Skip to main content
Log in

Injectable Supramolecular Hydrogel from Insulin-Loaded Triblock PCL-PEG-PCL Copolymer and γ-Cyclodextrin with Sustained-Release Property

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Supramolecular hydrogels formed by cyclodextrins and polymers have been widely investigated as a biocompatible, biodegradable and controllable drug delivery system. In this study, a supramolecular hydrogel based on biodegradable poly(caprolactone)–poly(ethylene glycol)–poly(caprolactone) (PCL-PEG-PCL) triblock copolymers and γ-cyclodextrin (γ-CD) was prepared through inclusion complexation as an injectable, sustained-release vehicle for insulin. The triblock copolymer PCL-PEG-PCL was synthesised by the ring-opening polymerisation method, using microwave irradiation. The polymerisation reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The supramolecular hydrogel was prepared in aqueous solution by blending an aqueous γ-CD solution with an aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. In vitro insulin release through the hydrogel system was studied. The relative surface hydrophobicity of standard and released insulin from the SMGel was estimated using 8-anilino-1-naphthalene sulfonic acid (ANS). Results of 1HNMR and gel permeation chromatography revealed that microwave irradiation is a simple and reliable method for synthesis of PCL-PEG-PCL copolymer. Gelation occurred within a minute. The supramolecular hydrogel obtained by mixing 10.54% (w/v) γ-CD and 2.5% (w/v) copolymer had an excellent syringeability. Insulin was released up to 80% over a period of 20 days. Insulin kept its initial folding after formulating and releasing from SMGel. A supramolecular hydrogel based on complexation of triblock PCL-PEG-PCL copolymer with γ-cyclodextrin is a suitable system for providing sustained release of therapeutic proteins, with desirable flow behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li J. Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater. 2010;2(3):112–8.

    Article  Google Scholar 

  2. Bromberg LE, Ron ES. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev. 1998;31(3):197–221.

    Article  CAS  PubMed  Google Scholar 

  3. Bender ML, Komiyama M. Cyclodextrin chemistry. Berlin: Springer; 1978.

    Book  Google Scholar 

  4. Harada A, Li J, Kamachi M. Double-stranded inclusion complexes of cyclodextrin threaded on poly (ethylene glycol). Nature. 1994;370(6485):126–8.

    Article  CAS  Google Scholar 

  5. Li J, Harada A, Kamachi M. Sol–gel transition during inclusion complex formation between α-cyclodextrin and high molecular weight poly (ethylene glycol) s in aqueous solution. Polym J. 1994;26(9):1019–26.

    Article  CAS  Google Scholar 

  6. Li J, Ni X, Leong KW. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly (ethylene oxide) s and α-cyclodextrin. J Biomed Mater Res A. 2003;65(2):196–202.

    Article  PubMed  Google Scholar 

  7. Harada A, Li J, Kamachi M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature. 1992;356(6367):325–7.

    Article  CAS  Google Scholar 

  8. Li J, Li X, Toh KC, Ni X, Zhou Z, Leong KW. Inclusion complexation and formation of polypseudorotaxanes between poly [(ethylene oxide)-r an-(propylene oxide)] and cyclodextrins. Macromolecules. 2001;34(26):8829–31.

    Article  CAS  Google Scholar 

  9. Huh KM, Cho YW, Chung H, Kwon IC, Jeong SY, Ooya T, et al. Supramolecular hydrogel formation based on inclusion complexation between poly (ethylene glycol)-modified chitosan and α-cyclodextrin. Macromol Biosci. 2004;4(2):92–9.

    Article  CAS  PubMed  Google Scholar 

  10. Higashi T, Hirayama F, Misumi S, Arima H, Uekama K. Design and evaluation of polypseudorotaxanes of pegylated insulin with cyclodextrins as sustained release system. Biomaterials. 2008;29(28):3866–71.

    Article  CAS  PubMed  Google Scholar 

  11. Ma D, Zhang H-B, Chen D-H, Zhang L-M. Novel supramolecular gelation route to in situ entrapment and sustained delivery of plasmid DNA. J Colloid Interface Sci. 2011;364(2):566–73.

    Article  CAS  PubMed  Google Scholar 

  12. Prabaharan M, Mano J. Chitosan derivatives bearing cyclodextrin cavitiesas novel adsorbent matrices. Carbohydr Polym. 2006;63(2):153–66.

    Article  CAS  Google Scholar 

  13. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Li X, Ni X, Wang X, Li H, Leong KW. Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials. 2006;27(22):4132–40.

    Article  CAS  PubMed  Google Scholar 

  15. Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem. 2008;62(1–2):23–42.

    Article  CAS  Google Scholar 

  16. Yu J, Fan H, Huang J, Chen J. Fabrication and evaluation of reduction-sensitive supramolecular hydrogel based on cyclodextrin/polymer inclusion for injectable drug-carrier application. Soft Matter. 2011;7(16):7386–94.

    Article  CAS  Google Scholar 

  17. Harries M, Smith I. The development and clinical use of trastuzumab (Herceptin). Endocr-Relat Cancer. 2002;9(2):75–85.

    Article  CAS  PubMed  Google Scholar 

  18. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2(10):727–39.

    Article  CAS  PubMed  Google Scholar 

  19. Marshall H. Anti-CD20 antibody therapy is highly effective in the treatment of follicular lymphoma. Trends Immunol. 2001;22(4):183–4.

