Skip to main content

Advertisement

Log in

Iontophoresis to Overcome the Challenge of Nail Permeation: Considerations and Optimizations for Successful Ungual Drug Delivery

  • Review Article
  • Theme: Celebrating Women in the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Iontophoresis is a widely used drug delivery technique that has been used clinically to improve permeation through the skin for drugs and other actives in topical formulations. It is however not commonly used for the treatment of nail diseases despite its potential to improve transungual nail delivery. Instead, treatments for nail diseases are limited to relatively ineffective topical passive permeation techniques, which often result in relapses of nail diseases due to the thickness and hardness of the nail barrier resulting in lower permeation of the actives. Oral systemic antifungal agents that are also used are often associated with various undesirable side effects resulting in low patient compliance. This review article discusses what is currently known about the field of transungual iontophoresis, providing evidence of its efficacy and practicality in delivering drug to the entire surface of the nail for extended treatment periods. It also includes relevant details about the nail structure, the mechanisms of iontophoresis, and the associated in vitro and in vivo studies which have been used to investigate the optimal characteristics for a transungual iontophoretic drug delivery system. Iontophoresis is undoubtedly a promising option to treat nail diseases, and the use of this technique for clinical use will likely improve patient outcomes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aggarwal R, Targhotra M, Kumar B, Sahoo PK, Chauhan MK. Treatment and management strategies of onychomycosis. J Mycol Med. 2020;30(2):100949.

    Article  CAS  PubMed  Google Scholar 

  2. Schons KR, Beber AA, Beck Mde O, Monticielo OA. Nail involvement in adult patients with plaque-type psoriasis: prevalence and clinical features. An Bras Dermatol. 2015;90(3):314–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Drake LA, Scher RK, Smith EB, Faich GA, Smith SL, Hong JJ, et al. Effect of onychomycosis on quality of life. J Am Acad Dermatol. 1998;38(5 Pt 1):702–4.

    Article  CAS  PubMed  Google Scholar 

  4. Lubeck DP, Patrick DL, McNulty P, Fifer SK, Birnbaum J. Quality of life of persons with onychomycosis. Qual Life Res. 1993;2(5):341–8.

    Article  CAS  PubMed  Google Scholar 

  5. Baran R. The burden of nail psoriasis: an introduction. Dermatology. 2010;221(Suppl 1):1–5.

    Article  PubMed  Google Scholar 

  6. Elewski BE. Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev. 1998;11(3):415–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crawford F, Young P, Godfrey C, Bell-Syer SE, Hart R, Brunt E, et al. Oral treatments for toenail onychomycosis: a systematic review. Arch Dermatol. 2002;138(6):811–6.

    Article  CAS  PubMed  Google Scholar 

  8. Kreijkamp-Kaspers S, Hawke K, Guo L, Kerin G, Bell-Syer SE, Magin P, et al. Oral antifungal medication for toenail onychomycosis. Cochrane Database Syst Rev. 2017;7(7):Cd010031.

  9. Del Rosso JQ. The role of topical antifungal therapy for onychomycosis and the emergence of newer agents. J Clin Aesthet Dermatol. 2014;7(7):10–8.

    PubMed  PubMed Central  Google Scholar 

  10. Shahi S, Deshpande S. Iontophoresis: an approach to drug delivery enhancement. Int J Pharm Sci Res. 2017;8(10):4056.

    CAS  Google Scholar 

  11. Feng X, Xiong X, Ran Y. Efficacy and tolerability of amorolfine 5% nail lacquer in combination with systemic antifungal agents for onychomycosis: a meta-analysis and systematic review. Dermatol Ther. 2017;30(3).

  12. Radtke MA, Beikert FC, Augustin M. Nail psoriasis - a treatment challenge. J Dtsch Dermatol Ges. 2013;11(3):203–19 quiz 20.

    PubMed  Google Scholar 

  13. Thatai P, Khan AB. Management of nail psoriasis by topical drug delivery: a pharmaceutical perspective. Int J Dermatol. 2020;59(8):915–25.

