Skip to main content
Log in

Monoamine Transporter Structure, Function, Dynamics, and Drug Discovery: A Computational Perspective

  • Review Article
  • Theme: New Paradigms in Pharmaceutical Sciences: In Silico Drug Discovery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

With the breakthrough crystallization of the bacterial leucine transporter protein LeuT, the first available X-ray structure for the neurotransmitter/sodium symporter family, development of 3-D computational models is suddenly essential for structure–function studies on the plasmalemmal monoamine transporters (MATs). LeuT-based MAT models have been used to guide elucidation of substrate and inhibitor binding pockets, and molecular dynamics simulations using these models are providing insight into conformations involved in the substrate translocation cycle. With credible MAT models finally in hand, structure-based virtual screening for novel ligands is yielding lead compounds toward the development of new medications for psychostimulant dependence, attention deficit hyperactivity, depression, anxiety, schizophrenia, and other disorders associated with dopamine, norepinephrine, or serotonin dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAT:

dopamine transporter

GABA:

gamma-aminobutyric acid

MAT:

monoamine transporter

MD:

molecular dynamics

MSA:

multiple sequence alignment

NET:

norepinephrine transporter

NRI:

norepinephrine reuptake inhibitor

NSS:

neurotransmitter/sodium symporter

SERT:

serotonin transporter

SSRI:

selective serotonin reuptake inhibitor

TCA:

tricyclic antidepressant

TM:

transmembrane

VS:

virtual screening

REFERENCES

  1. Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63(3):585–640.

    Article  PubMed  CAS  Google Scholar 

  2. Hahn MK, Blakely RD. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenomics J. 2002;2:217–35.

    Article  PubMed  CAS  Google Scholar 

  3. Heinz A, Mann K, Weinberger DR, Goldman D. Serotonergic dysfunction, negative mood states, and response to alcohol. Alcohol Clin Exp Res. 2001;25(4):487–95.

    Article  PubMed  CAS  Google Scholar 

  4. Klimek V, Stockmeier C, Overholser J, Meltzer HY, Kalka S, Dilley G, et al. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci. 1997;17(21):8451–8.

    PubMed  CAS  Google Scholar 

  5. Miller GM, De La Garza II R, Novak MA, Madras BK. Single nucleotide polymorphisms distinguish multiple dopamine transporter alleles in primates: Implications for association with attention deficit hyperactivity disorder and other neuropsychiatric disorders. Mol Psychiatry. 2001;6(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  6. Ozaki N, Goldman D, Kaye WH, Greenberg BD, Lappalainen J, Rudnick G, et al. Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Mol Psychiatry. 2003;8:933–6.

    Article  PubMed  CAS  Google Scholar 

  7. Robertson D, Flattem N, Tellioglu T, Carson R, Garland E, Shannon JR, et al. Familial orthostatic tachycardia due to norepinephrine transporter deficiency. Ann N Y Acad Sci. 2001;940:527–43.

    Article  PubMed  CAS  Google Scholar 

  8. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature. 2005;437(7056):215–23.

    Article  PubMed  CAS  Google Scholar 

  9. Brust A, Palant E, Croker DE, Colless B, Drinkwater R, Patterson B, et al. χ-Conopeptide pharmacophore development: toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. J Med Chem. 2009;52(22):6991–7002.

    Article  PubMed  CAS  Google Scholar 

  10. Chen C, Dyck B, Fleck BA, Foster AC, Grey J, Jovic F, et al. Studies on the SAR and pharmacophore of milnacipran derivatives as monoamine transporter inhibitors. Bioorg Med Chem Lett. 2008;18(4):1346–9.

    Article  PubMed  CAS  Google Scholar 

  11. Enyedy IJ, Sakamuri S, Zaman WA, Johnson KM, Wang S. Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bioorg Med Chem Lett. 2003;13(3):513–7.

