Skip to main content
Log in

Multivariate Analysis of Phenol in Freeze-Dried and Spray-Dried Insulin Formulations by NIR and FTIR

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Dehydration is a commonly used method to stabilise protein formulations. Upon dehydration, there is a significant risk the composition of the formulation will change especially if the protein formulation contains volatile compounds. Phenol is often used as excipient in insulin formulations, stabilising the insulin hexamer by changing the secondary structure. We have previously shown that it is possible to maintain this structural change after drying. The aim of this study was to evaluate the residual phenol content in spray-dried and freeze-dried insulin formulations by Fourier transform infrared (FTIR) spectroscopy and near infrared (NIR) spectroscopy using multivariate data analysis. A principal component analysis (PCA) and partial least squares (PLS) projections were used to analyse spectral data. After drying, there was a difference between the two drying methods in the phenol/insulin ratio and the water content of the dried samples. The spray-dried samples contained more water and less phenol compared with the freeze-dried samples. For the FTIR spectra, the best model used one PLS component to describe the phenol/insulin ratio in the powders, and was based on the second derivative pre-treated spectra in the 850–650 cm−1 region. The best PLS model based on the NIR spectra utilised three PLS components to describe the phenol/insulin ratio and was based on the standard normal variate transformed spectra in the 6,200–5,800 cm−1 region. The root mean square error of cross validation was 0.69% and 0.60% (w/w) for the models based on the FTIR and NIR spectra, respectively. In general, both methods were suitable for phenol quantification in dried phenol/insulin samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Maltesen MJ, van de Weert M. Drying methods for protein pharmaceuticals. Drug Discov Today Technol. 2008;5(2–3):e81–8.

    Article  Google Scholar 

  2. Coumans WJ, Kerkhof PJAM, Bruin S. Theoretical and practical aspects of aroma retention in spray drying and freeze drying. Drying Technol. 1994;12(1–2):99–149.

    Article  CAS  Google Scholar 

  3. Dunn MF. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals. 2005;18(4):295–303.

    Article  PubMed  CAS  Google Scholar 

  4. Brange J, Langkjaer L. Insulin structure and stability. Pharm Biotechnol. 1993;5:315–50.

    PubMed  CAS  Google Scholar 

  5. Baker EN, Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, et al. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci. 1988;319(1195):369–456.

    Article  PubMed  CAS  Google Scholar 

  6. Chang X, Jorgensen AM, Bardrum P, Led JJ. Solution structures of the R6 human insulin hexamer. Biochemistry. 1997;36(31):9409–22.

    Article  PubMed  CAS  Google Scholar 

  7. Derewenda U, Derewenda Z, Dodson EJ, Dodson GG, Reynolds CD, Smith GD, et al. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature. 1989;338(6216):594–6.

    Article  PubMed  CAS  Google Scholar 

  8. Kaarsholm NC, Ko HC, Dunn MF. Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin. Biochemistry. 1989;28(10):4427–35.

    Article  PubMed  CAS  Google Scholar 

  9. Roy M, Brader ML, Lee RW, Kaarsholm NC, Hansen JF, Dunn MF. Spectroscopic signatures of the T to R conformational transition in the insulin hexamer. J Biol Chem. 1989;264(32):19081–5.

    PubMed  CAS  Google Scholar 

  10. Smith GD, Dodson GG. The structure of a rhombohedral R6 insulin hexamer that binds phenol. Biopolymers. 1992;32(4):441–5.

    Article  PubMed  CAS  Google Scholar 

  11. Choi WE, Borchardt D, Kaarsholm NC, Brzovic PS, Dunn MF. Spectroscopic evidence for preexisting T- and R-state insulin hexamer conformations. Proteins. 1996;26(4):377–90.

    Article  PubMed  CAS  Google Scholar 

  12. Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, van de Weert M. Analysis of insulin allostery in solution and solid state with FTIR. J Pharm Sci. 2009;98(9):3265–77.

    Article  PubMed  CAS  Google Scholar 

  13. Wu N, Clausen AM. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. J Sep Sci. 2007;30(8):1167–82.

    Article  PubMed  CAS  Google Scholar 

  14. Novakova L, Vlckova H. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta. 2009;656(1–2):8–35.

    Article  PubMed  CAS  Google Scholar 

  15. International Conference on Harmonisation (ICH). Quality guidelines: Q8-10. Geneva, Switzerland, ICH. 2005. http://www.ich.org/home.html. Accessed 3 May2011.

  16. European Medicines Agency (EMA). Note for guidance on pharmaceutical development (EMEA/CHMP/167068/2004), London, United Kingdom, EMA. 2006. http://www.ema.europa.eu. Accessed 3 May 2011.

  17. Food and Drug Administration (FDA). Guidance for industry. PAT—a framework for innovative pharmaceutical development, manufacturing and quality assurance. Rockville, United States, FDA. 2004. http://www.fda.gov. Accessed 3 May 2011.

    Google Scholar 

  18. Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27(1):26–34.

    Article  PubMed  CAS  Google Scholar 

  19. Rathore AS. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 2009;27(9):546–53.

    Article  PubMed  CAS  Google Scholar 

  20. Christensen D, Alleso M, Rosenkrands I, Rantanen J, Foged C, Agger EM, et al. NIR transmission spectroscopy for rapid determination of lipid and lyoprotector content in liposomal vaccine adjuvant system CAF01. Eur J Pharm Biopharm. 2008;70(3):914–20.

    Article  PubMed  CAS  Google Scholar 

  21. De Beer TR, Vercruysse P, Burggraeve A, Quinten T, Ouyang J, Zhang X, et al. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools. J Pharm Sci. 2009;98(9):3430–46.

