ren T, Tang X, et al. A highly stable norcantharidin loaded lipid microspheres: preparation, biodistribution and targeting evaluation. Int J Pharm. 2014;473(1–2):475–84.

    CAS  Google Scholar 

  15. Hill TA, Stewart SG, Ackland SP, Gilbert J, Sauer B, Sakoff JA, et al. Norcantharimides, synthesis and anticancer activity: synthesis of new norcantharidin analogues and their anticancer evaluation. Bioorg Med Chem. 2007;15(18):6126–34.

    CAS  Google Scholar 

  16. Pan Z, Niu Y, Wang Y, Tang Y, Tang X, Cai C. Intravenous lipid microspheres loaded with alkylated norcantharidin derivative norcantharimide: improved stability and prolonged half-life. Eur J Lipid Sci Technol. 2015;117(1):55–64.

    CAS  Google Scholar 

  17. Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B, et al. Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res. 1998;58(6):1195–201.

    CAS  Google Scholar 

  18. Guan M, Zhou Y, Zhu QL, Liu Y, Bei YY, Zhang XN, et al. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomed Nanotechnol Biol Med. 2012;8(7):1172–81.

    CAS  Google Scholar 

  19. Narahara RTMMSTKAS. Development of human hepatocellular carcinoma cell-targeted protein cages. Bioconjug Chem. 2012;3(7):1494–501.

    Google Scholar 

  20. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    CAS  Google Scholar 

  21. Wagner V, Dullaart A, Bock A-K, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.

    CAS  Google Scholar 

  22. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–71.

    CAS  Google Scholar 

  23. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.

    CAS  Google Scholar 

  24. Matosevic CZS. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Delivery. 2016;1.

  25. Wang J-Y, Chen J, Yang J, Wang H, Shen X, Sun Y-M, et al. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine. 2016;11:3475–85.

    CAS  Google Scholar 

  26. Zhang YQ, Shen Y, Liao MM, Mao X, Mi GJ, You C, et al. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine. 2019;15(1):86–97.

    CAS  Google Scholar 

  27. Hu W, Chen Z, Wang M, Luo T, Wang J. Design, synthesis and evaluation of HepDirect fluorescence probes mediated by asialoglycoprotein receptor. Dyes Pigments. 2018;159:471–8.

    CAS  Google Scholar 

  28. Zhang X, Ng HLH, Lu A, Lin C, Zhou L, Lin G, et al. Drug delivery system targeting advanced hepatocellular carcinoma: current and future. Nanomed Nanotechnol Biol Med. 2016;12(4):853–69.

    CAS  Google Scholar 

  29. Lo A, Lin C-T, Wu H-C. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol Cancer Ther. 2008;7(3):579–89.

    CAS  Google Scholar 

  30. Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5(7):5729–45.

    CAS  Google Scholar 

  31. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater. 2011;10(5):389–97.

    CAS  Google Scholar 

  32. Medina SH, Tiruchinapally G, Chevliakov MV, Durmaz YY, Stender RN, Ensminger WD, et al. Targeting hepatic cancer cells with pegylated dendrimers displaying N-acetylgalactosamine and SP94 peptide ligands. Adv Healthc Mater. 2013;2(10):1337–50.

    CAS  Google Scholar 

  33. Liu X, Han M, Xu J, Geng S, Zhang Y, Ye X, et al. Asialoglycoprotein receptor-targeted liposomes loaded with a norcantharimide derivative for hepatocyte-selective targeting. Int J Pharm. 2017;520(1–2):98–110.

    CAS  Google Scholar 

  34. Wang DD, Wang T, Zhao GC, Zhuang J, Wu W. Improving systemic circulation of paclitaxel nanocrystals by surface hybridization of DSPE-PEG2000. Colloid Surf B-Biointerfaces. 2019;182:8.

    Google Scholar 

  35. Weng W, Wang Q, Wei C, Man N, Zhang K, Wei Q, et al. Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. Int J Pharm. 2019;572:118735.

