Skip to main content
Log in

Development of Eudragit RS 100 Microparticles Loaded with Ropinirole: Optimization and In Vitro Evaluation Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The current study aimed to develop novel pH independent microparticles loaded with ropinirole (ROP) for sustained drug release. Eudragit RS 100 was used as release retardant and microparticles were fabricated by oil-in-oil emulsion solvent evaporation method. A three-factor three-level Box-Behnken design using Design-Expert software was employed to optimize formulation variables. Ropinirole loaded microparticles were evaluated with respect to morphology, particle size, encapsulation efficiency, and in vitro release profile. Optical microscopy and SEM micrographs indicated spherical shape with smooth surface and well-defined boundary. The particle size was in the range of 98.86 to 236.29 μm, being significantly increased with increasing polymer concentration. Higher polymer load also increased the thickness of internal polymer network, which led to reduced drug loss and higher entrapment efficiency (89%). The cumulative in vitro release was found to be in the range of 54.96 to 99.36% during the release studies (12 h) following zero order release kinetics and non-Fickian diffusion pattern. The developed microparticles have the potential to sustain the release of ropinirole, which may lead to a reduction in its adverse effects and improved management of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Ahlskog JE. Pathological behaviors provoked by dopamine agonist therapy of Parkinson’s disease. Physiol Behav. 2011;104(1):168–72.

    Article  CAS  PubMed  Google Scholar 

  2. Nanaki SG, Koutsidis IA, Koutri I, Karavas E, Bikiaris D. Miscibility study of chitosan/2-hydroxyethyl starch blends and evaluation of their effectiveness as drug sustained release hydrogels. Carbohydr Polym. 2012;87(2):1286–94.

    Article  CAS  Google Scholar 

  3. Sweetman SC. Martindale the complete drug reference. 36th ed. London: Pharmaceutical press; 2009. 816 p.

    Google Scholar 

  4. Hubble J, Koller WC, Atchison P, Taylor AC, Citerone DR, Zussman BD, et al. Linear pharmacokinetic behavior of ropinirole during multiple dosing in patients with Parkinson’s disease. J Clin Pharmacol. 2000;40(6):641–6.

    Article  CAS  PubMed  Google Scholar 

  5. Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000;39(4):243–54.

    Article  CAS  PubMed  Google Scholar 

  6. Garbayo E, Ansorena E, Blanco-Prieto MJ. Drug development in Parkinson’s disease: from emerging molecules to innovative drug delivery systems. Maturitas. 2013;76(3):272–8.

    Article  CAS  PubMed  Google Scholar 

  7. D’Aurizio E, Van Nostrum C, Van Steenbergen M, Sozio P, Siepmann F, Siepmann J, et al. Preparation and characterization of poly (lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug. Int J Pharm. 2011;409(1):289–96.

    Article  PubMed  Google Scholar 

  8. Hurley MJ, Jenner P. What has been learnt from study of dopamine receptors in Parkinson’s disease? Pharmacol Ther. 2006;111(3):715–28.

    Article  CAS  PubMed  Google Scholar 

  9. Salawu F, Olokoba A, Danburam A. Current management of Parkinson’s disease. Ann Afr Med. 2010;9(2).

  10. Pandya M, Kubu CS, Giroux ML. Parkinson disease: not just a movement disorder. Cleve Clin J Med. 2008;75(12):856–64.

    Article  PubMed  Google Scholar 

  11. Gaignaux A, Réeff J, Siepmann F, Siepmann J, De Vriese C, Goole J, et al. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm. 2012;437(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  12. Agnihotri N, Mishra R, Goda C, Arora M. Microencapsulation—a novel approach in drug delivery: a review. Indo Global J Pharm. 2012;2(1):1–20.

    CAS  Google Scholar 

  13. Dubey R. Microencapsulation technology and applications. Def Sci J. 2009;59(1):82–95.

    CAS  Google Scholar 

  14. El-Bagory IM, Hosny EA, Al-Suwayeh SA, Mahrous GM, Al-Jenoobi FI. Effects of sphere size, polymer to drug ratio and plasticizer concentration on the release of theophylline from ethylcellulose microspheres. Saudi Pharm J. 2007;15(3–4):213–7.

    CAS  Google Scholar 

  15. Li M, Rouaud O, Poncelet D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. Int J Pharm. 2008;363(1):26–39.

    Article  CAS  PubMed  Google Scholar 

  16. Park J, Ye M, Park K. Biodegradable polymers for microencapsulation of drugs. Molecules. 2005;10(1):146–61.

    Article  CAS  PubMed  Google Scholar 

  17. Kılıçarslan M, Baykara T. The effect of the drug/polymer ratio on the properties of the verapamil HCl loaded microspheres. Int J Pharm. 2003;252(1):99–109.