    Article  PubMed  CAS  Google Scholar 

  12. Enyedy IJ, Wang J, Zaman WA, Johnson KM, Wang S. Discovery of substituted 3,4-diphenyl-thiazoles as a novel class of monoamine transporter inhibitors through 3-D pharmacophore search using a new pharmacophore model derived from mazindol. Bioorg Med Chem Lett. 2002;12:1775–8.

    Article  PubMed  CAS  Google Scholar 

  13. Enyedy IJ, Zaman WA, Sakamuri S, Kozikowski AP, Johnson KM, Wang S. Pharmacophore-based discovery of 3,4-disubstituted pyrrolidines as a novel class of monoamine transporter inhibitors. Bioorg Med Chem Lett. 2001;11(9):1113–8.

    Article  PubMed  CAS  Google Scholar 

  14. Macdougall IJ, Griffith R. Pharmacophore design and database searching for selective monoamine neurotransmitter transporter ligands. J Mol Graph Model. 2008;26(7):1113–24.

    Article  PubMed  CAS  Google Scholar 

  15. Pratuangdejkul J, Schneider B, Jaudon P, Rosilio V, Baudoin E, Loric S, et al. Definition of an uptake pharmacophore of the serotonin transporter through 3D-QSAR analysis. Curr Med Chem. 2005;12(20):2393–410.

    Article  PubMed  CAS  Google Scholar 

  16. Pratuangdejkul J, Schneider B, Launay JM, Kellermann O, Manivet P. Computational approaches for the study of serotonin and its membrane transporter SERT: implications for drug design in neurological sciences. Curr Med Chem. 2008;15(30):3214–27.

    Article  PubMed  CAS  Google Scholar 

  17. Wang S, Sakamuri S, Enyedy IJ, Kozikowski AP, Deschaux O, Bandyopadhyay BC, et al. Discovery of a novel dopamine transporter inhibitor, 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone, as a potential cocaine antagonist through 3D-database pharmacophore searching. Molecular modeling, structure-activity relationships, and behavioral pharmacological studies. J Med Chem. 2000;43(3):351–60.

    Article  PubMed  CAS  Google Scholar 

  18. Edvardsen O, Dahl SG. A putative model of the dopamine transporter. Brain Res Mol Brain Res. 1994;27:265–74.

    Article  PubMed  CAS  Google Scholar 

  19. Ravna A, Edvardsen O. A putative three-dimensional arrangement of the human serotonin transporter transmembrane helices: a tool to aid experimental studies. J Mol Graph Model. 2001;20:133–44.

    Article  PubMed  CAS  Google Scholar 

  20. Ravna A, Sylte I, Kristiansen K, Dahl S. Putative drug binding conformations of monoamine transporters. Bioorg Med Chem. 2006;14(3):666–75.

    Article  PubMed  CAS  Google Scholar 

  21. Ravna AW. Three-dimensional models of neurotransmitter transporters and their interactions with cocaine and S-citalopram. World J Biol Psychiatry. 2006;7:99–109.

    Article  PubMed  Google Scholar 

  22. Ravna AW, Sylte I, Dahl SG. Molecular model of the neural dopamine transporter. J Comput Aided Mol Des. 2003;17:367–82.

    Article  PubMed  CAS  Google Scholar 

  23. Guan L, Kaback HR. Lessons from lactose permease. Annu Rev Biophys Biomol Struct. 2006;35:67–91.

    Article  PubMed  CAS  Google Scholar 

  24. Beuming T, Shi L, Javitch JA, Weinstein H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharm. 2006;70(5):1630–42.

    Article  CAS  Google Scholar 

  25. Rudnick G. Cytoplasmic permeation pathway of neurotransmitter transporters. Biochemistry. 2011;50(35):7462–75.

    Article  PubMed  CAS  Google Scholar 

  26. Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA. The mechanism of a neurotransmitter:sodium symporter-inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell. 2008;30(6):667–77.

    Article  PubMed  CAS  Google Scholar 

  27. Koldso H, Noer P, Grouleff J, Autzen HE, Sinning S, Schiott B. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na ion release. PLoS Comput Biol. 2011;7(10). doi:10.1371/journal.pcbi.1002246.

