Skip to main content
Log in

Connexin-Containing Vesicles for Drug Delivery

  • Review Article
  • Recent Advances in Drug Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Connexin is a transmembrane protein present on the cell membrane of most cell types. Connexins assemble into a hexameric hemichannel known as connexon that pairs with another hemichannel present on a neighboring cell to form gap junction that acts as a channel or pore for the transport of ions and small molecules between the cytoplasm of the two cells. Extracellular vesicles released from connexin-expressing cells could carry connexin hemichannels on their surface and couple with another connexin hemichannel on a distant recipient cell to allow the transfer of the intravesicular content directly into the cytoplasm. Connexin-containing vesicles can be potentially utilized for intracellular drug delivery. In this review, we introduced cell-derived, connexin-containing extracellular vesicles and cell-free connexin-containing liposomes, methods of preparing them, procedures to load cargos in them, factors regulating the connexin hemichannel activity, (potential) applications of connexin-containing vesicles in drug delivery, and finally the challenges and future directions in realizing the promises of this platform delivery system for (intracellular) drug delivery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Cx:

Connexin

GJ:

Gap junction

EVs:

Extracellular vesicles

CL:

Cytoplasmic loop

EC:

Extracellular loop

PMVs:

Plasma membrane vesicles

MVBs:

Multivesicular bodies

GPMVs:

Giant plasma membrane vesicles

NTA:

Nanoparticles tracking analysis

HEK:

Human embryonic kidney

RPE:

Retinal pigmented epithelium

Dio:

Dioctadecyloxacarbocyanine

YFP:

Yellow fluorescent protein

GFP:

Green fluorescent protein

RFP:

Red fluorescent protein

GFPnb:

Green fluorescent protein nanobody

PFA:

Paraformaldehyde

DTT:

Dithiothreitol

NEM:

N-ethylmaleimide

HEPES:

4-(4-Hydroxyethyl)-1-piperazine ethane sulfonic acid

TEM:

Transmission electron microcopy

VEGF:

Vascular endothelial growth factor

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol tetra acetic acid

PI:

Propidium iodide

POPC:

1-Palmitoyl-2-oleoyl-snglycero-3-phosphocholine

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

TEV:

Tobacco Etch Virus

MAP:

Mitogen-activated protein

GA:

Glycyrrhetinic acid

CBX:

Carbenoxolone

TMZ:

Temezolamide

CFTR:

Cystic fibrosis transmembrane conductance regulator

References

  1. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65(1):475–502. https://doi.org/10.1146/annurev.bi.65.070196.002355.

    Article  CAS  PubMed  Google Scholar 

  2. Meşe G, Richard G, White TW. Gap junctions: basic structure and function. J Invest Dermatol. 2007;127(11):2516–24. https://doi.org/10.1038/sj.jid.5700770.

    Article  CAS  PubMed  Google Scholar 

  3. Loewenstein WR. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981;61(4):829–913. https://doi.org/10.1152/physrev.1981.61.4.829.

    Article  CAS  PubMed  Google Scholar 

  4. Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli ML, Omori Y. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. Comptes Rendus de l’Academie des Sciences - Serie III. 1999;322(2–3):151–9. https://doi.org/10.1016/S0764-4469(99)80038-9.

    Article  CAS  Google Scholar 

  5. Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer connectors: connexins, gap junctions, and communication. Front Oncol. 2018;8:646. https://doi.org/10.3389/fonc.2018.00646.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huang RP, Hossain MZ, Huang R, Gano J, Fan Y, Boynton AL. Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer. 2001;92(1):130–8. https://doi.org/10.1002/1097-0215(200102)9999:99993.0.CO;2-G.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Rodríguez L, Pérez-Torras S, Carrió M, Cascante A, García-Ribas I, Mazo A, et al. Connexin-26 is a key factor mediating gemcitabine bystander effect. Mol Cancer Ther. 2011;10(3):505–17. https://doi.org/10.1158/1535-7163.MCT-10-0693.

    Article  CAS  PubMed  Google Scholar 

  8. Mesnil M, Piccoli C, Tiraby G, Willecke K, Yamasaki H. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA. 1996;93(5):1831–5. https://doi.org/10.1073/pnas.93.5.1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soares AR, Martins-Marques T, Ribeiro-Rodrigues T, Ferreira JV, Catarino S, Pinho MJ, et al. Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci Rep. 2015;5(1):13243. https://doi.org/10.1038/srep13243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27. https://doi.org/10.1146/annurev-physiol-021014-071641.