    CAS  Google Scholar 

  20. McCarthy AA. New approaches to diabetes disease control, insulin delivery, and monitoring. Chem Biol. 2004;11(12):1597–8.

    Article  CAS  PubMed  Google Scholar 

  21. Banting F, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J. 1922;12(3):141.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Onuki Y, Morishita M, Takayama K. Formulation optimization of water-in-oil-water multiple emulsion for intestinal insulin delivery. J Control Release. 2004;97(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  23. Takenaga M, Yamaguchi Y, Kitagawa A, Ogawa Y, Kawai S, Mizushima Y, et al. Optimum formulation for sustained-release insulin. Int J Pharm. 2004;271(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  24. Takenaga M, Yamaguchi Y, Kitagawa A, Ogawa Y, Mizushima Y, Igarashi R. A novel sustained-release formulation of insulin with dramatic reduction in initial rapid release. J Control Release. 2002;79(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  25. Hoare T, Pelton R. Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules. 2008;9(2):733–40.

    Article  CAS  PubMed  Google Scholar 

  26. Lin C-C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58(12):1379–408.

    Article  CAS  PubMed  Google Scholar 

  27. van Dijk‐Wolthuis W, Van Steenbergen M, Underberg W, Hennink W. Degradation kinetics of methacrylated dextrans in aqueous solution. J Pharm Sci. 1997;86(4):413–7.

    Article  PubMed  Google Scholar 

  28. Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997;86(2):147–62.

    Article  CAS  PubMed  Google Scholar 

  29. Khodaverdi A, Akbari A, Tekie FSM, Mohajeri SA, Zohuri G, Hadizadeh F. Sustained delivery of amphotericin B and vancomycin hydrochloride by an injectable thermogelling tri-block copolymer. PDA J Pharm Sci Technol. 2013. doi:10.5731/pdajpst.2013.00908.

    PubMed  Google Scholar 

  30. Jeong B, Choi Y, Bae Y, Zentner G, Kim S. New biodegradable polymers for injectable drug delivery systems. J Control Release. 1999;62(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  31. Abu Hashim II, Higashi T, Anno T, Motoyama K, Abd-ElGawad A-EH, El-Shabouri MH, et al. Potential use of γ-cyclodextrin polypseudorotaxane hydrogels as an injectable sustained release system for insulin. Int J Pharm. 2010;392(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  32. Khodaverdi E, Rajabi O, Farhadi F, Jalali A, Mirzazadeh TF. Preparation and investigation of poly (N-isopropylacrylamide-acrylamide) membranes in temperature responsive drug delivery. Iran J Basic Med Sci. 2010;13(3):102–10.

    CAS  Google Scholar 

  33. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248–54.

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Li J. Supramolecular hydrogels based on inclusion complexation between poly (ethylene oxide)‐b‐poly (ε‐caprolactone) diblock copolymer and α-cyclodextrin and their controlled release property. J Biomed Mater Res A. 2008;86(4):1055–61.

    Article  PubMed  Google Scholar 

  35. Masaro L, Zhu X. Physical models of diffusion for polymer solutions, gels and solids. Prog Polym Sci. 1999;24(5):731–75.

    Article  CAS  Google Scholar 

  36. Möckel JE, Lippold BC. Zero-order drug release from hydrocolloid matrices. Pharm Res. 1993;10(7):1066–70.

    Article  PubMed  Google Scholar 

  37. Sarkar P, Bharill S, Gryczynski I, Gryczynski Z, Nair MP, Lacko AG. Binding of 8-anilino-1-naphthalenesulfonate to lecithin: cholesterol acyltransferase studied by fluorescence techniques. J Photochem Photobiol B Biol. 2008;92(1):19–23.

    Article  CAS  Google Scholar 

  38. Hoogenboom R, Schubert US. Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun. 2007;28(4):368–86.

    Article  CAS  Google Scholar 

  39. Sosnik A, Gotelli G, Abraham GA. Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: how new and how powerful. Prog Polym Sci. 2011;36(8):1050–78.

    Article  CAS  Google Scholar 

  40. Zhao S-P, Zhang L-M, Ma D. Supramolecular hydrogels induced rapidly by inclusion complexation of poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) block copolymers with alpha-cyclodextrin in aqueous solutions. J Phys Chem B. 2006;110(25):12225–9.

    Article  CAS  PubMed  Google Scholar 

  41. Ni X, Cheng A, Li J. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and α-cyclodextrin. J Biomed Mater Res A. 2009;88(4):1031–6.

    Article  PubMed  Google Scholar 

  42. Kopecek J. Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci A Polym Chem. 2009;47(22):5929–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Khodaverdi E, Tekie FSM, Mohajeri SA, Ganji F, Zohuri G, Hadizadeh F. Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA–PEG–PLGA. AAPS PharmSciTech. 2012;13(2):590–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from Vice Chancellor of Research, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran. The results described in this paper were part of a Pharm D student thesis proposal related to Zinat Heidari.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sayyed A. Sajadi Tabassi or Farzin Hadizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaverdi, E., Heidari, Z., Tabassi, S.A.S. et al. Injectable Supramolecular Hydrogel from Insulin-Loaded Triblock PCL-PEG-PCL Copolymer and γ-Cyclodextrin with Sustained-Release Property. AAPS PharmSciTech 16, 140–149 (2015). https://doi.org/10.1208/s12249-014-0198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0198-4

Key words

Navigation