Skip to main content

Advertisement

Log in

TAT Peptide-Conjugated Magnetic PLA-PEG Nanocapsules for the Targeted Delivery of Paclitaxel: In Vitro and Cell Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Paclitaxel (PTX) and organophilic iron oxide nanocrystals of 7 nm average size were co-encapsulated in the oily core of poly(lactide)-poly(ethyleneglycol) (PLA-PEG) nanocapsules in order to develop magnetically responsive nanocarriers of PTX. The nanocapsules were prepared by a solvent displacement technique and exhibited satisfactory drug and iron oxide loading efficiency, high colloidal stability, and sustained drug release properties. Drug release also proved responsive to an alternating magnetic field. Magnetophoresis experiments showed that the magnetic responsiveness of the nanocapsules depended on their SPION content. The PTX-loaded nanocapsules exhibited comparable to free PTX cytotoxicity against the A549 lung cancer cell line at 24 h of incubation but higher cytotoxicity than free drug at 48 h of incubation. The conjugation of a cysteine-modified TAT peptide (HCys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-NH2) on the surface of the nanocapsules resulted to highly increased uptake of nanocapsules by cancer cells, as well as to profound improvement of their cytotoxicity against the cancer cells. The results obtained justify further investigation of the prospects of these multifunctional PLA-PEG nanocapsules as a targeted delivery system of paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94:15–21.

    Article  CAS  PubMed  Google Scholar 

  3. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    Article  CAS  PubMed  Google Scholar 

  4. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284–304.

    Article  CAS  PubMed  Google Scholar 

  5. Shokeen M, Pressly ED, Hagooly A, Zheleznyak A, Ramos N, Fiamengo AL, et al. Evaluation of multivalent, multi-functional polymeric nanoparticles for imaging applications. ACS Nano. 2011;5:738–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maeda H, Bharate GY, Daruwala J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–19.

    Article  CAS  PubMed  Google Scholar 

  7. Lübbe AS, Alexiou C, Bergemann CJ. Clinical applications of magnetic drug targeting. Surg Res. 2001;95:200–6.

    Article  Google Scholar 

  8. Semelka RC, Helmberger TK. Contrast agents for MR imaging of the liver. Radiology. 2001;218:27–38.

    Article  CAS  PubMed  Google Scholar 

  9. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  10. Enochs WS, Harsh G, Hochberg F, Weissleder R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Res Imag. 1999;9:228–32.

    Article  CAS  Google Scholar 

  11. Müller S. Magnetic fluid hyperthermia therapy for malignant brain tumors—an ethical discussion. Nanomed: Nanotech Biol Med. 2009;5:387–93.

    Google Scholar 

  12. Van Landeghem FKH, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials. 2009;30:52–7.

    Article  PubMed  Google Scholar 

  13. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol/Hematol. 2002;43:33–56.

    Article  Google Scholar 

  14. Shakeri-Zadeh A, Khoee S, Shiran MB, Sharifi AM, Khoei S. Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice. J Mater Chem B. 2015;3:1879–87.

    Article  CAS  Google Scholar 

  15. Elumalai R, Patil S, Maliyakkal N, Rangarajan A, Kondaiah P, Raichur AM. Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers. Nanomedicine. 2015;11:969–81.

    CAS  PubMed  Google Scholar 

  16. Crown J, O’Leary M. The taxanes: an update. Lancet. 2000;355:1176–8.

    Article  CAS  PubMed  Google Scholar 

  17. Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995;332:1004–14.

    Article  CAS  PubMed  Google Scholar 

  18. Finley RS, Rowinsky EK. Patient care issues: the management of paclitaxel-related toxicities. Ann Pharmacother. 1994;28:S27–30.

    Article  CAS  PubMed  Google Scholar 

  19. Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. Nanomed Nanotech. 2013;J4:164.

    Google Scholar 

  20. Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, et al. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17:1263–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res. 2002;8:1038–44.

    CAS  PubMed  Google Scholar 

  22. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66:6732–40.

    Article  CAS  PubMed  Google Scholar 

  23. Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm. 2007;342:194–200.