    Article  CAS  PubMed  Google Scholar 

  11. Trementozzi AN, Hufnagel S, Xu H, Hanafy MS, Rosero Castro F, Smyth HDC, et al. Gap junction liposomes for efficient delivery of chemotherapeutics to solid tumors. ACS Biomater Sci Eng. 2020;6(9):4851–7. https://doi.org/10.1021/acsbiomaterials.0c01047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gadok AK, Busch DJ, Ferrati S, Li B, Smyth HDC, Stachowiak JC. Connectosomes for direct molecular delivery to the cellular cytoplasm. J Am Chem Soc. 2016;138(39):12833–40. https://doi.org/10.1021/jacs.6b05191.

    Article  CAS  PubMed  Google Scholar 

  13. Sousa De Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434. https://doi.org/10.1039/d0cs01127d.

  14. Sakhtianchi R, Minchin RF, Lee KB, Alkilany AM, Serpooshan V, Mahmoudi M. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interface Sci. 2013;201–202:18–29. https://doi.org/10.1016/j.cis.2013.10.013.

    Article  CAS  PubMed  Google Scholar 

  15. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31(7):638–46. https://doi.org/10.1038/nbt.2612.

    Article  CAS  PubMed  Google Scholar 

  16. Sorgen PL, Trease AJ, Spagnol G, Delmar M, Nielsen MS. Protein–protein interactions with connexin 43: regulation and function. Int J Mol Sci. 2018;19(5):1428. https://doi.org/10.3390/ijms19051428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maes M, Decrock E, Cogliati B, Oliveira AG, Marques PE, Dagli MLZ, et al. Connexin and pannexin (hemi)channels in the liver. Front Physiol. 2014;4:405. https://doi.org/10.3389/fphys.2013.00405.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hervé JC, Derangeon M, Bahbouhi B, Mesnil M, Sarrouilhe D. The connexin turnover, an important modulating factor of the level of cell-to-cell junctional communication: comparison with other integral membrane proteins. J Membr Biol. 2007;217:21–33. https://doi.org/10.1007/s00232-007-9054-8.

    Article  CAS  PubMed  Google Scholar 

  19. Purnick PEM, Oh S, Abrams CK, Verselis VK, Bargiello TA. Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32. Biophys J. 2000;79(5):2403–15. https://doi.org/10.1016/S0006-3495(00)76485-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ek-Vitorín JF, Calero G, Morley GE, Coombs W, Taffet SM, Delmar M. pH regulation of connexin43: molecular analysis of the gating particle. Biophys J. 1996;71(3):1273–84. https://doi.org/10.1016/S0006-3495(96)79328-1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Batissoco AC, Salazar-Silva R, Oiticica J, Bento RF, Mingroni-Netto RC, Haddad LA. A cell junctional protein network associated with connexin-26. Int J Mol Sci. 2018;19(9):2535. https://doi.org/10.3390/ijms19092535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Söhl G, Willecke K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 2003;10(4–6):173–80. https://doi.org/10.1080/cac.10.4-6.173.180.

    Article  PubMed  Google Scholar 

  23. Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res. 2004;62(2):228–32. https://doi.org/10.1016/j.cardiores.2003.11.013.

    Article  CAS  PubMed  Google Scholar 

  24. Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW. Gap junctions and cancer: communicating for 50 years. Nat Rev Cancer. 2016;16(12):775–88. https://doi.org/10.1038/nrc.2016.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996;238(1):1–27. https://doi.org/10.1111/j.1432-1033.1996.0001q.x.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang JX, Penuela S. Connexin and pannexin channels in cancer. BMC Cell Biol. 2016;17(1):105–20. https://doi.org/10.1186/s12860-016-0094-8.

    Article  CAS  Google Scholar 

  27. Sáez JC, Berthoud VM, Brañes MC, Martínez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003;83(4):1359–400. https://doi.org/10.1152/physrev.00007.2003.

    Article  PubMed  Google Scholar 

  28. Laird DW. Life cycle of connexins in health and disease. Biochem J. 2006;394(3):527–43. https://doi.org/10.1042/BJ20051922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res. 2021;235:144–67. https://doi.org/10.1016/j.trsl.2021.02.008.

    Article  CAS  PubMed  Google Scholar 

  30. Contreras JE, Sáez JC, Bukauskas FF, Bennett MVL. Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci U S A. 2003;100(20):11388–93. https://doi.org/10.1073/pnas.1434298100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. White TW, Bruzzone R, Goodenough DA, Paul DL. Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell. 1992;3(7):711–20. https://doi.org/10.1091/mbc.3.7.711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Solan JL, Lampe PD. Connexin43 phosphorylation: structural changes and biological effects. Biochem J. 2009;419(2):261–72. https://doi.org/10.1042/BJ20082319.

