Skip to main content

Advertisement

Log in

Phytophospholipid Complex of Caffeic Acid: Development, In vitro Characterization, and In Vivo Investigation of Antihyperlipidemic and Hepatoprotective Action in Rats

  • Research Article
  • Theme: Formulation and Delivery of Natural Products
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Caffeic acid (CA), a hydroxycinnamic acid possessing a variety of pharmacological activities, has caused a growing interest for the treatment of hyperlipidemia and associated conditions. This work endeavored to develop a novel formulation of CA-Phospholipon® 90H complex (CA-PC) using a solvent evaporation method. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectrophotometry (FTIR), and powder X-ray powder diffraction (PXRD) was carried to confirm the formation of CA-PC. The CA-PC was functionally evaluated in terms of solubility, in vitro and ex vivo drug release, and in vivo bioavailability and efficacy studies. SEM, DSC, FTIR, and XRD studies indicated the physical interaction of CA with Phospholipon® 90H to form a complex. Dynamic light scattering (DLS) studies described particle size of 168 ± 3.9 nm with a monodisperse distribution (PDI 0.17) and a negative zeta-potential of − 16.6 ± 2.1 mV. The phospholipid complex significantly improved (4.2-fold) the solubility of CA. In vitro and ex vivo dissolution studies of the formulated CA-PC revealed a significantly higher release compared with the pure CA. The pharmacokinetic study of CA-PC in rats demonstrated a significant increase (4.79-fold) in oral bioavailability when compared with pure CA as well. Additionally, a significant improvement in serum lipid profile, serum liver biomarker enzyme levels and, restoration of hepatic tissue architecture to normal, in high-fat diet (HFD) induced hyperlipidemic model was obtained upon CA-PC administration when compared with pure CA. These findings indicated that CA-PC would serve as an effective and promising formulation for CA delivery with improved antihyperlipidemic and hepatoprotective activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dung TD, Day CH, Binh TV, Lin C-H, Hsu H-H, Su C-C, et al. PP2A mediates diosmin p53 activation to block HA22T cell proliferation and tumor growth in xenografted nude mice through PI3K–Akt–MDM2 signaling suppression. Food Chem Toxicol. 2012;50(5):1802–10.

    Article  CAS  PubMed  Google Scholar 

  2. Camarasa J, Escubedo E, Adzet T. Pharmacokinetics of caffeic acid in rats by a high-performance liquid chromatography method. J Pharm Biomed Anal. 1988;6(5):503–10.

    Article  CAS  PubMed  Google Scholar 

  3. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – a review. J Funct Foods. 2015;18:820–97.

    Article  CAS  Google Scholar 

  4. Gülçin İ. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology. 2006;217(2–3):213–20.

    Article  PubMed  Google Scholar 

  5. Fernandez MA, Garcia MD, Saenz MT. Antibacterial activity of the phenolic acids ractions of Scrophularia frutescens and Scrophularia sambucifolia. J Ethnopharmacol. 1996;53(1):11–4.

    Article  CAS  PubMed  Google Scholar 

  6. Murtaza G, Sajjad A, Mehmood Z, Shah SH, Siddiqi AR. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer. J Food Drug Anal. 2015;23(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kang NJ, Lee KW, Shin BJ, Jung SK, Hwang MK, Bode AM, et al. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis. 2009;30(2):321–30.

    Article  CAS  PubMed  Google Scholar 

  8. Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther. 2006;318(2):476–83.

    Article  CAS  PubMed  Google Scholar 

  9. Kim HM, Kim Y, Lee ES, Huh JH, Chung CH. Caffeic acid ameliorates hepatic steatosis and reduces ER stress in high fat diet–induced obese mice by regulating autophagy. Nutrition. 2018;55:63–70.

    Article  PubMed  Google Scholar 

  10. Bezerra RMN, Veiga LF, Caetano AC, Rosalen PL, Amaral MEC, Palanch AC, et al. Caffeic acid phenethyl ester reduces the activation of the nuclear factor κB pathway by high-fat diet-induced obesity in mice. Metabolism. 2012;61(11):1606–14.

    Article  CAS  PubMed  Google Scholar 

  11. Liao CC, Ou TT, Wu CH, Wang CJ. Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J Agric Food Chem. 2013;61(46):11082–8.