  28. Huang X, Gu HH, Zhan CG. Mechanism for cocaine blocking the transport of dopamine: insights from molecular modeling and dynamics simulations. J Phys Chem. 2009;113:15057–66.

    Article  CAS  Google Scholar 

  29. Zhou Z, Zhen J, Karpowich NK, Law CJ, Reith ME, Wang DN. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat Struct Mol Biol. 2009;16(6):652–7.

    Article  PubMed  CAS  Google Scholar 

  30. Paczkowski FA, Sharpe IA, Dutertre S, Lewis RJ. X-conotoxin and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model. J Biol Chem. 2007;282(24):17837–44.

    Article  PubMed  CAS  Google Scholar 

  31. Jorgensen AM, Tagmose L, Bogeso KP, Peters GH. Molecular dynamics simulations of Na+/Cl(−)-dependent neurotransmitter transporters in a membrane-aqueous system. ChemMedChem. 2007;2(6):827–40.

    Article  PubMed  Google Scholar 

  32. Andersen J, Olsen L, Hansen KB, Taboureau O, Jorgensen FS, Jorgensen AM, et al. Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J Biol Chem. 2010;285(3):2051–63.

    Article  PubMed  CAS  Google Scholar 

  33. Andersen J, Taboureau O, Hansen KB, Olsen L, Egebjerg J, Stromgaard K, et al. Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem. 2009;284(15):10276–84.

    Article  PubMed  CAS  Google Scholar 

  34. Andersen J, Stuhr-Hansen N, Zachariassen L, Toubro S, Hansen SM, Eildal JN, et al. Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proc Natl Acad Sci U S A. 2011;108(29):12137–42.

    Article  PubMed  CAS  Google Scholar 

  35. Kaufmann KW, Dawson ES, Henry LK, Field JR, Blakely RD, Meiler J. Structural determinants of species-selective substrate recognition in human and Drosophila serotonin transporters revealed through computational docking studies. Proteins. 2009;74(3):630–42.

    Article  PubMed  CAS  Google Scholar 

  36. Henry LK, Iwamoto H, Field JR, Kaufmann K, Dawson ES, Jacobs MT, et al. A conserved asparagine residue in transmembrane segment 1 (TM1) of serotonin transporter dictates chloride-coupled neurotransmitter transport. J Biol Chem. 2011;286(35):30823–36.

    Article  PubMed  CAS  Google Scholar 

  37. Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, et al. Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem. 2001;44(25):4313–24.

    Article  PubMed  CAS  Google Scholar 

  38. Xhaard H, Backstrom V, Denessiouk K, Johnson MS. Coordination of Na(+) by monoamine ligands in dopamine, norepinephrine, and serotonin transporters. J Chem Inf Model. 2008;48(7):1423–37.

    Article  PubMed  CAS  Google Scholar 

  39. Wang W, Sonders MS, Ukairo OT, Scott H, Kloetzel MK, Surratt CK. Dissociation of high-affinity cocaine analog binding and dopamine uptake inhibition at the dopamine transporter. Mol Pharmacol. 2003;64(2):430–9.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou Z, Zhen J, Karpowich NK, Goetz RM, Law CJ, Reith MEA, et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science. 2007;317(5843):1390–3.

    Article  PubMed  CAS  Google Scholar 

  41. Mitchell P. Osmochemistry of solute translocation. Res Microbiol. 1990;141:286–9.

    Article  PubMed  CAS  Google Scholar 

  42. Gabrielsen M, Ravna AW, Kristiansen K, Sylte I. Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations. J Mol Model. 2011. doi:10.1007/s00894-011-1133-1.

  43. Quick M, Lund Winther A-M, Shi L, Nissen P, Weinstein H, Javitch JA. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc Natl Acad Sci U S A. 2009;106(14):5563–8.