    Article  PubMed  Google Scholar 

  14. Gratieri T, Cunha-Filho M, Gelfuso GM. Overcoming hurdles in iontophoretic drug delivery: is skin the only barrier? - an update. Ther Deliv. 2019;10(4):211–4.

    Article  CAS  PubMed  Google Scholar 

  15. Dragicevic N, Maibach HI. Percutaneous penetration enhancers physical methods in penetration enhancement. Springer Berlin / Heidelberg: Berlin, Heidelberg; 2017.

    Book  Google Scholar 

  16. James MP, Graham RM, English J. Percutaneous iontophoresis of prednisolone--a pharmacokinetic study. Clin Exp Dermatol. 1986;11(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  17. Nair AB, Vaka SR, Murthy SN. Transungual delivery of terbinafine by iontophoresis in onychomycotic nails. Drug Dev Ind Pharm. 2011;37(10):1253–8.

    Article  CAS  PubMed  Google Scholar 

  18. Nair AB, Kim HD, Chakraborty B, Singh J, Zaman M, Gupta A, et al. Ungual and trans-ungual iontophoretic delivery of terbinafine for the treatment of onychomycosis. J Pharm Sci. 2009;98(11):4130–40.

    Article  CAS  PubMed  Google Scholar 

  19. Delgado-Charro MB. Iontophoretic drug delivery across the nail. Expert Opin Drug Deliv. 2012;9(1):91–103.

    Article  CAS  PubMed  Google Scholar 

  20. de Berker D. Nail anatomy. Clin Dermatol. 2013;31(5):509–15.

    Article  PubMed  Google Scholar 

  21. Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214(4):516–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi Y, Miyamoto M, Sugibayashi K, Morimoto Y. Drug permeation through the three layers of the human nail plate. J Pharm Pharmacol. 1999;51(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  23. Nogueiras-Nieto L, Gómez-Amoza JL, Delgado-Charro MB, Otero-Espinar FJ. Hydration and N-acetyl-l-cysteine alter the microstructure of human nail and bovine hoof: implications for drug delivery. J Control Release. 2011;156(3):337–44.

    Article  CAS  PubMed  Google Scholar 

  24. Dutet J, Delgado-Charro MB. Assessment of iontophoretic and passive ungual penetration by laser scanning confocal microscopy. Pharm Res. 2012;29(12):3464–74.

    Article  CAS  PubMed  Google Scholar 

  25. Stern DKMD, Diamantis SMD, Smith EMD, Wei HMDP, Gordon MMD, Muigai WBS, et al. Water content and other aspects of brittle versus normal fingernails. J Am Acad Dermatol. 2007;57(1):31–6.

    Article  PubMed  Google Scholar 

  26. de Berker DA, André J, Baran R. Nail biology and nail science. Int J Cosmet Sci. 2007;29(4):241–75.

    Article  PubMed  Google Scholar 

  27. Mertin D, Lippold BC. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: prediction of the penetration rate of antimycotics through the nail plate and their efficacy. J Pharm Pharmacol. 1997;49(9):866–72.

    Article  CAS  PubMed  Google Scholar 

  28. Hao J, Smith KA, Li SK. Time-dependent electrical properties of human nail upon hydration in vivo. J Pharm Sci. 2010;99(1):107–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hao J, Li SK. Transungual iontophoretic transport of polar neutral and positively charged model permeants: effects of electrophoresis and electroosmosis. J Pharm Sci. 2008;97(2):893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nair AB, Singh K, Shinu P, Harsha S, Al-Dhubiab BE. A comprehensive study to evaluate the effect of constant low voltage iontophoresis on transungual delivery. Drug Dev Ind Pharm. 2013;39(5):807–15.

    Article  CAS  PubMed  Google Scholar 

  31. Manda P, Sammeta SM, Repka MA, Murthy SN. Iontophoresis across the proximal nail fold to target drugs to the nail matrix. J Pharm Sci. 2012;101(7):2392–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kushwaha A, Shivakumar HN, Murthy SN. Iontophoresis for drug delivery into the nail apparatus: exploring hyponychium as the site of delivery. Drug Dev Ind Pharm. 2016;42(10):1678–82.