    Article  CAS  PubMed  Google Scholar 

  33. Kameritsch P, Khandoga N, Pohl U, Pogoda K. Gap junctional communication promotes apoptosis in a connexin-type- dependent manner. Cell Death Dis. 2013;4(4):e584.https://doi.org/10.1038/cddis.2013.105.

  34. Krutovskikh VA, Piccoli C, Yamasaki H. Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene. 2002;21(13):1989–99. https://doi.org/10.1038/sj.onc.1205187.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang A, Hitomi M, Bar-Shain N, Dalimov Z, Ellis L, Velpula KK, et al. Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration. Oncotarget. 2015;6(13):11640–51. https://doi.org/10.18632/oncotarget.3449.

  36. El-Sabban ME, Pauli BU. Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium. J Cell Biol. 1991;115(5):1375–82. https://doi.org/10.1083/jcb.115.5.1375.

    Article  CAS  PubMed  Google Scholar 

  37. Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O’Byrne KJ. Functions and therapeutic roles of exosomes in cancer. Front Oncol. 2014;4:127. https://doi.org/10.3389/fonc.2014.00127.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79. https://doi.org/10.1038/mt.2011.164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther. 2013;21(1):101–8. https://doi.org/10.1038/mt.2012.161.

    Article  CAS  PubMed  Google Scholar 

  40. Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93. https://doi.org/10.1016/j.molmed.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14. https://doi.org/10.1038/mt.2010.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, et al. Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng. 2016;9:509–29. https://doi.org/10.1007/s12195-016-0458-3.

    Article  CAS  PubMed  Google Scholar 

  43. Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3(1):24641. https://doi.org/10.3402/jev.v3.24641.

    Article  CAS  Google Scholar 

  44. Varela-Eirín M, Carpintero-Fernández P, Guitián-Caamaño A, Varela-Vázquez A, García-Yuste A, Sánchez-Temprano A, et al. Extracellular vesicles enriched in connexin 43 promote a senescent phenotype in bone and synovial cells contributing to osteoarthritis progression. Cell Death Dis. 2022;13(8):681. https://doi.org/10.1038/s41419-022-05089-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, Zuzarte M, Ferreira C, Cruz P, et al. Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance. 2020;3(12):e202000821. https://doi.org/10.26508/LSA.202000821.

  46. Shen Y, Li M, Liao L, Gao S, Wang Y. Plasma exosome-derived connexin43 as a promising biomarker for melanoma patients. BMC Cancer. 2023;23(1):242. https://doi.org/10.1186/s12885-023-10705-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang ZJ, Zhang LL, Bi QC, Gan LJ, Wei MJ, Hong T, et al. Exosomal connexin 43 regulates the resistance of glioma cells to temozolomide. Oncol Rep. 2021;45(4):44. https://doi.org/10.3892/or.2021.7995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79. https://doi.org/10.1038/nri855.

    Article  CAS  PubMed  Google Scholar 

  49. Kang T, Atukorala I, Mathivanan S. Biogenesis of extracellular vesicles. Subcell Biochem. 2021;97:19–43. https://doi.org/10.1007/978-3-030-67171-6_2.

    Article  CAS  PubMed  Google Scholar 

  50. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. https://doi.org/10.3390/cells8070727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Charras G, Paluch E. Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol. 2008;9(9):730–6. https://doi.org/10.1038/nrm2453.

    Article  CAS  PubMed  Google Scholar 

  52. Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol. 2018;9:1486. https://doi.org/10.3389/fimmu.2018.01486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sezgin E, Kaiser HJ, Baumgart T, Schwille P, Simons K, Levental I. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc. 2012;7(6):1042–51. https://doi.org/10.1038/nprot.2012.059.

    Article  CAS  PubMed  Google Scholar 

  54. Li Y, Liu S, Xu W, Wang K, He F, Liu J. Formation of giant plasma membrane vesicles for biological and medical applications: a review. Sens Diagn. 2023;2(4):806–14. https://doi.org/10.1039/d3sd00060e.

    Article  CAS  Google Scholar 

  55. Vestad B, Llorente A, Neurauter A, Phuyal S, Kierulf B, Kierulf P, et al. Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. J Extracell Vesicles. 2017;6(1):1344087. https://doi.org/10.1080/20013078.2017.1344087.

  56. Valiunas V, Wang HZ, Li L, Gordon C, Valiuniene L, Cohen IS, et al. A comparison of two cellular delivery mechanisms for small interfering RNA. Physiol Rep. 2015;3(2):e12286. https://doi.org/10.14814/phy2.12286.

  57. Li M, Liao L, Tian W. Extracellular vesicles derived from apoptotic cells: an essential link between death and regeneration. Front Cell Dev Biol. 2020;8. https://doi.org/10.3389/fcell.2020.573511.