    Article  PubMed  CAS  Google Scholar 

  44. Singh SK, Yamashita A, Gouaux E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature. 2007;448(7156):952–6.

    Article  PubMed  CAS  Google Scholar 

  45. Forrest LR, Tavoulari S, Zhang YW, Rudnick G, Honig B. Identification of a chloride ion binding site in Na+/Cl -dependent transporters. Proc Natl Acad Sci U S A. 2007;104(31):12761–6.

    Article  PubMed  CAS  Google Scholar 

  46. Tavoulari S, Rizwan AN, Forrest LR, Rudnick G. Reconstructing a chloride-binding site in a bacterial neurotransmitter transporter homologue. J Biol Chem. 2011;286(4):2834–42.

    Article  PubMed  CAS  Google Scholar 

  47. Sucic S, Dallinger S, Zdrazil B, Weissensteiner R, Jorgensen TN, Holy M, et al. The N terminus of monoamine transporters is a lever required for the action of amphetamines. J Biol Chem. 2010;285(14):10924–38.

    Article  PubMed  CAS  Google Scholar 

  48. Manepalli S, Geffert LM, Surratt CK, Madura JD. Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. J Chem Inf Model. 2011;51(9):2417–26.

    Article  PubMed  CAS  Google Scholar 

  49. Irwin JJ, Shoichet BK. ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45(1):177–82.

    Article  PubMed  CAS  Google Scholar 

  50. Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, et al. Struture-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc Natl Acad Sci U S A. 2011;108(38):15810–5.

    Article  PubMed  CAS  Google Scholar 

  51. Huang X, Zhan C. How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J. 2007;93(10):3627–39.

    Article  PubMed  CAS  Google Scholar 

  52. Indarte M, Madura JD, Surratt CK. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuTAa leucine transporter as a template. Proteins Struct Funct Bioinforma. 2008;70(3):1033–46.

    Article  CAS  Google Scholar 

  53. Zhao Y, Terry DS, Shi L, Quick M, Weinstein H, Blanchard SC, et al. Substrate-modulated gating dynamics in a Na(+)-coupled neurotransmitter transporter homologue. Nature. 2011;474(7349):109–13.

    Article  PubMed  CAS  Google Scholar 

  54. Piscitelli CL, Krishnamurthy H, Gouaux E. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature. 2010;468(7327):1129–32.

    Article  PubMed  CAS  Google Scholar 

  55. Hill ER, Huang X, Zhan CG, Carroll FI, Gu HH. Interaction of tyrosine 151 in norepinephrine transporter with the 2-β group of cocaine analog RTI-113. Neuropharmacology. 2011;61(1–2):112–20.

    Article  PubMed  CAS  Google Scholar 

  56. Singh SK, Piscitelli CL, Yamashita A, Gouaux E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science. 2008;322(5908):1655–61.

    Article  PubMed  CAS  Google Scholar 

  57. Ravna AW, Jaronczyk M, Sylte I. A homology model of SERT based on the LeuT(Aa) template. Bioorg Med Chem Lett. 2006;16(21):5594–7.

    Article  PubMed  CAS  Google Scholar 

  58. Henry LK, Defelice LJ, Blakely RD. Getting the message across: a recent transporter structure shows the way. Neuron. 2006;49(6):791–6.

    Article  PubMed  CAS  Google Scholar 

  59. Celik L, Sinning S, Severinsen K, Hansen CG, Moller MS, Bols M, et al. Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. J Am Chem Soc. 2008;130(12):3853–65.

    Article  PubMed  CAS  Google Scholar 

  60. Jorgensen AM, Tagmose L, Topiol S, Sabio M, Gundertofte K, Bogeso KP, et al. Homology modeling of the serotonin transporter: insights into the primary escitalopram-binding site. ChemMedChem. 2007;2(6):815–26.

    Article  PubMed  Google Scholar 

  61. Indarte M, Madura JD, Surratt CK, editors. Comparative molecular modeling of the dopamine transporter using the leucine transporter LeuTAa as a template. Atlanta: Society for Neuroscience; 2006.