    Article  PubMed  Google Scholar 

  18. Horoz BB, Kiliçarslan M, Yüksel N, Baykara T. Influence of aluminum tristearate and sucrose stearate as the dispersing agents on physical properties and release characteristics of Eudragit RS microspheres. AAPS PharmSciTech. 2006;7(1):E111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Govender S, Pillay V, Chetty D, Essack S, Dangor C, Govender T. Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres. Int J Pharm. 2005;306(1):24–40.

    Article  CAS  PubMed  Google Scholar 

  20. Mujtaba A, Ali M, Kohli K. Statistical optimization and characterization of pH-independent extended-release drug delivery of cefpodoxime proxetil using Box–Behnken design. Chem Eng Res Des. 2014;92(1):156–65.

    Article  CAS  Google Scholar 

  21. Yang C-R, Zhao X-L, Hu H-Y, Li K-X, Sun X, Li L, et al. Preparation, optimization and characteristic of huperzine a loaded nanostructured lipid carriers. Chem Pharm Bull. 2010;58(5):656–61.

    Article  CAS  PubMed  Google Scholar 

  22. Gannu R, Palem CR, Yamsani VV, Yamsani SK, Yamsani MR. Enhanced bioavailability of lacidipine via microemulsion based transdermal gels: formulation optimization, ex vivo and in vivo characterization. Int J Pharm. 2010;388(1–2):231–41.

    Article  CAS  PubMed  Google Scholar 

  23. Trapani A, Laquintana V, Denora N, Lopedota A, Cutrignelli A, Franco M, et al. Eudragit RS 100 microparticles containing 2-hydroxypropyl-β-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur J Pharm Sci. 2007;30(1):64–74.

    Article  CAS  PubMed  Google Scholar 

  24. Souza MC, Marchetti JM. Development of albendazole sulfoxide-loaded Eudragit microparticles: a potential strategy to improve the drug bioavailability. Adv Powder Technol. 2012;23(6):801–7.

    Article  Google Scholar 

  25. Raffin R, Colomé L, Pohlmann A, Guterres S. Preparation, characterization, and in vivo anti-ulcer evaluation of pantoprazole-loaded microparticles. Eur J Pharm Biopharm. 2006;63(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  26. Yamada T, Onishi H, Machida Y. Sustained release ketoprofen microparticles with ethylcellulose and carboxymethylethylcellulose. J Control Release. 2001;75(3):271–82.

    Article  CAS  PubMed  Google Scholar 

  27. Hou C-D, Wang J-X, Le Y, Zou H-K, Zhao H. Preparation of azithromycin nanosuspensions by reactive precipitation method. Drug Dev Ind Pharm. 2012;38(7):848–54.

    Article  CAS  PubMed  Google Scholar 

  28. Li J-L, Zhu Y-W, Ye B, Zhao Z-C, Chang Z-Q, Serra CA. Fabrication and characteristics of Li4SiO4 pebbles by a novel capillary-based microfluidic wet process. J Nucl Mater. 2013;440(1–3):283–7.

    Article  CAS  Google Scholar 

  29. Shi K, Bi H, Jiang Y. Characterization of physiochemical and biological properties of spherical protein crystals for sustained release. Asian J Pharm Sci. 2013;8(1):58–63.

    Article  CAS  Google Scholar 

  30. Josephine J, Mehul R, Wilson B, Shanaz B, Bincy R. Formulation and in vitro evaluation of floating microspheres of anti-retro viral drug as a gastro retentive dosage form. Int J Pharm Chem Res. 2011;1:519–27.

    CAS  Google Scholar 

  31. Gupta S, Kaur J, Verma R. Study on formulation and evaluation of ropinirole hydrochloride loaded microspheres using polymers blend of ethyl cellulose and carbopol 934P. Int J Curr Res Chem Pharm Sci. 2014;1(5):48–55.

    Google Scholar 

  32. Haznedar S, Dortunç B. Preparation and in vitro evaluation of Eudragit microspheres containing acetazolamide. Int J Pharm. 2004;269(1):131–40.

    Article  CAS  PubMed  Google Scholar 

  33. Deshmukh RK, Naik JB. Aceclofenac microspheres: quality by design approach. Mater Sci Eng C. 2014;36:320–8.

    Article  CAS  Google Scholar 

  34. Varshosaz J, Tabbakhian M, Zahrooni M. Development and characterization of floating microballoons for oral delivery of cinnarizine by a factorial design. J Microencapsul. 2007;24(3):253–62.

    Article  CAS  PubMed  Google Scholar 

  35. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma VK, Mazumder B. Gastrointestinal transition and anti-diabetic effect of Isabgol husk microparticles containing gliclazide. Int J Biol Macromol. 2014;66:15–25.

    Article  CAS  PubMed  Google Scholar 

  37. Dehghan S, Aboofazeli R, Avadi M, Khaksar R. Formulation optimization of nifedipine containing microspheres using factorial design. Afr J Pharm Pharmacol. 2010;4(6):346–54.

