Skip to main content

Advertisement

Log in

Freeze-Dried Targeted Mannosylated Selenium-Loaded Nanoliposomes: Development and Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this investigation was to develop and evaluate freeze-dried mannosylated liposomes for the targeted delivery of selenium. Dipalmitoylphosphatidylcholine, distearoylphosphatidylglycerol, and cholesterol were dissolved in a chloroform and methanol mixture and allowed to form a thin film within a rotatory evaporator. This thin film was hydrated with a sodium selenite (5.8 μM) solution to form multilamellar vesicles and homogenized under high pressure to yield unilamellar nanoliposomes. Se-loaded nanoliposomes were mannosylated by 0.1% w/v mannosamine (Man-Lip-Se) prior to being lyophilized. Mannosamine concentration was optimized with cellular uptake studies in M receptor expressing cells. Non-lyophilized and lyophilized Man-Lip-Se were characterized for size, zeta potential, and entrapment efficiency. The influence of liposomal composition on the characteristics of Man-Lip-Se were evaluated using acidic and basic medium for 24 h. Thermal analysis and powder X-ray diffraction were used to determine the interaction of components within the Man-Lip-Se. The size, zeta potential and entrapment efficiency of the optimum Man-Lip-Se were observed to be 158 ± 28.9 nm, 33.21 ± 0.89 mV, and 77.27 ± 2.34%, respectively. An in vitro Se release of 70–75% up to 24 h in PBS pH 6.8 and <8% Se release in acidic media (0.1 N HCl) in 1 h was observed. The Man-Lip-Se were found to withstand gastric-like environments and showed sustained release. Stable freeze-dried Man-Lip-Se were successfully formulated with a size of <200 nm, ∼75% entrapment, and achieved controlled release of Se with stability under acidic media, which may be of importance in the targeted delivery of Se to the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Navarro-Alarcon M, Lopez-Martinez MC. Essentiality of selenium in the human body: relationship with different diseases. Sci Total Environ. 2000;249(1–3):347–71. PubMed PMID: 10813463. Epub 2000/05/17. eng.

    Article  PubMed  CAS  Google Scholar 

  2. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16(7):705–43. PubMed PMID: 21955027. Pubmed Central PMCID: PMC3277928. Epub 2011/10/01. eng.

    Article  PubMed  CAS  Google Scholar 

  3. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14(7):1337–83. PubMed PMID: 20812787. Epub 2010/09/04. eng.

    Article  PubMed  CAS  Google Scholar 

  4. Brinkman M, Buntinx F, Muls E, Zeegers MP. Use of selenium in chemoprevention of bladder cancer. Lancet Oncol. 2006;7:766–74.

    Article  PubMed  CAS  Google Scholar 

  5. Stone R. A medical mystery in middle China. Science. 2009;324(5933):1378–81. PubMed PMID: WOS:000266878700008.

    Article  PubMed  CAS  Google Scholar 

  6. Flatt A, Pearce N, Thomson CD, Sears MR, Robinson MF, Beasley R. Reduced selenium in asthmatic subjects in New Zealand. Thorax. 1990;45(2):95–9. PubMed PMID: 2315881. Pubmed Central PMCID: PMC462313. Epub 1990/02/01. eng.

    Article  PubMed  CAS  Google Scholar 

  7. Hasselmark L, Malmgren R, Unge G, Zetterstrom O. Lowered platelet glutathione-peroxidase activity in patients with intrinsic asthma. Allergy. 1990;45(7):523–7. PubMed PMID: WOS:A1990EC54200006.

    Article  PubMed  CAS  Google Scholar 

  8. Kocyigit A, Armutcu F, Gurel A, Ermis B. Alterations in plasma essential trace elements selenium, manganese, zinc, copper, and iron concentrations and the possible role of these elements on oxidative status in patients with childhood asthma. Biol Trace Elem Res. 2004;97(1):31–41. PubMed PMID: WOS:000188192800003.

    Article  PubMed  CAS  Google Scholar 

  9. de Luis DA, Izaola O, Aller R, Armentia A, Cuellar L. Antioxidant and fat intake in patients with polinic asthma. Medicina Clinica. 2003;121(17):653–4. PubMed PMID: WOS:000187618300004.

    PubMed  Google Scholar 

  10. Qujeq D, Hidari B, Bijani K, Shirdel H. Glutathione peroxidase activity and serum selenium concentration in intrinsic asthmatic patients. Clin Chem Lab Med. 2003;41(2):200–2. PubMed PMID: WOS:000181095800014.