    Google Scholar 

  62. Beuming T, Kniazeff J, Bergmann ML, Shi L, Gracia L, Raniszewska K, et al. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat Neurosci. 2008;11(7):780–9.

    Article  PubMed  CAS  Google Scholar 

  63. Bisgaard H, Larsen MA, Mazier S, Beuming T, Newman AH, Weinstein H, et al. The binding sites for benztropines and dopamine in the dopamine transporter overlap. Neuropharmacology. 2011;60(1):182–90.

    Article  PubMed  CAS  Google Scholar 

  64. Schmitt KC, Mamidyala S, Biswas S, Dutta AK, Reith ME. Bivalent phenethylamines as novel dopamine transporter inhibitors: evidence for multiple substrate-binding sites in a single transporter. J Neurochem. 2010;112(6):1605–18.

    Article  PubMed  CAS  Google Scholar 

  65. Ravna AW, Sylte I, Dahl SG. Structure and localisation of drug binding sites on neurotransmitter transporters. J Mol Model. 2009;15(10):1155–64.

    Article  PubMed  CAS  Google Scholar 

  66. Sarker S, Weissensteiner R, Steiner I, Sitte HH, Ecker GF, Freissmuth M, et al. The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol. 2010;78(6):1026–35.

    Article  PubMed  CAS  Google Scholar 

  67. Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI. Mechanism of chloride interaction with neurotransmitter: sodium symporters. Nature. 2007;449(7163):726–30.

    Article  PubMed  CAS  Google Scholar 

  68. Gedeon PC, Indarte M, Surratt CK, Madura JD. Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer. Proteins Struct Funct Bioinforma. 2010;78(4):797–811.

    Article  CAS  Google Scholar 

  69. Shan J, Javitch JA, Shi L, Weinstein H. The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter. PLoS One. 2011;6(1). doi:10.1371/journal.pone.0016350.

  70. Guptaroy B, Zhang M, Bowton E, Binda F, Shi L, Weinstein H, et al. A juxtamembrane mutation in the N terminus of the dopamine transporter induces preference for an inward-facing conformation. Mol Pharmacol. 2009;75(3):514–24.

    Article  PubMed  CAS  Google Scholar 

  71. Krishnamurthy H, Gouaux E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature. 2012;481(7382):469–74.

    Article  PubMed  CAS  Google Scholar 

  72. Jaronczyk M, Chilmonczyk Z, Mazurek AP, Nowak G, Ravna AW, Kristiansen K, et al. The molecular interactions of buspirone analogues with the serotonin transporter. Bioorg Med Chem. 2008;16(20):9283–94.

    Article  PubMed  CAS  Google Scholar 

  73. Wenthur CJ, Rodriguez GJ, Kuntz CP, Barker EL. Conformational flexibility of transmembrane helix VII of the human serotonin transporter impacts ion dependence and transport. Biochem Pharmacol. 2010;80(9):1418–26.

    Article  PubMed  CAS  Google Scholar 

  74. Indarte M, Liu Y, Madura JD, Surratt CK. Receptor-based discovery of a plasmalemmal monoamine transporter inhibitor via high throughput docking and pharmacophore modeling. ACS Chem Neurosci. 2010;1(3):223–33.

    Article  PubMed  CAS  Google Scholar 

  75. Nolan TL, Lapinsky DJ, Talbot JN, Indarte M, Liu Y, Manepalli S, et al. Identification of a novel selective serotonin reuptake inhibitor by coupling monoamine transporter-based virtual screening and rational molecular hybridization. ACS Chem Neurosci. 2011;2(9):544–52.

    Article  PubMed  CAS  Google Scholar 

  76. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, et al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 2008;36:W423–6.

    Article  PubMed  CAS  Google Scholar 

  77. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300(5626):1763–7.

