Skip to main content
Log in

Drug Solubilization by Means of Partition/Association Equilibrium Using a Modified Nanosized Dendrimeric Biopolymer

  • Review Article
  • Theme: Paul Myrdal Memorial Issue - Pharmaceutical Formulation and Aerosol Sciences
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study is to elucidate the combined effects of a novel type of material being investigated as a new excipient, an octenylsuccinate-modified dendrimer-like biopolymer (OS-DLB) and poloxamer (PLX), on the solubility of poorly water-soluble compounds. Phenytoin (PHT), griseofulvin (GSF), ibuprofen (IBU), and loratadine (LOR) were used as model compounds. Phase solubility measurements were conducted to determine the relative proportions of API, OS-DLB, and PLX that result in the most stable dendrimeric complexes. The solubilizing power of OS-DLB increases with increasing hydrophobicity of the solute. In the presence of PLX, the solubilization effect of OS-DLB is modestly accentuated for the most hydrophobic drugs (IBU and LOR) but has no effect on the least hydrophobic one (PHT). The maximum potentiation effect of PLX on the solubilizing properties of OS-DLB was observed for GSF, the drug of intermediate hydrophobicity. Three different types of solubilization profiles were obtained in the study. All three different profiles can be appropriately described by a single solubilization model, depending on the specific parameter values. The defining parameters of the model reflect the hydrophobicity of the drug on the one hand and, on the other hand, the inherent tendency of the drug (crystal lattice energy) toward crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yalkowsky SH. Solubility and solubilization in aqueous media. New York: American Chemical Society; 1999.

    Google Scholar 

  2. Lin X, Hu Y, Liu L, Su L, Li N, Yu J, et al. Physical stability of amorphous solid dispersions: a physicochemical perspective with thermodynamic, kinetic and environmental aspects. Pharm Res. 2018;35(6):125. https://doi.org/10.1007/s11095-018-2408-3.

    Article  CAS  PubMed  Google Scholar 

  3. Shimizu S, Matubayasi N. The origin of cooperative solubilisation by hydrotropes. Phys Chem Chem Phys. 2016;18(36):25621–8. https://doi.org/10.1039/C6CP04823D.

    Article  CAS  PubMed  Google Scholar 

  4. Kim JY, Kim S, Papp M, Park K, Pinal R. Hydrotropic solubilization of poorly water-soluble drugs. J Pharm Sci. 2010;99(9):3953–65. https://doi.org/10.1002/jps.22241.

    Article  CAS  PubMed  Google Scholar 

  5. Kim JY, Kim S, Pinal R, Park K. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs. J Control Release. 2011;152(1):13–20. https://doi.org/10.1016/j.jconrel.2011.02.014.

    Article  CAS  PubMed  Google Scholar 

  6. Hoye JA, Myrdal PB. Measurement and correlation of solute solubility in HFA-134a/ethanol systems. Int J Pharm. 2008;362(1):184–8. https://doi.org/10.1016/j.ijpharm.2008.06.020.

    Article  CAS  PubMed  Google Scholar 

  7. He Y, Li P, Yalkowsky SH. Solubilization of fluasterone in cosolvent/cyclodextrin combinations. Int J Pharm. 2003;264(1):25–34. https://doi.org/10.1016/S0378-5173(03)00389-2.

    Article  CAS  PubMed  Google Scholar 

  8. Li P, Tabibi SE, Yalkowsky Samuel H. Solubilization of flavopiridol by pH control combined with cosolvents, surfactants, or complexants. J Pharm Sci. 2000;88(9):945–7. https://doi.org/10.1021/js990097r.

    Article  CAS  Google Scholar 

  9. Grohganz H, Priemel PA, Löbmann K, Nielsen LH, Laitinen R, Mullertz A, et al. Refining stability and dissolution rate of amorphous drug formulations. Expert Opinion on Drug Delivery. 2014;11(6):977–89. https://doi.org/10.1517/17425247.2014.911728.

    Article  CAS  PubMed  Google Scholar 

  10. Karagianni A, Kachrimanis K, Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018;10(3). https://doi.org/10.3390/pharmaceutics10030098.

    Article  CAS  Google Scholar 

  11. Ong HJ, Pinal R. Drug solubilization by means of a surface-modified edible biopolymer enabled by hot melt extrusion. J Pharm Sci. 2018;107(1):402–11. https://doi.org/10.1016/j.xphs.2017.10.022.

    Article  CAS  PubMed  Google Scholar 

  12. Putaux J-L, Buléon A, Borsali R, Chanzy H. Ultrastructural aspects of phytoglycogen from cryo-transmission electron microscopy and quasi-elastic light scattering data. Int J Biol Macromol. 1999;26(2–3):145–50. https://doi.org/10.1016/S0141-8130(99)00076-8.