    Article  PubMed  CAS  Google Scholar 

  11. Omland O, Deguchi Y, Sigsgaard T, Hansen JC. Selenium serum and urine is associated to mild asthma and atopy. The SUS study. J Trace Elem Med Biol. 2002;16(2):123–7. PubMed PMID: WOS:000177406700009.

    Article  PubMed  CAS  Google Scholar 

  12. Misso NLA, Powers KA, Gillon RL, Stewart GA, Thompson PJ. Reduced platelet glutathione peroxidase activity and serum selenium concentration in atopic asthmatic patients. Clin Exp Allergy. 1996;26(7):838–47. PubMed PMID: WOS:A1996UY84300015.

    Article  PubMed  CAS  Google Scholar 

  13. Kadrabova J, Madaric A, Kovacikova Z, Podivinsky F, Ginter E, Gazdik F. Selenium status is decreased in patients with intrinsic asthma. Biol Trace Elem Res. 1996;52(3):241–8. PubMed PMID: WOS:A1996UV44000003.

    Article  PubMed  CAS  Google Scholar 

  14. Shaw R, Woodman K, Crane J, Moyes C, Kennedy J, Pearce N. Risk-factors for asthma symptoms in Kawerau children. New Zeal Med J. 1994;107(987):387–91. PubMed PMID: WOS:A1994PN14500001.

    PubMed  CAS  Google Scholar 

  15. McKenzie RC, Rafferty TS, Beckett GJ. Selenium: an essential element for immune function. Immunol Today. 1998;19(8):342–5. PubMed PMID: WOS:000075213400002.

    Article  PubMed  CAS  Google Scholar 

  16. Ford ES, Mannino DM, Redd SC. Serum antioxidant concentrations among US adults with self-reported asthma. J Asthma. 2004;41(2):179–87. PubMed PMID: WOS:000220964200006.

    Article  PubMed  CAS  Google Scholar 

  17. Thomson CD, Wickens K, Miller J, Ingham T, Lampshire P, Epton MJ, et al. Selenium status and allergic disease in a cohort of New Zealand children. Clin Exp Allergy. 2012;42(4):560–7. PubMed PMID: 22417214. Epub 2012/03/16. eng.

    Article  PubMed  CAS  Google Scholar 

  18. Patelarou E, Giourgouli G, Lykeridou A, Vrioni E, Fotos N, Siamaga E, et al. Association between biomarker-quantified antioxidant status during pregnancy and infancy and allergic disease during early childhood: a systematic review. Nutr Rev. 2011;69(11):627–41. PubMed PMID: 22029830. Epub 2011/10/28. eng.

    Article  PubMed  Google Scholar 

  19. van Oeffelen AAM, Bekkers MBM, Smit HA, Kerkhof M, Koppelman GH, Haveman-Nies A, et al. Serum micronutrient concentrations and childhood asthma: the PIAMA birth cohort study. Pediatr Allergy Immunol. 2011;22(8):784–93. PubMed PMID: WOS:000298095300005.

    Article  PubMed  Google Scholar 

  20. Nurmatov U, Devereux G, Sheikh A. Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol. United States: Asthma & Immunology. Published by Mosby; 2011;127:724–33 e1-30.

    Google Scholar 

  21. Bakkeheim E, Mowinckel P, Carlsen KH, Burney P, Carlsen KC. Altered oxidative state in schoolchildren with asthma and allergic rhinitis. Pediatr Allergy Immunol. 22. England: 2010 Wiley. 2011. 178–85.

  22. Hoffmann PR, Saux CJL, Hoffmann FW, Chang PS, Bollt O, He QP, et al. A role for dietary selenium and selenoproteins in allergic airway inflammation. J Immunol. 2007;179(5):3258–67. PubMed PMID: WOS:000248991800068.

    PubMed  CAS  Google Scholar 

  23. Hoffmann FW, Hashimoto AC, Shafer LA, Dow S, Berry MJ, Hoffmann PR. Dietary selenium modulates activation and differentiation of CD4(+) T cells in mice through a mechanism involving cellular free thiols. J Nutr. 2010;140(6):1155–61. PubMed PMID: WOS:000277800700015.