  58. Gemel J, Kilkus J, Dawson G, Beyer EC. Connecting exosomes and connexins. Cancers (Basel). 2019;11(4):476. https://doi.org/10.3390/cancers11040476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lässer C, Eldh M, Lötvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012; (59):e3037. https://doi.org/10.3791/3037.

  60. Yang ZJ, Bi QC, Gan LJ, Zhang LL, Wei MJ, Hong T, et al. Exosomes derived from glioma cells under hypoxia promote angiogenesis through up-regulated exosomal connexin 43. Int J Med Sci. 2022;19(7):1205. https://doi.org/10.7150/ijms.71912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martins-Marques T, Pinho MJ, Zuzarte M, Oliveira C, Pereira P, Sluijter JPG, et al. Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin. J Extracell Vesicles. 2016;5(1):32538. https://doi.org/10.3402/jev.v5.32538.

    Article  CAS  PubMed  Google Scholar 

  62. Lischnig A, Bergqvist M, Ochiya T, Lässer C. Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Mol Cell Proteomics. 2022;21(9). https://doi.org/10.1002/cbic.201300501.

  63. Lu M, Zhao X, Xing H, Liu H, Lang L, Yang T, et al. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery. Acta Biomater. 2019;96:517–36. https://doi.org/10.1016/j.actbio.2019.07.006.

    Article  CAS  PubMed  Google Scholar 

  64. Villamizar O, Waters SA, Scott T, Grepo N, Jaffe A, Morris KV. Mesenchymal stem cell exosome delivered zinc finger protein activation of cystic fibrosis transmembrane conductance regulator. J Extracell Vesicles. 2021;10(3). https://doi.org/10.1002/jev2.12053.

  65. Kojima R, Bojar D, Rizzi G, El Hamri GC, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun. 2018;9(1):1305. https://doi.org/10.1038/s41467-018-03733-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trementozzi AN, Zhao C, Smyth H, Cui Z, Stachowiak JC. Gap junction-mediated delivery of polymeric macromolecules. ACS Biomater Sci Eng. 2022;8(4):1566–72. https://doi.org/10.1021/acsbiomaterials.1c01459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gadok AK, Zhao C, Meriwether AI, Ferrati S, Rowley TG, Zoldan J, et al. The display of single-domain antibodies on the surfaces of connectosomes enables gap junction-mediated drug delivery to specific cell populations. Biochemistry. 2018;57(1):81–90. https://doi.org/10.1021/acs.biochem.7b00688.

    Article  CAS  PubMed  Google Scholar 

  68. Akanuma S ichi, Higashi H, Maruyama S, Murakami K, Tachikawa M, Kubo Y, et al. Expression and function of connexin 43 protein in mouse and human retinal pigment epithelial cells as hemichannels and gap junction proteins. Exp Eye Res. 2018;168:128–37. https://doi.org/10.1016/j.exer.2018.01.016.

  69. Danesh-Meyer HV, Zhang J, Acosta ML, Rupenthal ID, Green CR. Connexin43 in retinal injury and disease. Prog Retin Eye Res. 2016;51:41–68. https://doi.org/10.1016/j.preteyeres.2015.09.004.

    Article  CAS  PubMed  Google Scholar 

  70. Eckert R, Dunina-Barkovskaya A, Hülser DF. Biophysical characterization of gap-junction channels in HeLa cells. Pflugers Arch. 1993;424(3–4):335–42. https://doi.org/10.1007/BF00384361.

    Article  CAS  PubMed  Google Scholar 

  71. Maass K, Shibayama J, Chase SE, Willecke K, Delmar M. C-terminal truncation of connexin43 changes number, size, and localization of cardiac gap junction plaques. Circ Res. 2007;101(12):1283–91. https://doi.org/10.1161/CIRCRESAHA.107.162818.

    Article  CAS  PubMed  Google Scholar 

  72. Pogoda K, Kameritsch P, Retamal MA, Vega JL. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision. BMC Cell Biol. 2016;17:137–50. https://doi.org/10.1186/s12860-016-0099-3.

    Article  CAS  Google Scholar 

  73. Levental KR, Levental I. Isolation of giant plasma membrane vesicles for evaluation of plasma membrane structure and protein partitioning. Methods Molecul Biol. 2015;1232:65–77. https://doi.org/10.1007/978-1-4939-1752-5_6.

