Skip to main content

Advertisement

Log in

Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Fast-dissolving delivery systems (FDDS) have received increasing attention in the last years. Oral drug delivery is still the preferred route for the administration of pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have difficulties in swallowing solid tablets. In this work, gelatin membranes were produced by electrospinning, containing an encapsulated therapeutic deep-eutectic solvent (THEDES) composed by choline chloride/mandelic acid, in a 1:2 molar ratio. A gelatin solution (30% w/v) with 2% (v/v) of THEDES was used to produce electrospun fibers and the experimental parameters were optimized. Due to the high surface area of polymer fibers, this type of construct has wide applicability. With no cytotoxicity effect, and showing a fast-dissolving release profile in PBS, the gelatin fibers with encapsulated THEDES seem to have promising applications in the development of new drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Robinson DH, Mauger JW. Drug delivery systems. Am J Hosp Pharm. 1991;48:S14–23.

    CAS  PubMed  Google Scholar 

  2. Tiwari G, Tiwari R, Bannerjee S, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: a modern expansion in drug delivery system. Saudi Pharm J. 2016;24:537–46.

    Article  PubMed  Google Scholar 

  4. Lopez FL, Ernest TB, Tuleu C, Gul MO. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv. 2015;12:1727–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parkash V, Maan S, Deepika, Yadav S, Hemlata, Jogpal V. Fast disintegrating tablets: opportunity in drug delivery system. J Adv Pharm Technol Res. 2011;2:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49:832–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, Zarghami N. An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif Cells Nanomed Biotechnol. 2015;1–15.

  8. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev Elsevier BV. 2009;61:1020–32.

    Article  CAS  Google Scholar 

  9. Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers (Basel). 2011;3:1972–2009.

    Article  CAS  Google Scholar 

  10. Duarte ARC, Mano JF, Reis RL. Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. J Supercrit Fluids. 2009;49:279–85.

    Article  CAS  Google Scholar 

  11. Jukola H, Nikkola L, Gomes ME, Reis RL, Ashammakhi N, Paulino GH, et al. Electrospun starch-polycaprolactone nanofiber-based constructs for tissue engineering. AIP Conf Proc. 2008;973:971–4.

    Article  CAS  Google Scholar 

  12. Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61:1189–224.

    Article  CAS  Google Scholar 

  13. Sharifi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N. Fiber-based approaches as medicine delivery systems. ACS Biomater Sci Eng. 2016

  14. Sajkiewicz P, Kołbuk D. Electrospinning of gelatin for tissue engineering—molecular conformation as one of the overlooked problems. J Biomater Sci Polym Ed. 2014;25:2009–22.

    Article  CAS  PubMed  Google Scholar 

  15. Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science, volume 3, 2nd ed. Springer; 2009.

  16. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC, et al. Natural deep eutectic solvents—solvents for the 21st century. Sustain Chem Eng. 2014;ASAP.

  17. Zhang Q, De Oliveira VK, Royer S, Jérôme F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41:7108–46.

    Article  CAS  PubMed  Google Scholar 

  18. Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta Elsevier BV. 2013;766:61–8.

    Article  CAS  Google Scholar 

  19. Stott PW, Williams AC, Barry BW. Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Control Release. 1998;50:297–308.

    Article  CAS  PubMed  Google Scholar 

  20. Aroso IM, Craveiro R, Rocha Â, Dionísio M, Barreiros S, Reis RL, et al. Design of controlled release systems for THEDES—therapeutic deep eutectic solvents, using supercritical fluid technology. Int J Pharm. 2015;492:73–9.

    Article  CAS  PubMed  Google Scholar 

  21. Aroso IM, Silva JC, Mano F, Ferreira ASD, Dionísio M, Sá-Nogueira I, et al. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur J Pharm Biopharm. 2016;98:57–66.

    Article  CAS  PubMed  Google Scholar 

  22. Yang C, Yu D-G, Pan D, Liu X-K, Wang X, Bligh SWA, et al. Electrospun pH-sensitive core–shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater. 2016;35:77–86.