    Article  CAS  PubMed  Google Scholar 

  24. Torchilin VP. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers. 2008;90:604–10.

    Article  CAS  PubMed  Google Scholar 

  25. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2:889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bakandritsos A, Mattheolabakis G, Zboril R, Bouropoulos N, Fatouros D, Tucek J, et al. Preparation, stability and cytocompatibility of magnetic/PLA-PEG hybrids. Nanoscale. 2010;2:564–72.

    Article  CAS  PubMed  Google Scholar 

  27. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385:113–42.

    Article  CAS  PubMed  Google Scholar 

  28. Mykhaylyk O, Antequera YS, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc. 2007;2:2391–411.

    Article  CAS  PubMed  Google Scholar 

  29. Bongio M, van den Beucken JJP, Nejadnik MR, Leeuwenburgh SCG, Kinard LA, Kasper FK, et al. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. Eur Cells Mater. 2011;22:359–76.

    Article  CAS  Google Scholar 

  30. Dengler WA, Schulte J, Berger DP, Mertelsmann R, Fiebig HH. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anti-Cancer Drugs. 1995;6:522–32.

    Article  CAS  PubMed  Google Scholar 

  31. Chazotte B. Labeling nuclear DNA using DAPI. In: Yuste R, editor. CSHL Press: Cold Spring Harbor. 2010. p. 80–82.

  32. Zoppellaro G, Kolokithas-Ntoukas A, Polakova K, Tucek J, Zboril RG, Loudos G. Theranostics of epitaxially condensed colloidal nanocrystal clusters, through a soft biomineralization route. Chem Mater. 2014;26:2062–74.

    Article  CAS  Google Scholar 

  33. Bakandritsos A, Papagiannopoulos A, Anagnostou EN, Avgoustakis K, Zboril R, Pispas S, et al. Merging high doxorubicin loading with pronounced magnetic response and bio‐repellent properties in hybrid drug nanocarriers. Small. 2012;8:2381–93.

    Article  CAS  PubMed  Google Scholar 

  34. Avgoustakis K, Nixon JR. Biodegradable controlled release tablets: 1. Preparative variables affecting the properties of poly(lactide-co-glycolide) copolymer as matrix forming material. Int J Pharm. 1991;79:77–85.

    Article  Google Scholar 

  35. Fortin JP, Wilhelm C, Servais J, Menager C, Bacri CJ, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129:2628–35.

    Article  CAS  PubMed  Google Scholar 

  36. Oliveira H, Pérez-Andrés E, Thevenot J, Sandre O, Berra E, Lecommandoux S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Contrl Rel. 2013;169:165–70.

    Article  CAS  Google Scholar 

  37. Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, et al. Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano. 2012;6:4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angewandte Chemie - Int Ed. 2008;47:5122–35.

    Article  CAS  Google Scholar 

  39. Lee JH, Chen KJ, Noh SH, Garcia MA, Wang H, Lin WY, et al. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angewandte Chemie - Int Ed. 2013;52:4384–8.

    Article  CAS  Google Scholar 

  40. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–30.

    Article  CAS  PubMed  Google Scholar 

  41. Ren J, Hong H, Ren T, Teng X. Preparation and characterization of magnetic PLA-PEG composite nanoparticles for drug targeting. React Funct Polym. 2006;66:944–51.

    Article  CAS  Google Scholar 

  42. Jun Y, Seo J, Cheon J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res. 2008;41:179–89.

    Article  CAS  PubMed  Google Scholar 

  43. Madani M, Sharifi Sanjani N, Faridi MR. Magnetic polystyrene nanocapsules with core–shell morphology obtained by emulsifier free miniemulsion polymerization. Polym Sci Ser A. 2011;53:143–8.

    Article  CAS  Google Scholar 

  44. Mohsen Ashjari M, Khoee S, Reza MA. A multiple emulsion method for loading 5-fluorouracil into a magnetite-loaded nanocapsule: a physicochemical investigation. Polym Int. 2012;61:850–9.

    Article  Google Scholar 

  45. Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272:16010–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales - Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Avgoustakis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutsiouki, K., Angelopoulou, A., Ioannou, E. et al. TAT Peptide-Conjugated Magnetic PLA-PEG Nanocapsules for the Targeted Delivery of Paclitaxel: In Vitro and Cell Studies. AAPS PharmSciTech 18, 769–781 (2017). https://doi.org/10.1208/s12249-016-0560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0560-9

KEY WORDS

Navigation