    Article  PubMed  CAS  Google Scholar 

  24. Jeong DW, Yoo MH, Kim TS, Kim JH, Kim IY. Protection of mice from allergen-induced asthma by selenite—prevention of eosinophil infiltration by inhibition of NF-kappa B activation. J Biol Chem. 2002;277(20):17871–6. PubMed PMID: WOS:000175685100062. English.

    Article  PubMed  CAS  Google Scholar 

  25. May SW. Selenium-based drug design: rationale and therapeutic potential. Expert Opin Investig Drugs. 1999;8(7):1017–30. PubMed PMID: 15992103. Epub 2005/07/05. eng.

    Article  PubMed  CAS  Google Scholar 

  26. Venardos KM, Perkins A, Headrick J, Kaye DM. Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem. 2007;14(14):1539–49. PubMed PMID: 17584062. Epub 2007/06/23. eng.

    Article  PubMed  CAS  Google Scholar 

  27. Ferguson LR, Karunasinghe N. Nutrigenetics, nutrigenomics, and selenium. Front Genet. 2011;2:15. PubMed PMID: 22303312. Pubmed Central PMCID: PMC3268570. Epub 2012/02/04. eng.

    Article  PubMed  Google Scholar 

  28. Dunn BK, Richmond ES, Minasian LM, Ryan AM, Ford LG. A nutrient approach to prostate cancer prevention: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Nutr Canc Intl J. 2010;62(7):896–918. PubMed PMID: WOS:000282583200007.

    Article  CAS  Google Scholar 

  29. Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:217–23.

    Article  PubMed  Google Scholar 

  30. Wang D, Taylor EW, Wang Y, Wan X, Zhang J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int J Nanomed. 2012;7:1711–21.

    CAS  Google Scholar 

  31. Zhang JS, Gao XY, Zhang LD, Bao YP. Biological effects of a nano red elemental selenium. Biofactors. 2001;15(1):27–38. PubMed PMID: 11673642. Epub 2001/10/24. eng.

    Article  PubMed  Google Scholar 

  32. Caliph SM, Charman WN, Porter CJH. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci. 2000;89(8):1073–84. PubMed PMID: WOS:000088733500012.

    Article  PubMed  CAS  Google Scholar 

  33. Clark MA, Jepson MA, Hirst BH. Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev. 2001;50(1–2):81–106. PubMed PMID: WOS:000171145500006.

    Article  PubMed  CAS  Google Scholar 

  34. Porter CJH, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev. 2001;50(1–2):61–80. PubMed PMID: WOS:000171145500005.

    Article  PubMed  CAS  Google Scholar 

  35. Salman HH, Irache JM, Gamazo C. Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine. 2009;27(35):4784–90. PubMed PMID: WOS:000268827500010.

    Article  PubMed  CAS  Google Scholar 

  36. Salman HH, Gamazo C, Campanero MA, Irache JM. Bioadhesive mannosylated nanoparticles for oral drug delivery. J Nanosci Nanotechnol. 2006;6(9–10):3203–9. PubMed PMID: WOS:000240865900070.

    Article  PubMed  CAS  Google Scholar 

  37. Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target. 2008;16(10):798–805. PubMed PMID: WOS:000260851900008.

    Article  PubMed  CAS  Google Scholar 

  38. Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci. 90. United States: 2001 Wiley-Liss; 2001. p. 667–80.

  39. Szelenyi I. Nanomedicine: evolutionary and revolutionary developments in the treatment of certain inflammatory diseases. Inflamm Res. 2012;61(1):1–9. PubMed PMID: 22057873. Epub 2011/11/08. eng.

    Article  PubMed  CAS  Google Scholar 

  40. Vunta H, Belda BJ, Arner RJ, Channa Reddy C, Vanden Heuvel JP, Sandeep Prabhu K. Selenium attenuates pro-inflammatory gene expression in macrophages. Mol Nutr Food Res. 2008;52(11):1316–23. PubMed PMID: 18481333. Epub 2008/05/16. eng.

    Article  PubMed  CAS  Google Scholar 

  41. Chougule M, Padhi B, Misra A. Development of spray dried liposomal dry powder inhaler of Dapsone. AAPS PharmSciTech. 2008;9(1):47–53. PubMed PMID: 18446460. Pubmed Central PMCID: PMC2976880. Epub 2008/05/01. eng.