    Article  CAS  PubMed  Google Scholar 

  12. Fathi M, Mirlohi M, Varshosaz J, Madani G. Novel caffeic acid nanocarrier: production, characterization, and release modeling. J Nanomater. 2013;2013:1–9.

    Article  Google Scholar 

  13. Wang SJ, Zeng J, Yang BK, Zhong YM. Bioavailability of caffeic acid in rats and its absorption properties in the Caco-2 cell model. Pharm Biol. 2014;52(9):1150–7.

    Article  CAS  PubMed  Google Scholar 

  14. Shiozawa R, Inoue Y, Murata I, Kanamoto I. Effect of antioxidant activity of caffeic acid with cyclodextrins using ground mixture method. Asian J Pharm Sci. 2018;13(1):24–33.

    Article  PubMed  Google Scholar 

  15. Inoue Y, Suzuki K, Ezawa T, Murata I, Yokota M, Tokudome Y, et al. Examination of the physicochemical properties of caffeic acid complexed with γ-cyclodextrin. J Incl Phenom Macrocycl Chem. 2015;83(3):289–98.

    Article  CAS  Google Scholar 

  16. Pinho E, Soares G, Henriques M. Evaluation of antibacterial activity of caffeic acid encapsulated by β-cyclodextrins. J Microencapsul. 2015;32(8):804–10.

    Article  CAS  PubMed  Google Scholar 

  17. Garrido EMPJ, Cerqueira AS, Chavarria D, Silva T, Borges F, Garrido JMPJ. Microencapsulation of caffeic acid phenethyl ester and caffeic acid phenethyl amide by inclusion in hydroxypropyl-β-cyclodextrin. Food Chem. 2018;254:260–5.

    Article  CAS  PubMed  Google Scholar 

  18. Kfoury M, Geagea C, Ruellan S, Greige-Gerges H, Fourmentin S. Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chem. 2019;278:163–9.

    Article  CAS  PubMed  Google Scholar 

  19. Katuwavila NP, Perera ADL, Karunaratne V, Amaratunga GAJ, Karunaratne D. Improved delivery of caffeic acid through liposomal encapsulation. J Nanomater. 2016;2016:1–7.

    Google Scholar 

  20. Mehtap Kutlu H, Genc L, Guney G. The impact of caffeic acid loaded solid lipid nanoparticles on cancer treatment. Curr Nanosci. 2013;9(6):698–703.

    Article  Google Scholar 

  21. Choi K-H, Nam KC, Lee S-Y, Cho G, Jung J-S, Kim H-J, et al. Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized ZnO nanoparticles. Nanomaterials. 2017;7(6):148.

    Article  PubMed Central  Google Scholar 

  22. Lin Q, Huang H, Chen L, Shi G. Synthesis of caffeic acid coated silver nanoparticles for the treatment of osteoarthritis. Biomed Res. 2017;28(3):1276–9.

  23. Seo YS, Ahn E-Y, Park J, Kim TY, Hong JE, Kim K, et al. Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Res Lett. 2017;12(1):7–18.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Citernesi U, Sciacchitano M. Phospholipid/active ingredient complexes. Cosmet Toil. 1995;110(11):57–68.

    CAS  Google Scholar 

  25. Bhattacharya S. Phytosomes: emerging strategy in delivery of herbal drugs and nutraceuticals. Pharma Times. 2009;41(3):9–12.

  26. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, et al. A comprehensive classification system for lipids. Eur J Lipid Sci Technol. 2005;107(5):337–64.

    Article  CAS  Google Scholar 

  27. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J Pharm Pharmacol. 2006;58(9):1227–33.

    Article  CAS  PubMed  Google Scholar 

  28. Han YM, Yan D, Yuan HL. Study on bioavilability of oxymatrine-phospholipid complex in rats. Zhongguo Zhong Yao Za Zhi. 2007;32(23):2508–10.

    CAS  PubMed  Google Scholar 

  29. Maiti K, Mukherjee K, Gantait A, Ahamed HN, Saha BP, Mukherjee PK. Enhanced therapeutic benefit of quercetinphospholipid complex in carbon tetrachloride-induced acute liver injury in rats: a comparative study. Iran J Pharmacol Ther. 2005;4(2):84–90.