    Article  PubMed  CAS  Google Scholar 

  78. Enyedy IJ, Lee S-L, Kuo AH, Dickson RB, Lin C-Y, Wang S. Structure-based approach for the discovery of Bis-benzamidines as novel inhibitors of matriptase. J Med Chem. 2001;44(9):1349–55.

    Article  PubMed  CAS  Google Scholar 

  79. Li R, Chen X, Gong B, Selzer PM, Li Z, Davidson E, et al. Structure-based design of parasitic protease inhibitors. Bioorg Med Chem. 1996;4(9):1421–7.

    Article  PubMed  CAS  Google Scholar 

  80. Que X, Brinen LS, Perkins P, Herdman S, Hirata K, Torian BE, et al. Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica. Mol Biochem Parasitol. 2002;119(1):23–32.

    Article  PubMed  CAS  Google Scholar 

  81. Rajnarayanan RV, Dakshanamurthy S, Pattabiraman N. “Teaching old drugs to kill new bugs”: structure-based discovery of anti-SARS drugs. Biochem Biophys Res Commun. 2004;321(2):370–8.

    Article  PubMed  CAS  Google Scholar 

  82. Selzer PM, Chen X, Chan VJ, Cheng M, Kenyon GL, Kuntz ID, et al. Leishmania major: molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors. Exp Parasitol. 1997;87(3):212–21.

    Article  PubMed  CAS  Google Scholar 

  83. Zuccotto F, Zvelebil M, Brun R, Chowdhury SF, Di Lucrezia R, Leal I, et al. Novel inhibitors of Trypanosoma cruzi dihydrofolate reductase. Eur J Med Chem. 2001;36(5):395–405.

    Article  PubMed  CAS  Google Scholar 

  84. Schlessinger A, Matsson P, Shima JE, Pieper U, Yee SW, Kelly L, et al. Comparison of human solute carriers. Prot Sci. 2010;19(3):412–28.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Institute on Drug Abuse under award DA026530 (C.K.S.) and the National Institutes of Health, National Science Foundation, Department of Defense, and the U.S. Department of Education under awards DA27806 (J.D.M.), CHE-1005145(REU/ASSURE), CHE-0723109(MRI), and P116Z080180 (J.D.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy L. Nolan.

Additional information

Guest Editor: Xiang-Qun Xie

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Beuming et al ( 24). primary amino acid sequence alignment of LeuT Aa with the human MATs. N- and C-terminal tails were not used for model building and are not shown. Amino acid residue position (red numbers) is indicated at the beginning and end of each row; LeuT residue increments of 10 (blue numbers) are indicated above the row; gaps in alignment are shown as dots. Identical (blue) and similar (yellow) aligned residues are highlighted. Secondary structural features for transmembrane domains (TM), intracellular loops (IL), extracellular loops (EL) and beta-strands (B) are displayed above the sequence rows. Charged residues of the extracellular (blue spheres) and intracellular (orange spheres) gates and residues of the hydrophobic extracellular gate (red stars) are noted below the sequence rows. (JPEG 2383 kb)

High resolution image file (EPS 594 kb)

Supplementary Figure 2

SERT (green) embedded within a POPE lipid bilayer (van der Waals spheres). Hydrocarbon tails (gray) of the phospholipids are oriented toward the center of the cell membrane, arranged tail-to-tail; the polar head groups containing phosphorous (pink), oxygen (red) and nitrogen (blue) atoms are oriented toward the hydrophilic borders of the membrane. The translocation pore is defined by the primary (S1, yellow) and secondary (S2, cyan) substrate binding pockets and are displayed as surfaces. Ions and water molecules are hidden for the sake of clarity, as is the front portion of the lipid bilayer. (JPEG 2390 kb)

High resolution image file (EPS 760 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manepalli, S., Surratt, C.K., Madura, J.D. et al. Monoamine Transporter Structure, Function, Dynamics, and Drug Discovery: A Computational Perspective. AAPS J 14, 820–831 (2012). https://doi.org/10.1208/s12248-012-9391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9391-0

KEY WORDS

Navigation