Skip to main content
Log in

Pluronic and Tetronic Copolymers with Polyglycolyzed Oils as Self-Emulsifying Drug Delivery Systems

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The potential of poly(ethylene oxide)-poly(propylene oxide) block copolymers Pluronic® F127 (PF127) and Tetronic® 304 (T304), 904 (T904) and 1307 (T1307) as components of solid self-(micro)emulsifying dosage forms, S(M)EDDS, was evaluated. The dependence of the self-associative properties of Tetronics on pH explained the low ability of the micelles to solubilize griseofulvin at acid pH (sevenfold increase) compared to at alkaline pH (12-fold). Blends of polyglycolyzed glycerides (Labrasol, Labrafac CC, and Labrafil M 1944CS) with each copolymer at two different weight ratios (80:20 and 60:40) were prepared, diluted in water, and characterized in terms of globule size, appearance and griseofulvin solubility. The blends with Labrasol led to microemulsions that are able to increase drug solubility up to 30-fold. SMEDD hard gelatine capsules filled with griseofulvin and Labrasol or Labrasol/copolymer 80:20 showed a remarkable increase in drug solubility and dissolution rate, particularly when T904, T1307 or PF127 was present in the blend. This effect was more remarkable when the volume of the dissolution medium was 200 ml (compared to 900 ml), which can be related to a higher stability of the microemulsion when there is a greater concentration of the copolymer and glyceride in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. W. Pouton. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm Sci. 29:278–287 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. R. N. Gursoy, and S. Benita. Self-emulsifying drug delivery systems (SMEDDS) for improved oral delivery of liphophilic drugs. Biomed. Pharmacother. 58:173–182 (2004).

    Article  PubMed  Google Scholar 

  3. F. S. Nielsen, E. Gibault, H. Ljusberg-Wahren, L. Arleth, J. S. Pedersen, and A. Müllertz. Characterization of prototype self-nanoemulsifying formulations of lipophilic compounds. J. Pharm. Sci. 96:876–892 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. R. G. Strickley. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21:201–230 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. W. Wu, Y. Wang, and L. Que. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur. J. Pharm. Biopharm. 63:288–294 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. E. I. Taha, S. Al-Saidan, A. M. Samy, and M. A. Khan. Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate. Int. J. Pharm. 285:109–119 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. J. Y. Hong, J. K. Kim, Y. K. Song, J. S. Park, and C. K. Kim. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J. Control Release. 110:332–338 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. A. A. Date, and M. S. Nagarsenker. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int. J. Pharm. 329:166–172 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. S. Nazzal, and M. A. Khan. Controlled release of a self-emulsifying formulation from a tablet dosage form: Stability assessment and optimization of some processing parameters. Int. J. Pharm. 315:110–121 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. J. M. Newton, M. R. Pinto, and F. Podczeck. The preparation of pellets containing a surfactant or a mixture of mono- and di-glycerides by extrusion/spheronization. Eur. J. Pharm. Sci. 30:333–342 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. A. Abdalla, and K. Mäder. Preparation and characterization of a self-emulsifying pellet formulation. Eur. J. Pharm. Biopharm. 66:220–226 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. M. Serratoni, M. Newton, S. Booth, and A. Clarke. Controlled drug release from pellets containing water-insoluble drugs dissolved in a self-emulsifying system. Eur. J. Pharm. Biopharm. 65:94–98 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv. Drug Del. Rev. 54:759–779 (2002).

    Article  CAS  Google Scholar 

  14. S. R. Croy, and G. S. Kwon. Polymeric micelles for drug delivery. Curr. Pharm. Des. 12:4669–4684 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. M. F. Francis, M. Christea, and F. M. Winnik. Polymeric micelles for oral drug delivery: Why and how. Pure Appl. Chem. 76:1321–1335 (2004).

    Article  CAS  Google Scholar 

  16. M. H. Dufresne, D. Le Garrec, V. Sant, J. C. Leroux, and M. Ranger. Preparation and characterization of water-soluble pH-sensitive nanocarriers for drug delivery. Int. J. Pharm. 277:81–90 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. V. P. Torchilin. Block copolymer micelles as a solution for drug delivery problems. Expert Opin. Ther. Patents. 15:63–75 (2005).

    Article  CAS  Google Scholar 

  18. G. Dumortier, J. L. Grossiord, F. Agnely, and J. C. Chaumeil. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 23:2709–2728 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. D. A. Chiappetta, and A. Sosnik. Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 66:303–317 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. J. Dong, J. K. Armstrong, B. Z. Chowdhry, and S. A. Leharne. Themodynamic modelling of the effect of pH upon aggregation transitions in aqueous solutions of the poloxamine T701. Thermochim. Acta. 417:201–206 (2004).

