Skip to main content

Advertisement

Log in

Surface Energy of Microcrystalline Cellulose Determined by Capillary Intrusion and Inverse Gas Chromatography

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Surface energy data for samples of microcrystalline cellulose have been obtained using two techniques: capillary intrusion and inverse gas chromatography. Ten microcrystalline cellulose materials, studied using capillary intrusion, showed significant differences in the measured surface energetics (in terms of total surface energy and the acid–base characteristics of the cellulose surface), with variations noted between the seven different manufacturers who produced the microcrystalline cellulose samples. The surface energy data from capillary intrusion was similar to data obtained using inverse gas chromatography with the column maintained at 44% relative humidity for the three samples of microcrystalline cellulose studied. This suggests that capillary intrusion may be a suitable method to study the surface energy of pharmaceutical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A plot of cosθ against liquid surface tension for at least four liquids is extrapolated to cosθ = 1, which is recorded as the solid surface free energy, i.e. the surface tension of a liquid which will just perfectly wet the solid.

References

  1. R. J. Good. Contact angle, wetting, and adhesion—a critical review. J. Adhes. Sci. Technol. 6(12):1269–1302 (1992).

    Article  CAS  Google Scholar 

  2. C. M. Lehr, J. A. Bouwstra, H. E. Bodde, and H. E. Junginger. A surface-energy analysis of mucoadhesion—contact-angle measurements on polycarbophil and pig intestinal-mucosa in physiologically relevant fluids. Pharm. Res. 9(1):70–75 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. C. M. Lehr, H. E. Bodde, J. A. Bouwstra, and H. E. Junginger. A surface-energy analysis of mucoadhesion.2. prediction of mucoadhesive performance by spreading coefficients. Eur. J. Pharm. Sci. 1(1):19–30 (1993).

    Article  Google Scholar 

  4. E. Oh, and P. E. Luner. Surface free energy of ethylcellulose films and the influence of plasticizers. Int. J. Pharm. 188(2):03–219 (1999).

    Article  Google Scholar 

  5. G. Buckton. The estimation and application of surface-energy data for powdered systems. Drug Dev. Ind. Pharm. 18(11–12):1149–1167 (1992).

    Article  CAS  Google Scholar 

  6. B. C. Hancock, P. York, and R. C. Rowe. The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 148(1):1–21 (1997).

    Article  CAS  Google Scholar 

  7. F. Dourado, F. M. Gama, E. Chibowski, and M. Mota. Characterization of cellulose surface free energy. Drug Dev. Ind. Pharm. 12(10):1081–1090 (1998).

    CAS  Google Scholar 

  8. X. Pepin, S. Blanchon, and G. Couarraze. Powder dynamic contact angle data in the pharmaceutical industry. Pharm. Sci. Technol. Today. 2(3):111–118 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. I. J. Hardy, and W. G. Cook. Predictive and correlative techniques for the design, optimisation and manufacture of solid dosage forms. J. Pharm. Pharmacol. 55(1):3–18 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. N. M. Ahfat, G. Buckton, R. Burrows, and M. D. Ticehurst. Predicting mixing performance using surface energy measurements. Int. J. Pharm. 156(1):89–95 (1997).

    Article  CAS  Google Scholar 

  11. R. C. Rowe. Correlation between predicted binder spreading coefficients and measured granule and tablet properties in the granulation of paracetamol. Int. J. Pharm. 58(3):209–213 (1990).

    Article  CAS  Google Scholar 

  12. O. Planinšek, R. Pišek, A. Trojak, and S. Srcic. The utilization of surface free-energy parameters for the selection of a suitable binder in fluidized bed granulation. Int. J. Pharm. 207(1–2):77–88 (2000).

    Article  PubMed  Google Scholar 

  13. P. M. Young, S. Edge, D. F. Steele, J. N. Staniforth, R. Price. Dynamic vapour sorption properties of sodium starch glycolate disintegrants. Pharm. Dev. Technol. 10(2):249–259 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. G. Zografi, and M. J. Kontny. The interactions of water with cellulose derived and starch derived pharmaceutical excipients. Pharm. Res. 3(4):187–194 (1986).

    Article  Google Scholar 

  15. G. Zografi, M. J. Kontny, A. Y. S. Yang, and G. S. Brenner. Surface area and water vapor sorption of microcrystalline cellulose. Int. J. Pharm. 18(1–2):99–116 (1984).

    Article  CAS  Google Scholar 

  16. N. D. Lang, and W. Kohn. Theory of metal surfaces—charge density and surface energy. Phys. Rev., B. 1(12):4555–4568 (1970).

    Article  Google Scholar 

  17. B. Lawn. Fracture of brittle solids. Cambridge University Press: 1993; p 378.

  18. P. N. Jacob, and J. C. Berg. Acid-base surface-energy characterization of microcrystalline cellulose and 2 wood pulp fiber types using inverse gas-chromatography. Langmuir. 10(9):3086–3093 (1994).

    Article  CAS  Google Scholar 

  19. M. Gindl, G. Sinn, W. Gindl, A. Reiterer, and S. Tschegg. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf., A Physicochem. Eng. Asp. 181(1–3):279–287 (2001).