    Article  CAS  Google Scholar 

  74. Del Piccolo N, Placone J, He L, Agudelo SC, Hristova K. Production of plasma membrane vesicles with chloride salts and their utility as a cell membrane mimetic for biophysical characterization of membrane protein interactions. Anal Chem. 2012;84(20):8650–5. https://doi.org/10.1021/ac301776j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sezgin E. Giant plasma membrane vesicles to study plasma membrane structure and dynamics. Biochim Biophys Acta Biomembr. 2022;84(20):8650–5. https://doi.org/10.1016/j.bbamem.2021.183857.

    Article  CAS  Google Scholar 

  76. Zhao C, Busch DJ, Vershel CP, Stachowiak JC. Multifunctional transmembrane protein ligands for cell-specific targeting of plasma membrane-derived vesicles. Small. 2016;12(28):3837–48. https://doi.org/10.1002/smll.201600493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Niknam Hamidabad M, Haji Abdolvahab R. Translocation through a narrow pore under a pulling force. Sci Rep. 2019;9(1):17885. https://doi.org/10.1038/s41598-019-53935-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muthukumar M. Polymer translocation through a hole. Journal of Chemical Physics. 1999;111(22):10371–4. https://doi.org/10.1063/1.480386.

    Article  CAS  Google Scholar 

  79. Kumar R, Chaudhuri A, Kapri R. Sequencing of semiflexible polymers of varying bending rigidity using patterned pores. J Chem Phys. 2018;148(16). https://doi.org/10.1063/1.5036529.

  80. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. https://doi.org/10.1038/nbt.1807.

    Article  CAS  PubMed  Google Scholar 

  81. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106(PtA):148-56. https://doi.org/10.1016/j.addr.2016.02.006.

  82. Lu M, Xing H, Yang Z, Sun Y, Yang T, Zhao X, et al. Recent advances on extracellular vesicles in therapeutic delivery: challenges, solutions, and opportunities. Eur J Pharm Biopharm. 2017;119:381–95. https://doi.org/10.1016/j.ejpb.2017.07.010.

    Article  CAS  PubMed  Google Scholar 

  83. Rigaud JL, Pitard B, Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. BBA - Bioenergetics. 1995;1231(3):223–46. https://doi.org/10.1016/0005-2728(95)00091-V.

    Article  PubMed  Google Scholar 

  84. Nomura S ichiro M, Kondoh S, Asayama W, Asada A, Nishikawa S, Akiyoshi K. Direct preparation of giant proteo-liposomes by in vitro membrane protein synthesis. J Biotechnol. 2008;133(2):190–5. https://doi.org/10.1016/j.jbiotec.2007.08.023.

  85. Ahmad S, Evans WH. Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: implications for the assembly of gap junctions. Biochem J. 2002;365(3):693–9. https://doi.org/10.1042/BJ20011572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim DY, Kam Y, Koo SK, Joe OCO. Gating connexin 43 channels reconstituted in lipid vesicles by mitogen- activated protein kinase phosphorylation. J Biol Chem. 1999;274(9):5581–7. https://doi.org/10.1074/jbc.274.9.5581.

    Article  CAS  PubMed  Google Scholar 

  87. Kaneda M, Nomura S ichiro M, Ichinose S, Kondo S, Nakahama K ichi, Akiyoshi K, et al. Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes. Biomaterials. 2009;30(23–24):3971–7. https://doi.org/10.1016/j.biomaterials.2009.04.006.

  88. Liu YJ, Hansen GPR, Venancio-Marques A, Baigl D. Cell-free preparation of functional and triggerable giant proteoliposomes. ChemBioChem. 2013;14(17):2243–7. https://doi.org/10.1002/cbic.201300501.

    Article  CAS  PubMed  Google Scholar 

  89. Moga A, Yandrapalli N, Dimova R, Robinson T. Optimization of the inverted emulsion method for high-yield production of biomimetic giant unilamellar vesicles. ChemBioChem. 2019;20(20):2674–82. https://doi.org/10.1002/cbic.201900529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, et al. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: implications for therapeutic delivery. Acta Biomater. 2018;76:1–20. https://doi.org/10.1016/j.actbio.2018.03.043.

    Article  CAS  PubMed  Google Scholar 

  91. Kuruma Y, Ueda T. The PURE system for the cell-free synthesis of membrane proteins. Nat Protoc. 2015;10(9):1328–44. https://doi.org/10.1038/nprot.2015.082.

    Article  CAS  PubMed  Google Scholar 

  92. Harris AL, Walter A, Paul D, Goodenough DA, Zimmerberg J. Ion channels in single bilayers induced by rat connexin32. Molecul Brain Res. 1992;15(3–4):269–80. https://doi.org/10.1016/0169-328X(92)90118-U.