    Article  PubMed  Google Scholar 

  23. Wen H-F, Yang C, Yu D-G, Li X-Y, Zhang D-F. Electrospun zein nanoribbons for treatment of lead-contained wastewater. Chem Eng J. 2016;290:263–72.

    Article  CAS  Google Scholar 

  24. Yu D-G, Yang C, Jin M, Williams GR, Zou H, Wang X, et al. Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret. Colloids Surf B Biointerfaces. 2016;138:110–6.

    Article  CAS  PubMed  Google Scholar 

  25. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151–70.

    Article  CAS  Google Scholar 

  26. Li Z, Wang C. Effects of working parameters on electrospinning. In: Springer, editor. One-dimensional nanostructures electrospinning Tech. Unique Nanofibers. Berlin, Heidelberg; 2013. p. 15–29.

  27. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48:5–16.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Huang Y, Yang X, Mei F, Ma Q, Chen G, et al. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A. 2009;90:671–9.

    Article  PubMed  Google Scholar 

  29. Dos Santos R, Rocha Â, Matias A, Duarte C, Sá-Nogueira I, Lourenço N, et al. Development of antimicrobial Ion Jelly fibers. RSC Adv. 2013;3:24400.

    Article  Google Scholar 

  30. Pimenta A, Baptista A, Carvalho T, Brogueira P, Lourenço N, Afonso C, et al. Electrospinning of Ion Jelly fibers. Mater Lett Elsevier BV. 2012;83:161–4.

    Article  CAS  Google Scholar 

  31. Canejo JP, Borges JP, Godinho MH, Brogueira P, Teixeira PIC, Terentjev EM. Helical twisting of electrospun liquid crystalline cellulose micro- and nanofibers. Adv Mater. 2008;20:4821–5.

    Article  CAS  Google Scholar 

  32. Godinho MH, Canejo JP, Pinto LF V., Borges JP, Teixeira PIC. How to mimic the shapes of plant tendrils on the nano and microscale: spirals and helices of electrospun liquid crystalline cellulose derivatives. Soft Matter. 2009. p. 2772.

  33. Koombhongse S, Liu W, Reneker DH. Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B Polym Phys. 2001;39:2598–606.

    Article  CAS  Google Scholar 

  34. Doyle BB, Bendit EG, Blout ER. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers. 1975;14:937–57.

    Article  CAS  PubMed  Google Scholar 

  35. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. Spectrom Identif Org Compd. 2006.

  36. Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L. Cell viability assays. Assay Guid Man. 2004.

  37. Jeon J-M, Lee H-I, Kim SG, Han S-H, So J-S. Differential inactivation of food poisoning bacteria and Lactobacillus sp. by mandelic acid. Food Sci Biotechnol. 2010;19:583–7.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The research leading to these results has received funding from Fundação para a Ciência e a Tecnologia (FCT) through the projects ENIGMA - PTDC/EQU-EPR/121491/2010 and UID/CTM/50025/2013, LAQV-REQUIMTE: UID/QUI/50006/2013, UCIBIO-REQUIMTE: UID/Multi/04378/2013 (co-financed by the ERDF under the PT2020 Partnership Agreement [POCI-01-0145-FEDER-007728]) and by FEDER through the COMPETE 2020 Programme. Marta Martins is grateful for financial support from FCT through the grant BIM/PTDC/EQUEPR/121491/2010/ENIGMA. This research has also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number REGPOT-CT2012-316331-POLARIS and from the project “Novel smart and biomimetic materials for innovative regenerative medicine approaches” RL1 - ABMR - NORTE-01-0124-FEDER-000016) co-financed by North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Paiva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mano, F., Martins, M., Sá-Nogueira, I. et al. Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech 18, 2579–2585 (2017). https://doi.org/10.1208/s12249-016-0703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0703-z

KEY WORDS

Navigation