    Article  CAS  Google Scholar 

  21. C. Alvarez-Lorenzo, J. Gonzalez-Lopez, M. Fernandez-Tarrio, I. Sandez-Macho, and A. Concheiro. Tetronic micellization, gelation and drug solubilization: Influence of pH and ionic strength. Eur. J. Pharm. Biopharm. 66:244–252 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. L. Olivieri, M. Seiller, L. Bromberg, M. Besnard, T. N. Duong, and J. L. Grossiord. Optimization of a thermally reversible W/O/W multiple emulsion for shear-induced drug release. J. Control Release. 88:401–412 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. C. R. E. Mansur, S. P. Barboza, G. Gonzales, and E. F. Lucas. Pluronic and tetronic polyols: study of their properties and performance in the destabilization of emulsions formed in the petroleum industry. J. Colloid Interf. Sci. 271:232–240 (2004).

    Article  CAS  Google Scholar 

  24. F. Tirnaksiz, and O. Kalsin. A topical w/o/w multiple emulsions prepared with Tetronic 908 as a hydrophilic surfactant: Formulation, characterization and release study. J. Pharm. Pharmaceut. Sci. 8:299–315 (2005).

    CAS  Google Scholar 

  25. J. Y. Hong, J. K. Kim, Y. K. Song, J. S. Park, and C. K. Kim. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J. Control. Release. 110:332–338 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. C. Perreur, J. P. Habas, J. Peyrelasse, J. François, and A. Lapp. Rheological and small-angle neutron scattering studies of aqueous solutions of branched PEO-PPO-PEO copolymers, Part 1. Physical Rev. E. 63:031505 (2001).

    Google Scholar 

  27. M. Fernandez-Tarrio, C. Alvarez-Lorenzo, and A. Concheiro. Calorimetric approach to tetronic/water interactions. J. Thermal. Anal. Calor. 87:171–178 (2007).

    Article  CAS  Google Scholar 

  28. R. Takano, K. Sugano, A. Higashida, Y. Hayashi, M. Machida, Y. Aso, and S. Yamashita. Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm. Res. 23:1144–1156 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. C. O. Rangel-Yagui, A. Pessoa Jr., and L. C. T. Costa Tavares. Micellar solubilization of drugs. J. Pharm. Pharmaceut. Sci. 8:147–163 (2005).

    CAS  Google Scholar 

  30. P. Alexandridis, J. F. Holzwarth, and T. A. Hatton. A correlation for the estimation of critical micellization concentrations and temperatures of polyols in aqueous-solutions. J. Am. Oil Chem. Soc. 72:823–826 (1995).

    Article  CAS  Google Scholar 

  31. A. Balakrishnari, B. D. Rege, G. Amidon, and J. E. Polli. Surfactant-mediated dissolution: contribution of solubility enhancement and relatively low micelle diffusivity. J. Pharm. Sci. 93:2064–2075 (2004).

    Article  Google Scholar 

  32. N. R. Calafato, and G. Pico. Griseofulvin and ketoconazole solubilization by bile salts studied using fluorescence spectroscopy. Colloid. Surface B. 47:198–204 (2006).

    Article  CAS  Google Scholar 

  33. M. Devani, M. Ashford, and D. Q. M. Craig. The emulsification and solubilization properties of polyglycolysed oils in self-emulsifying formulations. J. Pharm. Pharmacol. 56:307–316 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. Z. Hu, R. Tawa, T. Konishi, N. Shibata, and K. Takada. A novel emulsifier, Labrasol, enhances gastrointestinal absorption of gentamicin. Life Sci. 69:2899–2910 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. BASF, technical literature. Available at: http://www.basf.com/performancechemical/. Accessed October 22, 2007.

Download references

Acknowledgments

This work was financed by the Ministerio de Educación y Ciencia (SAF2005–01930) FEDER, and Xunta de Galicia (PGIDIT05BTF203011PR; equipment grant PGIDT01PX1203014IF), Spain. F. Yañez thanks MEC for a FPI fellowship. The authors thanks BASF Corporation for providing samples of Tetronic® varieties and to Gattefossé España S.A. for providing samples of polyglycolized glycerides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Concheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Tarrio, M., Yañez, F., Immesoete, K. et al. Pluronic and Tetronic Copolymers with Polyglycolyzed Oils as Self-Emulsifying Drug Delivery Systems. AAPS PharmSciTech 9, 471–479 (2008). https://doi.org/10.1208/s12249-008-9070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9070-8

Key words

Navigation