    Article  CAS  Google Scholar 

  93. Rhee SK, Bevans CG, Harris AL. Channel-forming activity of immunoaffinity-purified connexin32 in single phospholipid membranes. Biochemistry. 1996;35(28):9212–23. https://doi.org/10.1021/bi960295m.

    Article  CAS  PubMed  Google Scholar 

  94. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta Biomembr. 2004;1666(1–2):105–17. https://doi.org/10.1016/j.bbamem.2004.04.011.

    Article  CAS  Google Scholar 

  95. Sihorwala AZ, Lin AJ, Stachowiak JC, Belardi B. Light-activated assembly of connexon nanopores in synthetic cells. J Am Chem Soc. 2023;145(6):3561–8. https://doi.org/10.1021/jacs.2c12491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bao X, Reuss L, Altenberg GA. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C-mediated phosphorylation of serine 368. Journal of Biological Chemistry. 2004;279(19):20058–66. https://doi.org/10.1074/jbc.M311137200.

    Article  CAS  PubMed  Google Scholar 

  97. Yu J, Bippes CA, Hand GM, Muller DJ, Sosinsky GE. Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. Journal of Biological Chemistry. 2007;282(12):8895–904. https://doi.org/10.1074/jbc.M609317200.

    Article  CAS  PubMed  Google Scholar 

  98. Lopez W, Ramachandran J, Alsamarah A, Luo Y, Harris AL, Contreras JE. Mechanism of gating by calcium in connexin hemichannels. Proc Natl Acad Sci U S A. 2016;113(49):E7986-95. https://doi.org/10.1073/pnas.1609378113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Retamal MA, García IE, Pinto BI, Pupo A, Báez D, Stehberg J, et al. Extracellular cysteine in connexins: role as redox sensors. Front Physiol. 2016;7:1. https://doi.org/10.3389/fphys.2016.00001.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Abbaci M, Barberi-Heyob M, Blondel W, Guillemin F, Didelon J. Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. Biotechniques. 2008;45(1):33–62. https://doi.org/10.2144/000112810.

    Article  CAS  PubMed  Google Scholar 

  101. Allen MJ, Gemel J, Beyer EC, Lal R. Atomic force microscopy of Connexin40 gap junction hemichannels reveals calcium-dependent three-dimensional molecular topography and open-closed conformations of both the extracellular and cytoplasmic faces. Journal of Biological Chemistry. 2011;286(25):22139–46. https://doi.org/10.1074/jbc.M111.240002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thimm J, Mechler A, Lin H, Rhee S, Lal R. Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem. 2005;280(11):10646–54. https://doi.org/10.1074/jbc.M412749200.

    Article  CAS  PubMed  Google Scholar 

  103. Trexler EB, Bukauskas FF, Bennett MVL, Bargiello TA, Verselis VK. Rapid and direct effects of pH on connexins revealed by the connexin 46 hemichannel preparation. Journal of General Physiology. 1999;113(5):721–42. https://doi.org/10.1085/jgp.113.5.721.

    Article  CAS  PubMed  Google Scholar 

  104. Rimkute L, Kraujalis T, Snipas M, Palacios-Prado N, Jotautis V, Skeberdis VA, et al. Modulation of connexin-36 gap junction channels by intracellular pH and magnesium ions. Front Physiol. 2018;9:362. https://doi.org/10.3389/fphys.2018.00362.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Alizadeh H, Davoodi J, Zeilinger C, Rafii-Tabar H. Molecular dynamics simulation of the thermosensitivity of the human connexin 26 hemichannel. Chem Phys. 2018;500:7–14. https://doi.org/10.1016/j.chemphys.2017.11.002.

    Article  CAS  Google Scholar 

  106. Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, et al. Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature. 2009;458(7238):597–602. https://doi.org/10.1038/nature07869.

    Article  CAS  PubMed  Google Scholar 

  107. Connors BW. Tales of a dirty drug: carbenoxolone, gap junctions, and seizures: carbenoxolone and seizures. Epilepsy Curr. 2012;12(2):66–8. https://doi.org/10.5698/1535-7511-12.2.66.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Boitano S, Evans WH. Connexin mimetic peptides reversibly inhibit Ca2+ signaling through gap junctions in airway cells. Am J Physiol Lung Cell Mol Physiol. 2000;279(4):L623–30. https://doi.org/10.1152/ajplung.2000.279.4.l623.

    Article  CAS  PubMed  Google Scholar 

  109. Manjarrez-Marmolejo J, Franco-Pérez J. Gap junction blockers: an overview of their effects on induced seizures in animal models. Curr Neuropharmacol. 2016;14(7):759–71. https://doi.org/10.2174/1570159x14666160603115942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol. 2009;1(1):a002576. https://doi.org/10.1101/cshperspect.a002576.