    Article  CAS  PubMed  Google Scholar 

  33. Monti D, Saccomani L, Chetoni P, Burgalassi S, Tampucci S, Mailland F. Validation of bovine hoof slices as a model for infected human toenails: in vitro ciclopirox transungual permeation. Br J Dermatol. 2011;165(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  34. Mertin D, Lippold BC. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: penetration of chloramphenicol from lipophilic vehicles and a nail lacquer. J Pharm Pharmacol. 1997;49(3):241–5.

    Article  CAS  PubMed  Google Scholar 

  35. Shanbhag P, Jani U. Drug delivery through nails: present and future. New Horizons in Translational Medicine. 2017;3.

  36. Khengar RH, Jones SA, Turner RB, Forbes B, Brown MB. Nail swelling as a pre-formulation screen for the selection and optimisation of ungual penetration enhancers. Pharm Res. 2007;24(12):2207–12.

    Article  CAS  PubMed  Google Scholar 

  37. Amichai B, Mosckovitz R, Trau H, Sholto O, Ben-Yaakov S, Royz M, et al. Iontophoretic terbinafine HCL 1.0% delivery across porcine and human nails. Mycopathologia. 2010;169(5):343–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kushwaha A, Jacob M, Shiva Kumar HN, Hiremath S, Aradhya S, Repka MA, et al. Trans-ungual delivery of itraconazole hydrochloride by iontophoresis. Drug Dev Ind Pharm. 2015;41(7):1089–94.

    Article  CAS  PubMed  Google Scholar 

  39. Monti D, Egiziano E, Burgalassi S, Tampucci S, Terreni E, Tivegna S, et al. Influence of a combination of chemical enhancers and iontophoresis on in vitro transungual permeation of nystatin. AAPS PharmSciTech. 2018;19(4):1574–81.

    Article  CAS  PubMed  Google Scholar 

  40. Dutet J, Delgado-Charro MB. In vivo transungual iontophoresis: effect of DC current application on ionic transport and on transonychial water loss. J Control Release. 2009;140(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  41. Nair AB, Vaka SR, Sammeta SM, Kim HD, Friden PM, Chakraborty B, et al. Trans-ungual iontophoretic delivery of terbinafine. J Pharm Sci. 2009;98(5):1788–96.

    Article  CAS  PubMed  Google Scholar 

  42. Nair AB, Kim HD, Davis SP, Etheredge R, Barsness M, Friden PM, et al. An ex vivo toe model used to assess applicators for the iontophoretic ungual delivery of terbinafine. Pharm Res. 2009;26(9):2194–201.

    Article  CAS  PubMed  Google Scholar 

  43. Baden HP, Goldsmith LA, Fleming B. A comparative study of the physicochemical properties of human keratinized tissues. Biochim Biophys Acta. 1973;322(2):269–78.

    Article  CAS  PubMed  Google Scholar 

  44. Lusiana, Reichl S, Müller-Goymann CC. Keratin film made of human hair as a nail plate model for studying drug permeation. Eur J Pharm Biopharm 2011;78(3):432–440.

  45. McAuley WJ, Jones SA, Traynor MJ, Guesné S, Murdan S, Brown MB. An investigation of how fungal infection influences drug penetration through onychomycosis patient’s nail plates. Eur J Pharm Biopharm. 2016;102:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baraldi A, Jones SA, Guesné S, Traynor MJ, McAuley WJ, Brown MB, et al. Human nail plate modifications induced by onychomycosis: implications for topical therapy. Pharm Res. 2014;32(5):1626–33.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mohorcic M, Torkar A, Friedrich J, Kristl J, Murdan S. An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int J Pharm. 2007;332(1–2):196–201.

    Article  CAS  PubMed  Google Scholar 

  48. Gupta R, Ramnani P. Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol. 2006;70(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  49. Lusiana RS, Müller-Goymann CC. Infected nail plate model made of human hair keratin for evaluating the efficacy of different topical antifungal formulations against Trichophyton rubrum in vitro. Eur J Pharm Biopharm. 2013;84(3):599–605.