    Article  CAS  PubMed  Google Scholar 

  13. Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev. 2012;41(7):2623–40. https://doi.org/10.1039/c1cs15239d.

    Article  CAS  PubMed  Google Scholar 

  14. Alexandridis P, Nivaggioli T, Hatton TA. Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions. Langmuir. 1995;11(5):1468–76. https://doi.org/10.1021/la00005a011.

    Article  CAS  Google Scholar 

  15. Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. Journal of Functional Biomaterials. 2018;9:11. https://doi.org/10.3390/jfb9010011.

    Article  CAS  PubMed Central  Google Scholar 

  16. Scheffler SL, Huang L, Bi L, Yao Y. In vitro digestibility and emulsification properties of phytoglycogen octenyl succinate. J Agric Food Chem. 2010;58(8):5140–6. https://doi.org/10.1021/jf904378e.

    Article  CAS  PubMed  Google Scholar 

  17. Connors K, Higuchi T. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    Google Scholar 

  18. Takacs-Novak K, Urac M, Horvath P, Volgyi G, Anderson BD, Avdeef A. Equilibrium solubility measurement of compounds with low dissolution rate by Higuchi’s facilitated dissolution method. A validation study. Eur J Pharm Sci. 2017;106:133–41. https://doi.org/10.1016/j.ejps.2017.05.064.

    Article  CAS  PubMed  Google Scholar 

  19. Repta AJ. Alteration of apparent solubility through complexation. In: S.H. Yolkowsky, editor. Techniques of solubilization of drugs. New York: Marcell Dekker, Inc.; 1981.

  20. Yalkowsky SH, Roseman TJ. Solubilization of drugs by cosolvents. In: Yalkowsky SH, editor. Techniques of solubilization of drugs. New York: Marcell Dekker, Inc.; 1981. p. Chapter 3.

  21. Berna N, Berna P, Oscarsson S. Cosolvent-induced adsorption and desorption of serum proteins on an amphiphilic mercaptomethylene pyridine-derivatized agarose gel. Arch Biochem Biophys. 1996;330(1):188–92. https://doi.org/10.1006/abbi.1996.0241.

    Article  CAS  PubMed  Google Scholar 

  22. Kirsch LE, Sinn Y-S. The effect of polyvinylpyrrolidine on the stability of taurolidine. Pharm Dev Technol. 1997;2(4):345–56. https://doi.org/10.3109/10837459709022633.

    Article  CAS  PubMed  Google Scholar 

  23. Timasheff SN. Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. In: Di Cera E, editor. Advances in protein chemistry. San Diego, California: Academic Press; 1998. p. 355–432.

    Google Scholar 

  24. Shimizu S, Smith DJ. Preferential hydration and the exclusion of cosolvents from protein surfaces. J Chem Phys. 2004;121(2):1148–54. https://doi.org/10.1063/1.1759615.

    Article  CAS  PubMed  Google Scholar 

  25. Attwood D, Elworthy PH, Lawrence MJ. Effect of structural variations of non-ionic surfactants on micellar properties and solubilization: surfactants with semi-polar hydrophobes. J Pharm Pharmacol. 1989;41(9):585–9. https://doi.org/10.1111/j.2042-7158.1989.tb06536.x.

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence MJ, Elworthy PH, Attwood D. The effect of modification on solubilisation and micellar properties of a non-ionic surfactant. J Pharm Pharmacol. 1985;37(S12):2P. https://doi.org/10.1111/j.2042-7158.1985.tb14074.x.

    Article  Google Scholar 

  27. Elworthy PH, Patel MS. Demonstration of maximum solubilization in a polyoxyethylene alkyl ether series of non-ionic surfactants. J Pharm Pharmacol. 1982;34(9):543–6. https://doi.org/10.1111/j.2042-7158.1982.tb04790.x.

    Article  CAS  PubMed  Google Scholar 

  28. Jansook P, Loftsson T. CDs as solubilizers: effects of excipients and competing drugs. Int J Pharm. 2009;379(1):32–40. https://doi.org/10.1016/j.ijpharm.2009.06.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Yuan Yao’s laboratory for providing the DLB material used in the study.

Funding

Financial support from the Dane O. Kildsig Center for Pharmaceutical Processing Research (CPPR), Purdue Research Foundation, and the National Science Foundation (NSF DMR 1310475) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Pinal.

Additional information

Guest Editors: Philip J. Kuehl and Stephen W. Stein

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, H.J., Pinal, R. Drug Solubilization by Means of Partition/Association Equilibrium Using a Modified Nanosized Dendrimeric Biopolymer. AAPS PharmSciTech 20, 304 (2019). https://doi.org/10.1208/s12249-019-1490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1490-0

KEY WORDS

Navigation