    CAS  Google Scholar 

  36. Bai J, Liu Z, Liu J, Zhang S, Tian Y, Zhang Y, et al. Mitochondrial metabolic study guided by proteomics analysis in hepatocellular carcinoma cells surviving long-term incubation with the highest dose of sorafenib. Aging-Us. 2019;11(24):12452–75.

    CAS  Google Scholar 

  37. Silva AM, Alvarado HL, Abrego G, Martins-Gomes C, Garduno-Ramirez ML, Garcia ML, et al. In vitro cytotoxicity of oleanolic/ursolic acids-loaded in PLGA nanoparticles in different cell lines. Pharmaceutics. 2019;11(8).

  38. Zheng JS, Wang B, Jin YZ, Weng B, Chen JC. Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells. Microchim Acta. 2019;186(2):9.

    Google Scholar 

  39. Yang F, Li J, Zhu J, Wang D, Chen S, Bai X. Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice. Eur J Pharmacol. 2015;754:105–14.

    CAS  Google Scholar 

  40. Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta Biomembr. 1979;557(1):9–23.

    CAS  Google Scholar 

  41. Wei MY, Xu YH, Zou Q, Tu LX, Tang CY, Xu T, et al. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur J Pharm Sci. 2012;46(3):131–41.

    CAS  Google Scholar 

  42. Wu Y, Zhang Y, Dai LL, Wang QQ, Xue LJ, Su ZG, et al. An apoptotic body-biomimic liposome in situ upregulates anti-inflammatory macrophages for stabilization of atherosclerotic plaques. J Control Release. 2019;316:236–49.

    CAS  Google Scholar 

  43. Jingying Z, Yongmin T, Sisi L, Chan L, Xiaoping G. Targeting of the B-lineage leukemia stem cells and their progeny with norcantharidin encapsulated liposomes modified with a novel CD19 monoclonal antibody 2E8 in vitro. J Drug Target. 2010;18(9):675–87.

    Google Scholar 

  44. Lin X, Zhang B, Zhang K, Zhang Y, Wang J, Qi N, et al. Preclinical evaluations of norcantharidin-loaded intravenous lipid microspheres with low toxicity. Expert Opin Drug Deliv. 2012;9(12):1449–62.

    CAS  Google Scholar 

  45. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    CAS  Google Scholar 

  46. Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res. 2000;6(5):1949–57.

    CAS  Google Scholar 

  47. Felber AE, Dufresne MH, Leroux JC. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev. 2012;64(11):979–92.

    CAS  Google Scholar 

  48. Mali AD, Bathe RS. An updated review on liposome drug delivery system 2015;5(3):151.

  49. Min J, Moon H, Yang HJ, Shin HH, Hong SY, Kang S. Development of P22 viral capsid nanocomposites as anti-cancer drug, bortezomib (BTZ), delivery nanoplatforms. Macromol Biosci. 2014;14(4):557–64.

    CAS  Google Scholar 

  50. Li DC, Zhong XK, Zeng ZP, Jiang JG, Li L, Zhao MM, et al. Application of targeted drug delivery system in Chinese medicine. J Control Release. 2009;138(2):103–12.

    CAS  Google Scholar 

  51. Liu MC, Liu L, Wang XR, Shuai WP, Hu Y, Han M, et al. Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin enhance antitumor potency for H22 hepatocellular carcinoma both in vitro and in vivo. Int J Nanomed. 2016;11:1395-412.

Download references

Funding

This study received financial support from the Liaoning Province Natural Science Fund Project (No.20180551031), and Overseas returnees start-up fund of Shenyang Pharmaceutical University (No. GGJJ2018102).

Author information

Authors and Affiliations

Authors

Contributions

YJ and XLL performed all experiments and wrote the manuscript. YXT contributed to data acquisition and analysis. Others contributed to data acquisition. The corresponding author YZ contributed to conception, design, data interpretation, and critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, X., Tan, X. et al. In Vitro and In Vivo Evaluation of SP94 Modified Liposomes Loaded with N-14NCTDA, a Norcantharimide Derivative for Hepatocellular Carcinoma-Targeting. AAPS PharmSciTech 21, 277 (2020). https://doi.org/10.1208/s12249-020-01829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01829-3

KEY WORDS

Navigation