    Article  CAS  PubMed  Google Scholar 

  50. Benzeval I, Bowen CR, Guy RH, Delgado-Charro MB. Effects of iontophoresis, hydration, and permeation enhancers on human nail plate: infrared and impedance spectroscopy assessment. Pharm Res. 2013;30(6):1652–62.

    Article  CAS  PubMed  Google Scholar 

  51. Murdan S, Hinsu D, Guimier M. A few aspects of transonychial water loss (TOWL): inter-individual, and intra-individual inter-finger, inter-hand and inter-day variabilities, and the influence of nail plate hydration, filing and varnish. Eur J Pharm Biopharm. 2008;70(2):684–9.

    Article  CAS  PubMed  Google Scholar 

  52. Hamilton JB, Terada H, Mestler GE. Studies of growth throughout the lifespan in Japanese: growth and size of nails and their relationship to age, sex, heredity, and other factors. J Gerontol. 1955;10(4):401–15.

    Article  CAS  PubMed  Google Scholar 

  53. Batory M, Namieciński P, Rotsztejn H. Evaluation of structural damage and pH of nail plates of hands after applying different methods of decorating. Int J Dermatol. 2019;58(3):311–8.

    Article  CAS  PubMed  Google Scholar 

  54. Murdan S, Milcovich G, Goriparthi GS. An assessment of the human nail plate pH. Skin Pharmacol Physiol. 2011;24(4):175–81.

    Article  CAS  PubMed  Google Scholar 

  55. Hashimoto K. Ultrastructure of the human toenail. I. Proximal nail matrix. J Invest Dermatol. 1971;56(3):235–46.

    Article  CAS  PubMed  Google Scholar 

  56. Finlay AY, Moseley H, Duggan TC. Ultrasound transmission time: an in vivo guide to nail thickness. Br J Dermatol. 1987;117(6):765–70.

    Article  CAS  PubMed  Google Scholar 

  57. Baran R, de Berker DAR, Holzberg M, Thomas L. Baran and Dawber’s diseases of the nails and their management. Somerset: John Wiley & Sons, Incorporated; 2012.

    Book  Google Scholar 

  58. Dutet J, Delgado-Charro MB. Electroosmotic transport of mannitol across human nail during constant current iontophoresis. J Pharm Pharmacol. 2010;62(6):721–9.

    Article  CAS  PubMed  Google Scholar 

  59. Bradley Phipps J, Gyory JR. Transdermal ion migration. Adv Drug Deliv Rev. 1992;9(2):137–76.

    Article  Google Scholar 

  60. Mudry B, Guy RH, Delgado-Charro MB. Electromigration of ions across the skin: determination and prediction of transport numbers. J Pharm Sci. 2006;95(3):561–9.

    Article  CAS  PubMed  Google Scholar 

  61. Sims SM, Higuchi WI, Srinivasan V. Interaction of electric field and electro-osmotic effects in determining iontophoretic enhancement of anions and cations. Int J Pharm. 1991;77(2):107–18.

    Article  CAS  Google Scholar 

  62. Murthy SN, Waddell DC, Shivakumar HN, Balaji A, Bowers CP. Iontophoretic permselective property of human nail. J Dermatol Sci. 2007;46(2):150–2.

    Article  CAS  PubMed  Google Scholar 

  63. Mennini N, Bragagni M, Maestrelli F, Mura P. Physico-chemical characterization in solution and in the solid state of clonazepam complexes with native and chemically-modified cyclodextrins. J Pharm Biomed Anal. 2014;89:142–9.

    Article  CAS  PubMed  Google Scholar 

  64. Hao J, Smith KA, Li SK. Chemical method to enhance transungual transport and iontophoresis efficiency. Int J Pharm. 2008;357(1–2):61–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Prausnitz MR. A practical assessment of transdermal drug delivery by skin electroporation. Adv Drug Deliv Rev. 1999;35(1):61–76.