    Article  PubMed  CAS  Google Scholar 

  42. Chu C, Tong SS, Xu Y, Wang L, Fu M, Ge YR, et al. Proliposomes for oral delivery of dehydrosilymarin: preparation and evaluation in vitro and in vivo. Acta Pharmacol Sin. 2011;32:973–80. United States.

    Article  PubMed  CAS  Google Scholar 

  43. Lu T, Ma Y, Hu H, Chen Y, Zhao W, Chen T. Ethinylestradiol liposome preparation and its effects on ovariectomized rats' osteoporosis. Drug Deliv. 2011;18(7):468–77. PubMed PMID: 21688973. Epub 2011/06/22. eng.

    Article  PubMed  CAS  Google Scholar 

  44. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–58. PubMed PMID: 20502539. Pubmed Central PMCID: PMC2865805. Epub 2010/05/27. eng.

    Article  PubMed  CAS  Google Scholar 

  45. Roth M. Fluorescence reaction for amino acids. Anal Chem. 1971;43(7):880–2. PubMed PMID: 5576608. Epub 1971/06/01. eng.

    Article  PubMed  CAS  Google Scholar 

  46. Dominguez LM, Dunn RS. Analysis of OPA-derivatized amino sugars in tobacco by high-performance liquid chromatography with fluorimetric detection. J Chromatogr Sci. 1987;25(10):468–71. PubMed PMID: 3667835. Epub 1987/10/01. eng.

    Article  PubMed  CAS  Google Scholar 

  47. Chen SY, Collipp PJ, Boasi LH, Isenschmid DS, Verolla RJ, Sanroman GA, et al. Fluorometry of selenium in human-hair, urine and blood—a single-tube process for sub-microgram determination of selenium. Ann Nutr Metab. 1982;26(3):186–90. PubMed PMID: WOS:A1982NX76600006. English.

    Article  PubMed  CAS  Google Scholar 

  48. Allaway WH, Cary EE. Determination of submicrogram amounts of selenium in biological materials. Anal Chem. 1964;36(7):1359–62.

    Article  CAS  Google Scholar 

  49. Akinbami LJ, Moorman JE, Garbe PL, Sondik EJ. Status of Childhood Asthma in the United States, 1980–2007. Pediatrics. 2009 Mar;123:S131-S45. PubMed PMID: WOS:000263826000002.

  50. Carneiro MFH, Rhoden CR, Amantea SL, Barbosa F. Low concentrations of selenium and zinc in nails are associated with childhood asthma. Biol Trace Elem Res. 2011;144(1–3):244–52. PubMed PMID: WOS:000298192900024.

    Article  PubMed  CAS  Google Scholar 

  51. Guo CH, Liu PJ, Hsia S, Chuang CJ, Chen PC. Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann Clin Biochem. 2011;48:344–51. England.

    Article  PubMed  CAS  Google Scholar 

  52. Yan L, Johnson LK. Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats. J Agric Food Chem. 2011;59(11):6305–11. PubMed PMID: 21553810. Epub 2011/05/11. eng.

    Article  PubMed  CAS  Google Scholar 

  53. Hambidge KM. Micronutrient bioavailability: dietary reference intakes and a future perspective. Am J Clin Nutr. 2010;91:1430S–2S. United States.

    Article  PubMed  CAS  Google Scholar 

  54. Cases J, Wysocka IA, Caporiccio B, Jouy N, Besancon P, Szpunar J, et al. Assessment of selenium bioavailability from high-selenium spirulina subfractions in selenium-deficient rats. J Agric Food Chem. 2002;50(13):3867–73. PubMed PMID: WOS:000176267800039.

    Article  PubMed  CAS  Google Scholar 

  55. Plano D, Baquedano Y, Ibanez E, Jimenez I, Palop JA, Spallholz JE, et al. Antioxidant-prooxidant properties of a new organoselenium compound library. Molecules. 2010;15:7292–312. Switzerland.

    Article  PubMed  CAS  Google Scholar 

  56. von Rosen L, Podjaski B, Bettmann I, Otto HF. Observations on the ultrastructure and function of the so-called "microfold" or "membraneous" cells (M cells) by means of peroxidase as a tracer. Virchows Arch A Pathol Anat Histol. 1981;390(3):289–312. PubMed PMID: 7281480. Epub 1981/01/01. eng.

    Article  Google Scholar 

  57. Fujimura Y. Functional morphology of microfold cells (M cells) in Peyer's patches—phagocytosis and transport of BCG by M cells into rabbit Peyer's patches. Gastroenterol Jpn. 1986;21(4):325–35. PubMed PMID: 3770353. Epub 1986/08/01. eng.