  111. Simpson I, Rose B, Loewenstein WR. 1979 Size limit of molecules permeating the junctional membrane channels. Science. 1977;195(4275):294–6. https://doi.org/10.1126/science.831276.

    Article  CAS  PubMed  Google Scholar 

  112. Kuzma-Kuzniarska M, Yapp C, Pearson-Jones TW, Jones AK, Hulley PA. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching. J Biomed Opt. 2014;19(1):15001. https://doi.org/10.1117/1.jbo.19.1.015001.

    Article  PubMed  Google Scholar 

  113. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. Journal of Physiology. 2005;568(2):459–68. https://doi.org/10.1113/jphysiol.2005.090985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zong L, Zhu Y, Liang R, Zhao HB. Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication. Sci Rep. 2016;6(1):19884. https://doi.org/10.1038/srep19884.

  115. El-Fouly MH, Trosko JE, Chang CC. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res. 1987;168(2):422–30. https://doi.org/10.1016/0014-4827(87)90014-0.

    Article  CAS  PubMed  Google Scholar 

  116. Babica P, Sovadinová I, Upham BL. Scrape loading/dye transfer assay. Methods Molecul Biol. 2016;1437:133–44. https://doi.org/10.1007/978-1-4939-3664-9_9.

    Article  CAS  Google Scholar 

  117. Elzarrad MK, Haroon A, Willecke K, Dobrowolski R, Gillespie MN, Al-Mehdi AB. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med. 2008;6(1):1–6. https://doi.org/10.1186/1741-7015-6-20.

    Article  CAS  Google Scholar 

  118. McLachlan E, Shao Q, Laird DW. Connexins and gap junctions in mammary gland development and breast cancer progression. J Membrane Biol. 2007;218(1–3):107–21. https://doi.org/10.1007/s00232-007-9052-x.

    Article  CAS  Google Scholar 

  119. Conklin C, Huntsman D, Yorida E, Makretsov N, Turbin D, Bechberger JF, et al. Tissue microarray analysis of connexin expression and its prognostic significance in human breast cancer. Cancer Lett. 2007;255(2):284–94. https://doi.org/10.1016/j.canlet.2007.05.001.

    Article  CAS  PubMed  Google Scholar 

  120. Kazan JM, El-Saghir J, Saliba J, Shaito A, Jalaleddine N, El-Hajjar L, et al. Cx43 expression correlates with breast cancer metastasis in MDA-MB-231 cells in vitro, in a mouse xenograft model and in human breast cancer tissues. Cancers (Basel). 2019;11(4):460. https://doi.org/10.3390/cancers11040460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Brockmeyer P, Jung K, Perske C, Schliephake H, Hemmerlein B. Membrane connexin 43 acts as an independent prognostic marker in oral squamous cell carcinoma. Int J Oncol. 2014;45(1):273–81. https://doi.org/10.3892/ijo.2014.2394.

    Article  CAS  PubMed  Google Scholar 

  122. Ding Y, Nguyen TA. Gap junction enhancer potentiates cytotoxicity of cisplatin in breast cancer cells. J Cancer Sci Ther. 2012;4(11):371–8. https://doi.org/10.4172/1948-5956.1000170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang Y, Tao L, Fan L, Peng Y, Yang K, Zhao Y, et al. Different gap junction-propagated effects on cisplatin transfer result in opposite responses to cisplatin in normal cells versus tumor cells. Sci Rep. 2015;5(1):12563. https://doi.org/10.1038/srep12563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van der Zanden SY, Qiao X, Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS Journal. 2021;288(21):6095–111. https://doi.org/10.1111/febs.15583.

    Article  CAS  PubMed  Google Scholar 

  125. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–95. https://doi.org/10.1016/j.jconrel.2010.01.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li Y, Gao L, Tan X, Li F, Zhao M, Peng S. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes. Biochim Biophys Acta Biomembr. 2016;1858(8):1801–11. https://doi.org/10.1016/j.bbamem.2016.04.014.

    Article  CAS  Google Scholar 

  127. Wang X, Zhang H, Yang H, Bai M, Ning T, Li S, et al. Cell-derived exosomes as promising carriers for drug delivery and targeted therapy. Curr Cancer Drug Targets. 2018;18(4):347–54. https://doi.org/10.2174/1568009617666170710120311.