    Article  CAS  PubMed  Google Scholar 

  66. Kalinowski DP, Edsberg LE, Hewson RA, Johnson RH, Brogan MS. Low-voltage direct current as a fungicidal agent for treating onychomycosis. J Am Podiatr Med Assoc. 2004;94(6):565–72.

    Article  PubMed  Google Scholar 

  67. Nair AB, Sammeta SM, Kim HD, Chakraborty B, Friden PM, Murthy SN. Alteration of the diffusional barrier property of the nail leads to greater terbinafine drug loading and permeation. Int J Pharm. 2009;375(1–2):22–7.

    Article  CAS  PubMed  Google Scholar 

  68. Baswan SM, Li SK, LaCount TD, Kasting GB. Size and charge dependence of ion transport in human nail plate. J Pharm Sci. 2016;105(3):1201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Uchida K, Yamaguchi H. Studies on the affinity of terbinafine with keratin. Jpn J Med Mycol. 1993;34(2):207–12.

    Article  CAS  Google Scholar 

  70. Darkes MJM, Scott LJ, Goa KL. Terbinafine: a review of its use in onychomycosis in adults. Am J Clin Dermatol. 2003;4(1):39–65.

    Article  PubMed  Google Scholar 

  71. Balfour JA, Faulds D. Terbinafine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial mycoses. Drugs. 1992;43(2):259–84.

    Article  CAS  PubMed  Google Scholar 

  72. Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R, et al. A large-scale north American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol. 2000;43(4):641–8.

    Article  CAS  PubMed  Google Scholar 

  73. Neubert RH, Gensbügel C, Jäckel A, Wartewig S. Different physicochemical properties of antimycotic agents are relevant for penetration into and through human nails. Pharmazie. 2006;61(7):604–7.

    CAS  PubMed  Google Scholar 

  74. Hui X, Baker SJ, Wester RC, Barbadillo S, Cashmore AK, Sanders V, et al. In vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate. J Pharm Sci. 2007;96(10):2622–31.

    Article  CAS  PubMed  Google Scholar 

  75. Monti D, Mazzantini D, Tampucci S, Vecchione A, Celandroni F, Burgalassi S, et al. Ciclopirox and efinaconazole transungual permeation, antifungal activity, and proficiency to induce resistance in Trichophyton rubrum. Antimicrob Agents Chemother. 2019;63(10).

  76. Corrêa JCR, Salgado HRN. Review of fluconazole properties and analytical methods for its determination. Crit Rev Anal Chem. 2011;41(2):124–32.

    Article  Google Scholar 

  77. Jaruratanasirikul S, Sriwiriyajan S. Effect of omeprazole on the pharmacokinetics of itraconazole. Eur J Clin Pharmacol. 1998;54(2):159–61.

    Article  CAS  PubMed  Google Scholar 

  78. Uzqueda M, Martín C, Zornoza A, Sánchez M, Martínez-Ohárriz MC, Vélaz I. Characterization of complexes between naftifine and cyclodextrins in solution and in the solid state. Pharm Res. 2006;23(5):980–8.

    Article  CAS  PubMed  Google Scholar 

  79. Narasimha Murthy S, Wiskirchen DE, Bowers CP. Iontophoretic drug delivery across human nail. J Pharm Sci. 2007;96(2):305–11.

    Article  CAS  PubMed  Google Scholar 

  80. Hao J, Li SK. Mechanistic study of electroosmotic transport across hydrated nail plates: effects of pH and ionic strength. J Pharm Sci. 2008;97(12):5186–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith KA, Hao J, Li SK. Influence of pH on transungual passive and iontophoretic transport. J Pharm Sci. 2010;99(4):1955–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dutet J, Delgado-Charro MB. Transungual iontophoresis of lithium and sodium: effect of pH and co-ion competition on cationic transport numbers. J Control Release. 2010;144(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  83. Hao J, Smith KA, Li SK. Iontophoretically enhanced ciclopirox delivery into and across human nail plate. J Pharm Sci. 2009;98(10):3608–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kalaria DR, Patel P, Patravale V, Kalia YN. Comparison of the cutaneous iontophoretic delivery of rasagiline and selegiline across porcine and human skin in vitro. Int J Pharm. 2012;438(1–2):202–8.