    Article  PubMed  Google Scholar 

  22. Wu H, Khan MA. Quality-by-Design (QbD): an integrated process analytical technology (PAT) approach for real-time monitoring and mapping the state of a pharmaceutical coprecipitation process. J Pharm Sci. 2010;99(3):1516–34.

    PubMed  CAS  Google Scholar 

  23. Wu H, Tawakkul M, White M, Khan MA. Quality-by-Design (QbD): an integrated multivariate approach for the component quantification in powder blends. Int J Pharm. 2009;372(1–2):39–48.

    Article  PubMed  CAS  Google Scholar 

  24. Teixeira AP, Oliveira R, Alves PM, Carrondo MJ. Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol Adv. 2009;27(6):726–32.

    Article  PubMed  CAS  Google Scholar 

  25. Reich G. Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev. 2005;57(8):1109–43.

    Article  PubMed  CAS  Google Scholar 

  26. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal. 2007;44(3):683–700.

    Article  PubMed  CAS  Google Scholar 

  27. Rasanen E, Sandler N. Near infrared spectroscopy in the development of solid dosage forms. J Pharm Pharmacol. 2007;59(2):147–59.

    Article  PubMed  CAS  Google Scholar 

  28. Kaarsholm NC, Havelund S, Hougaard P. Ionization behavior of native and mutant insulins: pK perturbation of B13-Glu in aggregated species. Arch Biochem Biophys. 1990;283(2):496–502.

    Article  PubMed  CAS  Google Scholar 

  29. Barnes RJ, Dhanoa MS, Lister SJ. Standard normal variate transformation and de-trading of near-infrared diffuse reflectance spectra. Appl Spectrocopy. 1989;43(5):772–7.

    Article  CAS  Google Scholar 

  30. Grohganz H, Fonteyne M, Skibsted E, Falck T, Palmqvist B, Rantanen J. Role of excipients in the quantification of water in lyophilised mixtures using NIR spectroscopy. J Pharm Biomed Anal. 2009;49(4):901–7.

    Article  PubMed  CAS  Google Scholar 

  31. Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, van de Weert M. Quality by design—spray drying of insulin intended for inhalation. Eur J Pharm Biopharm. 2008;70(3):828–38.

    Article  PubMed  CAS  Google Scholar 

  32. Jakobsen RJ, Brasch JW. Far infrared studies of hydrogen bond of phenols. Spectrochim Acta. 1965;21(10):1753–63.

    Article  CAS  Google Scholar 

  33. Kubinyi M, Billes F, Grofcsik A, Keresztury G. Vibrational-spectra and normal coordinate analysis of phenol and hydroquinone. J Mol Struct. 1992;266:339–44.

    Article  CAS  Google Scholar 

  34. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 2007;1767(9):1073–101.

    Article  PubMed  CAS  Google Scholar 

  35. Ishiuchi S, Fujii M, Robinson TW, Miller BJ, Kjaergaard HG. Vibrational overtone spectroscopy of phenol and its deuterated isotopomers. J Phys Chem A. 2006;110(23):7345–54.

    Article  PubMed  CAS  Google Scholar 

  36. Rospenk M, Czarnik-Matusewicz B, Zeegers-Huyskens T. Near infrared spectra (4000–10 500 cm(−1)) of phenol-OH and phenol-OD in carbon tetrachloride. Spectrochim Acta A Mol Biomol Spectrosc. 2001;57(1):185–95.

    Article  PubMed  CAS  Google Scholar 

  37. Izutsu KI, Fujimaki Y, Kuwabara A, Hiyama Y, Yomota C, Aoyagi N. Near-infrared analysis of protein secondary structure in aqueous solutions and freeze-dried solids. J Pharm Sci. 2006;95(4):781–9.

    Article  PubMed  CAS  Google Scholar 

  38. Bai SJ, Nayar R, Carpenter JF, Manning MC. Noninvasive determination of protein conformation in the solid state using near infrared (NIR) spectroscopy. J Pharm Sci. 2005;94(9):2030–8.

    Article  PubMed  CAS  Google Scholar 

  39. Bruun SW, Sondergaard I, Jacobsen S. Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. J Agric Food Chem. 2007;55(18):7234–43.

    Article  PubMed  CAS  Google Scholar 

  40. Cao W, Mao C, Chen W, Lin H, Krishnan S, Cauchon N. Differentiation and quantitative determination of surface and hydrate water in lyophilized mannitol using NIR spectroscopy. J Pharm Sci. 2006;95(9):2077–86.

    Article  PubMed  CAS  Google Scholar 

  41. Zhou GX, Ge Z, Dorwart J, Izzo B, Kukura J, Bicker G, et al. Determination and differentiation of surface and bound water in drug substances by near infrared spectroscopy. J Pharm Sci. 2003;92(5):1058–65.

    Article  PubMed  CAS  Google Scholar 

  42. Nieuwmeyer FJ, Damen M, Gerich A, Rusmini F, van der Voort Maarschalk K, Vromans H. Granule characterization during fluid bed drying by development of a near infrared method to determine water content and median granule size. Pharm Res. 2007;24(10):1854–61.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to acknowledge funding by Apotekerfonden af 1991 for the Bomem FTIR spectrometer

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Jonas Maltesen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltesen, M.J., Bjerregaard, S., Hovgaard, L. et al. Multivariate Analysis of Phenol in Freeze-Dried and Spray-Dried Insulin Formulations by NIR and FTIR. AAPS PharmSciTech 12, 627–636 (2011). https://doi.org/10.1208/s12249-011-9618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9618-x

KEY WORDS

Navigation