    Article  CAS  PubMed  Google Scholar 

  128. Ng CY, Kee LT, Al-Masawa ME, Lee QH, Subramaniam T, Kok D, et al. Scalable production of extracellular vesicles and its therapeutic values: a review. Int J Mol Sci. 2022;23(14):7986. https://doi.org/10.3390/ijms23147986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hahm J, Kim J, Park J. Strategies to enhance extracellular vesicle production. Tissue Eng Regen Med. 2021;18(4):513–24. https://doi.org/10.1007/s13770-021-00364-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mitchell JP, Court J, Mason MD, Tabi Z, Clayton A. Increased exosome production from tumour cell cultures using the Integra CELLine Culture System. J Immunol Methods. 2008;335(1–2):98–105. https://doi.org/10.1016/j.jim.2008.03.001.

    Article  CAS  PubMed  Google Scholar 

  131. Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195–205. https://doi.org/10.1016/j.biomaterials.2016.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Thuringer D, Jego G, Berthenet K, Hammann A, Solary E, Garrido C. Gap junction-mediated transfer of miR-145–5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis. Oncotarget. 2016;7(19):28160. https://doi.org/10.18632/oncotarget.8583.

  133. Lemcke H, Steinhoff G, David R. Gap junctional shuttling of miRNA - a novel pathway of intercellular gene regulation and its prospects in clinical application. Cell Signal. 2015;27(12):2506–14. https://doi.org/10.1016/j.cellsig.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  134. Brink PR, Valiunas V, Gordon C, Rosen MR, Cohen IS. Can gap junctions deliver? Biochim Biophys Acta Biomembr. 2012;1818(8):2076–81. https://doi.org/10.1016/j.bbamem.2011.09.025.

    Article  CAS  Google Scholar 

  135. Franzé S, Selmin F, Samaritani E, Minghetti P, Cilurzo F. Lyophilization of liposomal formulations: still necessary, still challenging. Pharmaceutics. 2018;10(3):139. https://doi.org/10.3390/pharmaceutics10030139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Charoenviriyakul C, Takahashi Y, Nishikawa M, Takakura Y. Preservation of exosomes at room temperature using lyophilization. Int J Pharm. 2018;553(1–2):1–7. https://doi.org/10.1016/j.ijpharm.2018.10.032.

    Article  CAS  PubMed  Google Scholar 

  137. Hoang QV, Qian H, Ripps H. Functional analysis of hemichannels and gap-junctional channels formed by connexins 43 and 46. Mol Vis. 2010;16:1343–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mugisho OO, Rupenthal ID, Paquet-Durand F, Acosta ML, Green CR. Targeting connexin hemichannels to control the inflammasome: the correlation between connexin43 and NLRP3 expression in chronic eye disease. Expert Opin Ther Targets. 2019;23(10):855–63. https://doi.org/10.1080/14728222.2019.1673368.

    Article  CAS  PubMed  Google Scholar 

  139. Leybaert L, De Smet MAJ, Lissoni A, Allewaert R, Roderick HL, Bultynck G, et al. Connexin hemichannels as candidate targets for cardioprotective and anti-arrhythmic treatments. J Clin Investigat. 2023;133(6):e168117. https://doi.org/10.1172/JCI168117.

  140. Momtahan N, Crosby C, Zoldan J. Biovesicle delivery of connexin 43 improves synchronous beating of hiPSC derived Cardiomyocytes. Society for Biomaterials. 2021.

  141. Momtahan N, Stachowiak J, Zoldan J. Connexin rich biomaterials electrochemically couple induced pluripotent stem cell-derived cardiomyocytes. Society of Biomaterials. 2023.

  142. Ando M, Sasaki Y, Akiyoshi K. Preparation of cationic proteoliposomes using cell-free membrane protein synthesis: the chaperoning effect of cationic liposomes. RSC Adv. 2020;10(48):28741–5. https://doi.org/10.1039/d0ra05825d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Moritani Y, Nomura SIM, Morita I, Akiyoshi K. Direct integration of cell-free-synthesized connexin-43 into liposomes and hemichannel formation. FEBS Journal. 2010;277(16):3343–52. https://doi.org/10.1111/j.1742-4658.2010.07736.x.

    Article  CAS  PubMed  Google Scholar 

  144. Kamiya K, Tsumoto K, Arakawa S, Shimizu S, Morita I, Yoshimura T, et al. Preparation of connexin43-integrated giant liposomes by a baculovirus expression-liposome fusion method. Biotechnol Bioeng. 2010;107(5):836–43. https://doi.org/10.1002/bit.22845.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mahmoud S. Hanafy: conceptualization; data collection; writing—original draft. Zhengrong Cui: conceptualization; writing—reviewing and editing.

Corresponding author

Correspondence to Zhengrong Cui.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Aliasger Salem.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanafy, M.S., Cui, Z. Connexin-Containing Vesicles for Drug Delivery. AAPS J 26, 20 (2024). https://doi.org/10.1208/s12248-024-00889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-024-00889-8

Keywords

Navigation