Skip to main content

Advertisement

Log in

In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague–Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu RH. Health-promoting components of fruits and vegetables in the diet. Adv Nutr. 2013;4(3):384S–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 2013;45(12):2821–31.

    Article  CAS  PubMed  Google Scholar 

  3. Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011;11(4):298–344.

    Article  CAS  PubMed  Google Scholar 

  4. Nothlings U, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Flavonols and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol. 2007;166(8):924–31.

    Article  PubMed  Google Scholar 

  5. Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ. Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem. 2006;54(26):9798–804.

    Article  CAS  PubMed  Google Scholar 

  6. Heijnen CG, Haenen GR, van Acker FA, van der Vijgh WJ, Bast A. Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol in Vitro. 2001;15(1):3–6.

    Article  CAS  PubMed  Google Scholar 

  7. Kong L, Luo C, Li X, Zhou Y, He H. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis. 2013;12:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rajendran P, Rengarajan T, Nandakumar N, Palaniswami R, Nishigaki Y, Nishigaki I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem. 2014;86:103–12.

    Article  CAS  PubMed  Google Scholar 

  9. Dang Q, Song W, Xu D, Ma Y, Li F, Zeng J, et al. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Mol Carcinog. 2015;54(9):831–40.

    Article  CAS  PubMed  Google Scholar 

  10. Lee HS, Cho HJ, Yu R, Lee KW, Chun HS, Park JH. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int J Mol Sci. 2014;15(2):2722–37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yao K, Chen H, Liu K, Langfald A, Yang G, Zhang Y, et al. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer. Cancer Prev Res (Phila). 2014;7(9):958–67.

    Article  CAS  Google Scholar 

  12. Cui Y, Morgenstern H, Greenland S, Tashkin DP, Mao JT, Cai L, et al. Dietary flavonoid intake and lung cancer—A population-based case–control study. Cancer-Am Cancer Soc. 2008;112(10):2241–8.

    CAS  Google Scholar 

  13. Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer. 2007;121(10):2225–32.

    Article  CAS  PubMed  Google Scholar 

  14. Bobe G, Sansbury LB, Albert PS, Cross AJ, Kahle L, Ashby J, et al. Dietary flavonoids and colorectal adenoma recurrence in the Polyp Prevention Trial. Cancer Epidemiol Biomarkers Prev. 2008;17(6):1344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138(4):2099–107.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014;15(1):48–61.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 2003;304(3):1228–35.

    Article  CAS  PubMed  Google Scholar 

  18. Ma Y, Zeng M, Sun R, Hu M. Disposition of flavonoids impacts their efficacy and safety. Curr Drug Metab. 2014;15(9):841–64.

    Article  CAS  PubMed  Google Scholar 

  19. Silva ID, Rodrigues AS, Gaspar J, Maia R, Laires A, Rueff J. Involvement of rat cytochrome 1A1 in the biotransformation of kaempferol to quercetin: relevance to the genotoxicity of kaempferol. Mutagenesis. 1997;12(5):383–90.

    Article  CAS  PubMed  Google Scholar 

  20. Barve A, Chen C, Hebbar V, Desiderio J, Saw CL, Kong AN. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos. 2009;30(7):356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yodogawa S, Arakawa T, Sugihara N, Furuno K. Glucurono- and sulfo-conjugation of kaempferol in rat liver subcellular preparations and cultured hepatocytes. Biol Pharm Bull. 2003;26(8):1120–4.

    Article  CAS  PubMed  Google Scholar 

  22. Romiti N, Tramonti G, Donati A, Chieli E. Effects of grapefruit juice on the multidrug transporter P-glycoprotein in the human proximal tubular cell line HK-2. Life Sci. 2004;76(3):293–302.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Cao J, Zeng S. Involvement of P-glycoprotein in regulating cellular levels of ginkgo flavonols: quercetin, kaempferol, and isorhamnetin. J Pharm Pharmacol. 2005;57(6):751–8.