    PubMed  CAS  Google Scholar 

  58. Gupta PN, Vyas SP. Investigation of lectinized liposomes as M-cell targeted carrier-adjuvant for mucosal immunization. Colloids Surf B Biointerfaces. 82. Netherlands: 2010 Elsevier B.V; 2011. p. 118–25.

  59. Hsieh EH, Lo DD. Jagged1 and Notch1 help edit M cell patterning in Peyer's patch follicle epithelium. Dev Comp Immunol. 37. United States: 2012 Elsevier Ltd; 2012. p. 306–12.

  60. Jepson MA, Simmons NL, Savidge TC, James PS, Hirst BH. Selective binding and transcytosis of latex microspheres by rabbit intestinal M-cells. Cell Tissue Res. 1993;271(3):399–405. PubMed PMID: WOS:A1993KR83100002.

    Article  PubMed  CAS  Google Scholar 

  61. Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine. 2001;20(1–2):208–17. PubMed PMID: WOS:000171512000031. English.

    Article  PubMed  CAS  Google Scholar 

  62. Pukanud P, Peungvicha P, Sarisuta N. Development of mannosylated liposomes for bioadhesive oral drug delivery via M cells of Peyer's patches. Drug Deliv. 2009;16(5):289–94. PubMed PMID: WOS:000268575100009. English.

    Article  PubMed  CAS  Google Scholar 

  63. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed. 2006;1(3):297–315. PubMed PMID: 17717971. Pubmed Central PMCID: PMC2426795. Epub 2007/08/28. eng.

    Article  CAS  Google Scholar 

  64. Shoji Y, Nakashima H. Nutraceutics and delivery systems. J Drug Target. 2004;12:385–91. England.

    Article  PubMed  CAS  Google Scholar 

  65. Gomez-Hens A, Fernandez-Romero JM. Analytical methods for the control of liposomal delivery systems. Trac-Trends Anal Chem. 2006;25(2):167–78. PubMed PMID: WOS:000235414500015.

    Article  CAS  Google Scholar 

  66. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C. Nanoliposomes and their applications in food nanotechnology. J Liposome Res. 2008;18:309–27. United States.

    Article  PubMed  Google Scholar 

  67. Mozafari MR. Nanoliposomes: preparation and analysis. Meth Mol Biol. 2010;605:29–50. PubMed PMID: 20072871. Epub 2010/01/15. eng.

    Article  CAS  Google Scholar 

  68. Mozafari MRM, Mortazavi SM. Nanoliposomes: from fundamentals to recent developments. Oxford, UK: Trafford; 2005.

    Google Scholar 

  69. Hauser H. Mechanism of spontaneous vesiculation. Proc Natl Acad Sci U S A. 1989;86(14):5351–5. Pubmed Central PMCID: PMC297620. Epub 1989/07/01. eng.

    Article  PubMed  CAS  Google Scholar 

  70. Mura P, Maestrelli F, Gonzalez-Rodriguez ML, Michelacci I, Ghelardini C, Rabasco AM. Development, characterization and in vivo evaluation of benzocaine-loaded liposomes. Eur J Pharm Biopharm. 2007;67:86–95. Netherlands.

    Article  PubMed  CAS  Google Scholar 

  71. Colas JC, Shi W, Rao VS, Omri A, Mozafari MR, Singh H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron. 2007;38:841–7. England.

    Article  PubMed  CAS  Google Scholar 

  72. Girod de Bentzmann S, Pierrot D, Fuchey C, Zahm JM, Morancais JL, Puchelle E. Distearoyl phosphatidylglycerol liposomes improve surface and transport properties of CF mucus. Eur Respir J. 1993;6(8):1156–61. PubMed PMID: 8224130. Epub 1993/09/01. eng.

    PubMed  CAS  Google Scholar 

  73. Metselaar JM, Bruin P, de Boer LW, de Vringer T, Snel C, Oussoren C, et al. A novel family of l-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjugate Chem. 2003;14(6):1156–64. PubMed PMID: 14624629. Epub 2003/11/20. eng.

    Article  CAS  Google Scholar 

  74. Deniz A, Sade A, Severcan F, Keskin D, Tezcaner A, Banerjee S. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep. 2010;30:365–73. United States.