    CAS  Google Scholar 

  38. Panchal MS, Patel H, Bagada A, Vadalia K. Formulation and evaluation of mouth dissolving film of ropinirole hydrochloride by using pullulan polymers. Int J Pharm Res Allied Sci. 2012;1(3):60–72.

    CAS  Google Scholar 

  39. Basu S, Adhiyaman R. Preparation and characterization of nitrendipine-loaded Eudragit RL 100 microspheres prepared by an emulsion-solvent evaporation method. Trop J Pharm Res. 2008;7(3):1033–41.

    Article  Google Scholar 

  40. Devrim B, Canefe K. Preparation and evaluation of modified release ibuprofen microspheres with acrylic polymers (Eudragit) by quasi emulsion solvent diffusion method: effect of variables. Acta Pol Pharm Drug Res. 2006;63(6):521–4.

    CAS  Google Scholar 

  41. Willmann S, Edginton AN, Dressman JB. Development and validation of a physiology-based model for the prediction of oral absorption in monkeys. Pharm Res. 2007;24(7):1275–82.

    Article  CAS  PubMed  Google Scholar 

  42. Hijo T, Campos AA, Costa JMG, Silva EK, Azevedo VM, Yoshida MI, et al. Physical and thermal properties of oregano (Origanum vulgare L.) essential oil microparticles. J Food Process Eng. 2015;38(1):1–10.

    Article  CAS  Google Scholar 

  43. Mukhopadhyay HK, Das SK, Bhowmik M, Ray S, Rajabalaya R, Ghosh L, et al. Preparation and characterization of polymethacrylate-based matrix microspheres of carbamazepine using solvent evaporation method. Farmacia. 2014;62(1):137–58.

    CAS  Google Scholar 

  44. Karavelidis V, Karavas E, Giliopoulos D, Papadimitriou S, Bikiaris D. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. Int J Nanomedicine. 2011;6:3021–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Park J-M, Park S-J. Preparation and characterization of water-soluble microcapsule for sustained drug release using Eudragit RS 100. Macromol Res. 2010;18(12):1191–4.

    Article  CAS  Google Scholar 

  46. Chaisri W, Hennink WE, Okonogi S. Preparation and characterization of cephalexin loaded PLGA microspheres. Curr Drug Deliv. 2009;6(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  47. Perumal D. Microencapsulation of ibuprofen and Eudragit® RS 100 by the emulsion solvent diffusion technique. Int J Pharm. 2001;218(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  48. Hong Y, Gao C, Shi Y, Shen J. Preparation of porous polylactide microspheres by emulsion‐solvent evaporation based on solution induced phase separation. Polym Adv Technol. 2005;16(8):622–7.

    Article  CAS  Google Scholar 

  49. Mao S, Shi Y, Li L, Xu J, Schaper A, Kissel T. Effects of process and formulation parameters on characteristics and internal morphology of poly (d, l-lactide-co-glycolide) microspheres formed by the solvent evaporation method. Eur J Pharm Biopharm. 2008;68(2):214–23.

    Article  CAS  PubMed  Google Scholar 

  50. Abdallah MH, Sammour OA, El-ghamry HA, El-Nahas HM, Barakat W. Development and characterization of controlled release ketoprofen microspheres. J Appl Pharm Sci. 2012;2(3):60–7.

    Google Scholar 

  51. NHire N, Derle D. Development and evaluation of drug loaded Eudragit RS-100 microspheres for colon specific drug delivery system. Pharm Innov J. 2014;2(12):67–78.

    Google Scholar 

  52. Regnier-Delplace C, Thillaye du Boullay O, Siepmann F, Martin-Vaca B, Degrave N, Demonchaux P, et al. PLGA microparticles with zero-order release of the labile anti-Parkinson drug apomorphine. Int J Pharm. 2013;443(1–2):68–79.

    Article  CAS  PubMed  Google Scholar 

  53. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Microsphere design for the colonic delivery of 5-fluorouracil. J Control Release. 2003;90(3):313–22.

    Article  CAS  PubMed  Google Scholar 

  54. Behera B, Sahoo S, Dhal S, Barik B, Gupta B. Characterization of glipizide-loaded polymethacrylate microspheres prepared by an emulsion solvent evaporation method. Trop J Pharm Res. 2008;7(1):879–85.

    Article  Google Scholar 

  55. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asadullah Madni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashif, P.M., Madni, A., Ashfaq, M. et al. Development of Eudragit RS 100 Microparticles Loaded with Ropinirole: Optimization and In Vitro Evaluation Studies. AAPS PharmSciTech 18, 1810–1822 (2017). https://doi.org/10.1208/s12249-016-0653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0653-5

KEY WORDS

Navigation