    Article  CAS  PubMed  Google Scholar 

  24. An G, Gallegos J, Morris ME. The bioflavonoid kaempferol is an abcg2 substrate and inhibits Abcg2-mediated quercetin efflux. Drug Metab Dispos. 2011;39(3):426–32.

    Article  CAS  PubMed  Google Scholar 

  25. Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J Chemother. 2005;17(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  26. Barrington R, Williamson G, Bennett RN, Davis BD, Brodbelt JS, Kroon PA. Absorption, conjugation and efflux of the flavonoids, kaempferol and galangin, using the intestinal CaCo-2/TC7 cell model. J Funct Foods. 2009;1(1):74–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang W, Wang X, Zhou S, Gu Y, Wang R, Zhang T, et al. Determination of free and glucuronidated kaempferol in rat plasma by LC-MS/MS: application to pharmacokinetic study. J Chromatogr B. 2010;878(23):2137–40.

    Article  CAS  Google Scholar 

  28. Shi J, Zheng L, Lin Z, Hou C, Liu W, Yan T, et al. Study of pharmacokinetic profiles and characteristics of active components and their metabolites in rat plasma following oral administration of the water extract of Astragali radix using UPLC-MS/MS. J Ethnopharmacol. 2015;169:183–94.

    Article  CAS  PubMed  Google Scholar 

  29. Dai P, Zhu L, Luo F, Lu L, Li Q, Wang L, et al. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. AAPS J. 2015;17(3):723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu W, Xu H, Wang SWJ, Hu M. Breast cancer resistance protein (BCRP) and sulfotransferases contribute significantly to the disposition of genistein in mouse intestine. AAPS J. 2010;12(4):525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye L, Lu L, Li Y, Zeng S, Yang X, Chen W, et al. Potential role of ATP-binding cassette transporters in the intestinal transport of rhein. Food Chem Toxicol. 2013;58:301–5.

    Article  CAS  Google Scholar 

  32. Liu W, Feng Q, Li Y, Ye L, Hu M, Liu Z. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Toxicol Appl Pharmacol. 2012;265(3):316–24.

    Article  CAS  PubMed  Google Scholar 

  33. Dai P, Zhu L, Yang X, Zhao M, Shi J, Wang Y, et al. Multidrug resistance-associated protein 2 is involved in the efflux of Aconitum alkaloids determined by MRP2-MDCKII cells. Life Sci. 2015;127:66–72.

    Article  CAS  PubMed  Google Scholar 

  34. Singh R, Wu B, Tang L, Liu Z, Hu M. Identification of the position of mono-O-glucuronide of flavones and flavonols by analyzing shift in online UV spectrum (λmax) generated from an online diode array detector. J Agric Food Chem. 2010;58(17):9384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang L, Zhou J, Yang C, Xia B, Hu M, Liu Z. Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences. J Agric Food Chem. 2012;60(12):3223–33.

    Article  CAS  PubMed Central  Google Scholar 

  36. Enokizono J, Kusuhara H, Sugiyama Y. Regional expression and activity of breast cancer resistance protein (Bcrp/Abcg2) in mouse intestine: Overlapping distribution with sulfotransferases. Drug Metab Dispos. 2007;35(6):922–8.

    Article  CAS  PubMed  Google Scholar 

  37. Cherrington NJ, Hartley DP, Li N, Johnson DR, Klaassen CD. Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J Pharmacol Exp Ther. 2002;300(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  38. Yang Z, Zhu W, Gao S, Yin T, Jiang W, Hu M. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos. 2012;40(10):1883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of National Natural Science Foundation of China (81120108025 and 81503466), Science and Technology Project of Guangzhou City (201509010004) and Guangdong Natural Science Foundation Province (2015AD030312012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linlin Lu or Zhongqiu Liu.

Additional information

Liang Zheng and Lijun Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 218 kb)

Fig. S2

(PDF 424 kb)

Table S1

(PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Zhu, L., Zhao, M. et al. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters. AAPS J 18, 1289–1299 (2016). https://doi.org/10.1208/s12248-016-9951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9951-9

KEY WORDS

Navigation