    Article  CAS  Google Scholar 

  20. P. K. Sharma, and K. H. Rao. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv. Colloid Interface Sci. 98(3):341–463 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. C. D. Volpe, and S. Siboni. Analysis of dynamic contact angle on discoidal samples measured by the Wilhelmy method. J. Adhes. Sci. Technol. 12(2):197–224 (1998).

    Article  Google Scholar 

  22. O. Planinšek, A. Trojak, and S. Srcic. The dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurements. Int. J. Pharm. 221(1–2):211–217 (2001).

    Article  PubMed  Google Scholar 

  23. V. Kumar, and S. H. Kothari. Effect of compressional force on the crystallinity of directly compressible cellulose excipients. Int. J. Pharm. 177(2):173–182 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. S. Edge, D. F. Steele, M. J. Tobyn, J. N. Staniforth, and A. Chen. Directional bonding in compacted microcrystalline cellulose. Drug Dev. Ind. Pharm. 27(7):613–621 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. H. Khan, J. T. Fell, and G. S. Macleod. The influence of additives on the spreading coefficient and adhesion of a film coating formulation to a model tablet surface. Int. J. Pharm. 227(1–2):113–119 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. G. Buckton, and J. M. Newton. Assessment of the wettability of powders by the use of compressed powder discs. Powder Technol. 46:201–208 (1986).

    Article  CAS  Google Scholar 

  27. G. Buckton. Assessment of the wettability of pharmaceutical powders. In K. L. Mittal (ed.), Contact Angle, Wettability and Adhesion, 437–451 (1993).

  28. T. R. Desai, D. Q. Li, W. H. Finlay, and J. P. Wong. Determination of surface free energy of interactive dry powder liposome formulations using capillary penetration technique. Colloids Surf., B Biointerfaces. 22(2):107–113 (2001).

    Article  CAS  Google Scholar 

  29. P. K. Sharma, K. H. Rao, K. S. E. Forssberg, and K. A. Natarajan. Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals. Int. J. Miner. Process. 62(1–4):3–25 (2001).

    Article  CAS  Google Scholar 

  30. C. J. van Oss. Acid–base interfacial interactions in aqueous media. Colloids Surf., A Physicochem. Eng. Asp. 78:1–49 (1993).

    Article  Google Scholar 

  31. M. de Meijer, S. Haemers, W. Cobben, and H. Militz. Surface energy determinations of wood: Comparison of methods and wood species. Langmuir. 16(24):9352–9359 (2000).

    Article  Google Scholar 

  32. J. Schultz, L. Lavielle, and C. Martin. The role of the interface in carbon-fiber epoxy composites. J. Adhes. 23(1):45–60 (1987).

    Article  CAS  Google Scholar 

  33. V. Gutmann. The Donor-acceptor approach to molecular interactions, Plenum, New York, 1978.

    Google Scholar 

  34. F. L. Riddle, and F. M. Fowkes. Spectral shifts in acid–base chemistry.1. vanderwaals contributions to acceptor numbers. J. Am. Chem. Soc. 112(9):3259–3264 (1990).

    Article  CAS  Google Scholar 

  35. D. Cline, and R. Dalby. Predicting the quality of powders for inhalation from surface energy and area. Pharm. Res. 19(9):1274–1277 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. C. J. Van Oss. Acid–base interfacial interactions in aqueous-media. Colloids Surf., A Physicochem. Eng. Asp. 78:1–49 (1993).

    Article  Google Scholar 

  37. C. J. Van Oss, R. F. Giese, and W. Wu. On the predominant electron-donicity of polar solid surfaces. J. Adhes. 63(1–3):71–88 (1997).

    Google Scholar 

  38. W. Wu, R. F. Giese, and C. J. VanOss. Change in surface properties of solids caused by grinding. Powder Technol. 89(2):129–132 (1996).

    Article  CAS  Google Scholar 

  39. M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini. Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose. 2(3):145–157 (1995).

    Article  CAS  Google Scholar 

  40. H. A. Krässig. Cellulose. structure, accessibility and reactivity, 11:Gordon and Breach Science, Amsterdam, 1993, p. 376.

    Google Scholar 

  41. M. A. Tshabalala. Determination of the acid–base characteristics of lignocellulosic surfaces by inverse gas chromatography. J. Appl. Polym. Sci. 65(5):1013–1020 (1997).

    Article  CAS  Google Scholar 

  42. M. D. Ticehurst, R. C. Rowe, and P. York. Determination of the surface properties of 2 batches of salbutamol sulfate by inverse gas chromatography. Int. J. Pharm. 111(3):241–249 (1994).

    Article  CAS  Google Scholar 

  43. M. G. Vachon, and D. Chulia. The use of energy indices in estimating powder compaction functionality of mixtures in pharmaceutical tableting. Int. J. Pharm. 177(2):183–200 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. B. E. Sherwood, and J. W. Becker. A new class of high functionality excipients: silicified microcrystalline cellulose. Pharm. technol. 22:78–88 (1998).

