Skip to main content
Log in

Studies on the Effect of Water-Soluble Polymers on Drug–Cyclodextrin Complex Solubility

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The effect of complexation of irbesartan (IRB), a practically water-insoluble drug, with cyclodextrins in presence of different concentrations of water-soluble polymers (PEG 4000 and PVP K-90) on the dissolution rate of the drug has been investigated. Phase solubility studies were carried out to evaluate the solubilizing power of βCD in association with water-soluble polymers towards IRB and to determine the apparent stability constant (K S) of the complexes. Improvement in K S value for ternary complexes (IRB–βCD–polymers) clearly proved the benefit on the addition of water-soluble polymer to increase complexation efficiency. The dissolution rate of the drug from ternary systems containing PEG 4000 and PVP K-90 was higher as compared to the binary system. An optimum increase in the dissolution rate of the drug was observed at a polymer concentration of 5% w/w for PVP K-90 and 10% w/w for PEG 4000. DSC, FTIR, SEM, and XRD studies were carried out to characterize the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IRB:

irbesartan

βCD:

beta-cyclodextrins

DSC:

differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

XRD:

X-ray diffraction

SEM:

scanning electron microscopy

K S :

apparent stability constant

CE:

co-evaporation

HCl:

hydrochloric acid

References

  1. Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release. 2007;123:78–99.

    Article  PubMed  CAS  Google Scholar 

  2. Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1–11.

    Article  PubMed  CAS  Google Scholar 

  3. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilisers. Adv Drug Deliv Rev. 2007;59:645–66.

    Article  PubMed  CAS  Google Scholar 

  4. S.C. Sweetman. Martindale-The Complete Drug Reference, ed: 34, pg no 940. London, 2005.

  5. Pouleur HG. Clinical overview of irbesartan a new angiotensin II receptor antagonist. Am J Hypertens. 1997;10:318–24.

    Article  Google Scholar 

  6. Chawla G, Bansal AK. A comparative assessment of solubility advantage from glassy and crystalline forms of a water-insoluble drug. Eur J Pharm Sci. 2007;32:45–57.

    Article  PubMed  CAS  Google Scholar 

  7. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins.1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–25.

    Article  PubMed  CAS  Google Scholar 

  8. Valero M, Perez-Revuelta BI, Rodriguez LJ. Effect of PVP K-25 on the formation of the naproxen:β-cyclodextrin complex. Int J Pharm. 2003;253:97–110.

    Article  PubMed  CAS  Google Scholar 

  9. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;06:E329–57.

    Article  Google Scholar 

  10. Higuchi T, Connors KA. Phase solubility diagram. Adv Anal Chem Instr. 1965;4:117–212.

    CAS  Google Scholar 

  11. Ribeiro LSS, Ferreira DC, Veiga FJB. Physicochemical investigation of the effects of water-soluble polymers on vinpocetine complexation with β-cyclodextrin and its sulfobutyl ether derivative in solution and solid state. Eur J Pharm Sci. 2003;20:253–66.

    Article  PubMed  CAS  Google Scholar 

  12. Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Formulation and biological evaluation of glimepiride–cyclodextrin–polymer systems. Int J Pharm. 2006;309:129–38.

    Article  PubMed  CAS  Google Scholar 

  13. Liu L, Zhu S. Preparation and characterization of inclusion complexes of Prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Pharm Biomed Anal. 2006;40:122–7.

    Article  PubMed  CAS  Google Scholar 

  14. Patel AR, Vavia PR. Effect of hydrophilic polymer on solubilisation of fenofibrate by cyclodextrin complexation. J Incl Phenom Macroc Chem. 2006;56:247–51.

    Article  CAS  Google Scholar 

  15. Diaz MTE, Mfndez MG, Pfrez-Marcos MB, Vila-Jato JL, Torres-Labandeira JJ. Characterization and in vitro dissolution behaviour of ketoconazole/β-and 2-hydroxypropyl-β-cyclodextrin inclusion compounds. Int J Pharm. 1996;143:203–10.

    Article  Google Scholar 

  16. Figueiras A, Ribeiro L, Veira MT. Preparation and characterization of omeprazole:methyl–beta-cyclodextrininclusion complex in solid state. J Incl Phenom Macroc Chem. 2007;57:173–7.

    Article  CAS  Google Scholar 

  17. Naidu NB, Chowdary KPR, Murthy KVR, Satyanarayana V, Hayman AR, Becket G. Physicochemical characterization and dissolution properties of meloxicam–cyclodextrin binary systems. J Pharm Biomed Anal. 2004;35:75–86.

    Article  PubMed  CAS  Google Scholar 

  18. Ammar HO, Salama HA, Mahmoud AA. Implication of inclusion complexation of glimepiride in cyclodextrin–polymer systems on its dissolution, stability and therapeutic efficacy. Int J Pharm. 2006;320:53–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashree S. Hirlekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirlekar, R.S., Sonawane, S.N. & Kadam, V.J. Studies on the Effect of Water-Soluble Polymers on Drug–Cyclodextrin Complex Solubility. AAPS PharmSciTech 10, 858–863 (2009). https://doi.org/10.1208/s12249-009-9274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9274-6

Key words

Navigation