    Article  PubMed  CAS  Google Scholar 

  75. Berg J, Tymoczko JL, Stryer L. Section 12.3, There are three common types of membrane lipids. Biochemistry. 2002.

  76. Wu Y, Ho YP, Mao Y, Wang X, Yu B, Leong KW, et al. Uptake and intracellular fate of multifunctional nanoparticles: a comparison between lipoplexes and polyplexes via quantum dot mediated Forster resonance energy transfer. Mol Pharm. 2011;8(5):1662–8. PubMed PMID: 21740056. Pubmed Central PMCID: PMC3185110. Epub 2011/07/12. eng.

    Article  PubMed  CAS  Google Scholar 

  77. Elder A, Vidyasagar S, DeLouise L. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(4):434–50. PubMed PMID: 20049809. Epub 2010/01/06. eng.

    Article  PubMed  CAS  Google Scholar 

  78. Ponchel G, Irache J. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv Drug Deliv Rev. 1998;34:191–219.

    Article  PubMed  CAS  Google Scholar 

  79. Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology. 2011;22(11):115101. PubMed PMID: 21387846. Epub 2011/03/11. eng.

    Article  PubMed  Google Scholar 

  80. Paliwal R, Paliwal SR, Mishra N, Mehta A, Vyas SP. Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. Int J Pharm. 2009;380(1–2):181–8. PubMed PMID: WOS:000270495400025.

    Article  PubMed  CAS  Google Scholar 

  81. Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes—effect of dose. Biochimica Et Biophysica Acta. 1991;1068(2):133–41. PubMed PMID: WOS:A1991GL84200003.

    Article  PubMed  CAS  Google Scholar 

  82. Nicholas TE, Barr HA, Power JH, Jones ME. Uptake of instilled radiolabeled lamellar bodies from alveolar compartment of the rat. Am J Physiol. 1990;259(4 Pt 1):L238–46. PubMed PMID: 2221085. Epub 1990/10/01. eng.

    PubMed  CAS  Google Scholar 

  83. Tagami T, May JP, Ernsting MJ, Li SD. A thermosensitive liposome prepared with a Cu2+ gradient demonstrates improved pharmacokinetics, drug delivery and antitumor efficacy. J Contr Release. 2012;161(1):142–9. PubMed PMID: WOS:000305790100016.

    Article  CAS  Google Scholar 

  84. Ganta S, Deshpande D, Korde A, Amiji M. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol. 2010;27(7):260–73. PubMed PMID: 20929336. Epub 2010/10/12. eng.

    Article  PubMed  CAS  Google Scholar 

  85. Gerasimov OV, Boomer JA, Qualls MM, Thompson DH. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev. 1999;38:317–38.

    Article  PubMed  CAS  Google Scholar 

  86. Lentz BR, Lee JK. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? Mol Membr Biol. 1999;16(4):279–96. PubMed PMID: 10766128. Epub 2000/04/15. eng.

    Article  PubMed  CAS  Google Scholar 

  87. Lee SJ, Schlesinger PH, Wickline SA, Lanza GM, Baker NA. Simulation of fusion-mediated nanoemulsion interactions with model lipid bilayers. Soft Matter. 2012;8(26):3024–35. PubMed PMID: 22712024. Pubmed Central PMCID: PMC3375911. Epub 2012/06/20. Eng.

    Article  PubMed  Google Scholar 

  88. Bloom M, Evans E, Mouritsen OG. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991;24(3):293–397. PubMed PMID: 1749824. Epub 1991/08/01. eng.

    Article  PubMed  CAS  Google Scholar 

  89. Virden JW, Berg JC. NACL-induced aggregation of dipalmitoylphosphatidylglycerol small unilamellar vesicles with varying amounts of incorporated cholesterol. Langmuir. 1992;8(6):1532–7. PubMed PMID: WOS:A1992JA58300007.

    Article  CAS  Google Scholar 

  90. Mayer LD, Bally MB, Hope MJ, Cullis PR. Uptake of antineoplastic agents into large unilamellar vesicles in response to a membrane potential. Biochim Biophys Acta. 1985;816(2):294–302. PubMed PMID: 3839135. Epub 1985/06/27. eng.

    Article  PubMed  CAS  Google Scholar 

  91. Mayhew E, Rustum YM, Szoka F, Papahadjopoulos D. Role of cholesterol in enhancing the antitumor activity of cytosine arabinoside entrapped in liposomes. Cancer Treat Rep. 1979;63(11–12):1923–8. PubMed PMID: 526925. Epub 1979/11/01. eng.