    Article  CAS  PubMed  Google Scholar 

  85. Smith KA, Hao J, Li SK. Effects of ionic strength on passive and iontophoretic transport of cationic permeant across human nail. Pharm Res. 2009;26(6):1446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kobayashi Y, Komatsu T, Sumi M, Numajiri S, Miyamoto M, Kobayashi D, et al. In vitro permeation of several drugs through the human nail plate: relationship between physicochemical properties and nail permeability of drugs. Eur J Pharm Sci. 2004;21(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  87. Smith KA, Hao J, Kevin LS. Effects of organic solvents on the barrier properties of human nail. J Pharm Sci. 2011;100(10):4244–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wessel S, Gniadecka M, Jemec GB, Wulf HC. Hydration of human nails investigated by NIR-FT-Raman spectroscopy. Biochim Biophys Acta. 1999;1433(1–2):210–6.

    Article  CAS  PubMed  Google Scholar 

  89. Marzec E, Olszewski J. Influence of water and temperature on the electrical conductivity of the human nail. J Therm Anal Calorim. 2019;138(3):2185–91.

    Article  CAS  Google Scholar 

  90. Lauharanta J. Comparative efficacy and safety of amorolfine nail lacquer 2% versus 5% once weekly. Clin Exp Dermatol. 1992;17(Suppl 1):41–3.

    Article  PubMed  Google Scholar 

  91. Pittrof F, Gerhards J, Erni W, Klecak G. Loceryl nail lacquer--realization of a new galenical approach to onychomycosis therapy. Clin Exp Dermatol. 1992;17(Suppl 1):26–8.

    Article  PubMed  Google Scholar 

  92. Chouhan P, Saini TR. Hydration of nail plate: a novel screening model for transungual drug permeation enhancers. Int J Pharm. 2012;436(1–2):179–82.

    Article  CAS  PubMed  Google Scholar 

  93. Nair AB, Chakraborty B, Murthy SN. Effect of polyethylene glycols on the trans-ungual delivery of terbinafine. Curr Drug Deliv. 2010;7(5):407–14.

    Article  CAS  PubMed  Google Scholar 

  94. Oon HH, Tan HH. Iontophoretic terbinafine delivery in onychomycosis: questionable nail growth. Br J Dermatol. 2010;162(3):699–700.

    Article  CAS  PubMed  Google Scholar 

  95. Amichai B, Nitzan B, Mosckovitz R, Shemer A. Iontophoretic delivery of terbinafine in onychomycosis: a preliminary study. Br J Dermatol. 2010;162(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  96. Samhan A. Terbinafine hydrochloride 1% Iontophoresis for the treatment of toenail onychomycosis: a randomized placebo controlled study. Journal of Novel Physiotherapies. 2015;05.

  97. Le QV, Howard A. Dexamethasone iontophoresis for the treatment of nail psoriasis. Australas J Dermatol. 2013;54(2):115–9.

    Article  PubMed  Google Scholar 

  98. Saki N, Hosseinpoor S, Heiran A, Mohammadi A, Zeraatpishe M. Comparing the efficacy of triamcinolone acetonide iontophoresis versus topical calcipotriol/betamethasone dipropionate in treating nail psoriasis: a bilateral controlled clinical trial. Dermatol Res Pract. 2018;2018:2637691.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozena Michniak-Kohn.

Additional information

Guest Editors: Diane Burgess, Marilyn Morris and Meena Subramanyam

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Puri, V. & Michniak-Kohn, B. Iontophoresis to Overcome the Challenge of Nail Permeation: Considerations and Optimizations for Successful Ungual Drug Delivery. AAPS J 23, 25 (2021). https://doi.org/10.1208/s12248-020-00552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00552-y

KEY WORDS

Navigation