    CAS  Google Scholar 

  45. M. T. Guo, F. X. Muller, and L. L. Augsburger. Evaluation of the plug formation process of silicified microcrystalline cellulose. Int. J. Pharm. 233(1–2):99–109 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. S. Edge, D. F. Steele, A. S. Chen, M. J. Tobyn, and J. N. Staniforth. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int. J. Pharm. 200(1):67–72 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. D. F. Steele, M. Tobyn, S. Edge, A. S. Chen, and J. N. Staniforth. Physicochemical and mechanical evaluation of a novel high density grade of silicified microcrystalline cellulose. Drug Dev. Ind. Pharm. 30(1):103–109 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. G. Czeremuszkin, P. Mukhopadhyay, and S. Sapieha. Elution behavior of chemically different probes on the evaluation of surface properties of cellulose by inverse gas chromatography. J. Colloid Interface Sci. 194(1):127–137 (1997).

    Article  PubMed  CAS  Google Scholar 

  49. J. S. Wu, H. O. Ho, and M. T. Sheu. A statistical design to evaluate the influence of manufacturing factors and material properties on the mechanical performances of microcrystalline cellulose. Powder Technol. 118(3):219–228 (2001).

    Article  CAS  Google Scholar 

  50. R. O. Williams, M. Sriwongjanya, and M. K. Barron. Compaction properties of microcrystalline cellulose using tableting indices. Drug Dev. Ind. Pharm. 23(7):695–704 ( 1997).

    Article  CAS  Google Scholar 

  51. F. Podczeck, and P. Revesz. Evaluation of the properties of microcrystalline and microfine cellulose powders. Int. J. Pharm. 91(2–3):183–193 (1993).

    Article  CAS  Google Scholar 

  52. D. F. Steele, S. Edge, M. J. Tobyn, R. C. Moreton, and J. N. Staniforth. Adsorption of an amine drug onto microcrystalline cellulose and silicified microcrystalline cellulose samples. Drug Dev. Ind. Pharm. 29(4):475–487 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. S. Okada, H. Nakahara, and H. Isaka. Adsorption of drugs on microcrystalline cellulose suspended in aqueous-solutions. Chem. Pharm. Bull. 35(2):761–768 (1987).

    CAS  Google Scholar 

  54. R. C. Rowe, A. G. McKillop, and D. Bray. The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Int. J. Pharm. 101(1–2):169–172 (1994).

    Article  CAS  Google Scholar 

  55. M. Landin, R. Martinezpacheco, J. L. Gomezamoza, C. Souto, A. Concheiro, and R. C. Rowe. Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. Int. J. Pharm. 91(2–3):133–141 (1993).

    Article  CAS  Google Scholar 

  56. W. A. Zisman. Relationship of equilibrium contact angle to liquid and solid constitution. In F. M Fowkes (ed.), Contact Angle, Wettability and Adhesion 43:1–51 (1964).

  57. E. Papirer, E. Brendle, H. Balard, and C. Vergelati. Inverse gas chromatography investigation of the surface properties of cellulose. J. Adhes. Sci. Technol. 14(3):321–337 (2000).

    Article  CAS  Google Scholar 

  58. G. Garnier, and W. G. Glasser. Measurement of the surface free-energy of amorphous cellulose by alkane adsorption—a critical evaluation of inverse gas chromatography (IGC). J. Adhes. 46(1–4):165–180 (1994).

    Article  CAS  Google Scholar 

  59. H. P. Nguyen, N. T. Ho, M. Buchmann, and U. W. Kesselring. Experimentally optimized determination of the partial and total cohesion parameters of an insoluble polymer (Microcrystalline Cellulose) by gas solid chromatography. Int. j. pharm. 34(3):217–223 (1987).

    Article  Google Scholar 

  60. U. Weise. Hornification—mechanisms and terminology. Paperi ja Puu—Paper and Timber. 80(2):110–115 (1998).

    Google Scholar 

  61. K. Marshall, D. Sixsmith, and N. G. Stanley-Wood. Surface geometry of some microcrystalline celluloses. J. Pharm. Pharmacol. Suppl. 24:138P (1972).

    CAS  Google Scholar 

  62. A. P. Heiner, L. Kuutti, and O. Teleman. Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohydr. Res. 306(1–2):205–220 (1998).

    Article  CAS  Google Scholar 

  63. M. Jarvis. Chemistry—cellulose stacks up. Nature. 426(6967):611–612 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. J. M. Park, D. S. Kim, J. W. Kong, M. Kim, W. Kim, and I. S. Park. Interfacial adhesion and microfailure modes of electrodeposited carbon fiber/epoxy–PEI composites by microdroplet and surface wettability tests. J. Colloid Interface Sci. 249(1):62–77 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Frank Thielmann (Surface Measurement Systems Ltd., London) for providing the IGC data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Staniforth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steele, D.F., Moreton, R.C., Staniforth, J.N. et al. Surface Energy of Microcrystalline Cellulose Determined by Capillary Intrusion and Inverse Gas Chromatography. AAPS J 10, 494–503 (2008). https://doi.org/10.1208/s12248-008-9057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9057-0

Key words

Navigation