    PubMed  CAS  Google Scholar 

  92. Dos Santos N, Mayer LD, Abraham SA, Gallagher RC, Cox KA, Tardi PG, et al. Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. Biochim Biophys Acta. 2002;1561:188–201. Netherlands.

    Article  PubMed  Google Scholar 

  93. Taira MC, Chiaramoni NS, Pecuch KM, Alonso-Romanowski S. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv. 2004;11:123–8. England.

    Article  PubMed  CAS  Google Scholar 

  94. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75. England.

    Article  PubMed  CAS  Google Scholar 

  95. Castelli F, Puglia C, Sarpietro MG, Rizza L, Bonina F. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int J Pharm. 2005;304:231–8. Netherlands.

    Article  PubMed  CAS  Google Scholar 

  96. Simon SL. Temperature-modulated differential scanning calorimetry: theory and application. Thermochim Acta. 2001;374(1):55–71. PubMed PMID: WOS:000171624700008.

    Article  CAS  Google Scholar 

  97. Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev. 2007;59(6):379–402. PubMed PMID: WOS:000249543300003.

    Article  PubMed  CAS  Google Scholar 

  98. Aburahma MH, Abdelbary GA. Novel diphenyl dimethyl bicarboxylate provesicular powders with enhanced hepatocurative activity: preparation, optimization, in vitro/in vivo evaluation. International Journal of Pharmaceutics. Netherlands: 2011 Elsevier B.V; 2012. 422:139–50.

  99. Hancock BC, Morris KR, Wildfong PL. A priori performance predictions in the pharmaceutical sciences. Int J Pharm. 2011;418:149–50. Netherlands.

    Article  PubMed  CAS  Google Scholar 

  100. Jepson MA, Clark MA, Hirst BH. M cell targeting by lectins: a strategy for mucosal vaccination and drug delivery. Adv Drug Deliv Rev. 2004;56:511–25. Netherlands.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang N, Ping QN, Huang GH, Xu WF. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm. 2005;294:247–59. Netherlands.

    Article  PubMed  CAS  Google Scholar 

  102. Wagner S, Lynch NJ, Walter W, Schwaeble WJ, Loos M. Differential expression of the murine mannose-binding lectins A and C in lymphoid and nonlymphoid organs and tissues. J Immunol. 2003;170(3):1462–5. PubMed PMID: 12538708. Epub 2003/01/23. eng.

    PubMed  CAS  Google Scholar 

  103. Ermak TH, Giannasca PJ. Microparticle targeting to M cells. Adv Drug Deliv Rev. 1998;34:261–83.

    Article  PubMed  CAS  Google Scholar 

  104. Palumbo RN, Wang C. Bacterial invasin: structure, function, and implication for targeted oral gene delivery. Curr Drug Deliv. 2006;3(1):47–53. PubMed PMID: 16472093. Epub 2006/02/14. eng.

    Article  PubMed  CAS  Google Scholar 

  105. Hoffmann PR, Jourdan-Le Saux C, Hoffmann FW, Chang PS, Bollt O, He Q, et al. A role for dietary selenium and selenoproteins in allergic airway inflammation. J Immunol. 2007;179:3258–67. United States.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the 2011 and 2013 Leahi Fund to Treat & Prevent Pulmonary Disease of the Hawai'i Community Foundation, Honolulu, HI, USA for research support on asthma and mesothelioma research, respectively to Dr. Mahavir B. Chougule. We would like to acknowledge the 2013 George F. Straub Trust and Robert C. Perry Fund of the Hawai'i Community Foundation, Honolulu, HI, USA for research support on lung cancer. We also acknowledge seed grant from the Research Corporation of the University of Hawai'i at Hilo, HI, USA and University of Hawaii at Hilo College of Pharmacy for providing start up financial support to our research group. We acknowledge the input of Dr. Rakesh Kumar Tekade, postdoctoral fellow, Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii at Hilo, HI, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahavir B. Chougule.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13055 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youngren, S.R., Mulik, R., Jun, B. et al. Freeze-Dried Targeted Mannosylated Selenium-Loaded Nanoliposomes: Development and Evaluation. AAPS PharmSciTech 14, 1012–1024 (2013). https://doi.org/10.1208/s12249-013-9988-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9988-3

Key words

Navigation