    CAS  Google Scholar 

  30. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63.

    Article  CAS  PubMed  Google Scholar 

  31. Sikarwar MS, Sharma S, Jain AK, Parial SD. Preparation, characterization and evaluation of marsupsin–phospholipid complex. AAPS PharmSciTech. 2008;9(1):129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naik SR, Pilgaonkar VW, Panda VS. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain. Phytother Res. 2006;20(11):1013–6.

    Article  PubMed  Google Scholar 

  33. Zhou C, Xia X, Liu Y, Li L. The preparation of a complex of insulin–phospholipids and their interaction mechanism. J Pept Sci. 2012;18(9):541–8.

    Article  CAS  PubMed  Google Scholar 

  34. Hou Z, Wei H, Wang Q, Sun Q, Zhou C, Zhan C, et al. New method to prepare mitomycin C loaded PLA-nanoparticles with high drug entrapment efficiency. Nanoscale Res Lett. 2009;4(7):732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhattacharyya S, Majhi S, Saha BP, Mukherjee PK. Chlorogenic acid–phospholipid complex improve protection against UVA induced oxidative stress. J Photochem Photobiol B Biol. 2014;130:293–8.

    Article  CAS  Google Scholar 

  36. Pathan RA, Bhandari U. Preparation & characterization of embelin–phospholipid complex as effective drug delivery tool. J Incl Phenom Macrocycl Chem. 2011;69(1–2):139–47.

    Article  CAS  Google Scholar 

  37. Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J Colloid Interface Sci. 2003;261(2):402–10.

    Article  CAS  PubMed  Google Scholar 

  38. Saoji SD, Raut NA, Dhore PW, Borkar CD, Popielarczyk M, Dave VS. Preparation and evaluation of phospholipid-based complex of standardized centella extract (SCE) for the enhanced delivery of phytoconstituents. AAPS J. 2016;18(1):102–14.

    Article  CAS  PubMed  Google Scholar 

  39. Singh D, Rawat MSM, Semalty A, Semalty M. Chrysophanol–phospholipid complex. J Therm Anal Calorim. 2013;111(3):2069–77.

    Article  CAS  Google Scholar 

  40. Gurunath S, Nanjwade BK, Patila PA. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs. Saudi Pharm J. 2014;22(3):246–57.

    Article  CAS  PubMed  Google Scholar 

  41. Suvarna VM, Sangave PC. HPLC estimation, Ex vivo Everted sac permeability and In Vivo pharmacokinetic studies of Darunavir. J Chromatogr Sci. 2018;56(4):307–16.

    Article  CAS  PubMed  Google Scholar 

  42. Parsa A, Saadati R, Abbasian Z, Aramaki SA, Dadashzadeh S. Enhanced permeability of etoposide across everted sacs of rat small intestine by vitamin E-TPGS. Iran J Pharm Res. 2013;12(Suppl):37–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Masiiwa WL, Gadaga LL. Intestinal permeability of artesunate-loaded solid lipid nanoparticles using the everted gut method. J Drug Deliv. 2018;2018:1–9.

    Article  Google Scholar 

  44. Derakhshandeh K, Fathi S. Role of chitosan nanoparticles in the oral absorption of gemcitabine. Int J Pharm. 2012;437(1–2):172–7.

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Bai Y, Bai Y, Zhu R, Liu W, Cao J, et al. Pharmacokinetics of Caffeic acid, Ferulic acid, Formononetin, Cryptotanshinone, and Tanshinone IIA after Oral Administration of Naoxintong Capsule in rat by HPLC-MS/MS. Evid Based Complement Alternat Med. 2017;2017:1–12.

    CAS  Google Scholar 

  46. Venkateshan S, Subramaniyan V, Chinnasamy V, Chandiran S. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet. Avicenna J Phytomed. 2016;6(5):516–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Taher MA, Abdul-Hussain DA, Hasan HF, Fahmi ZM, Luaibi OK, Ali MG. Hypolipidemic effect of caffeic acid isolated from Arctium lappa cultivated in Iraq, in hyperlipidemic rat model. Iraqi J Pharm Sci. 2015;24(1):18–24.

    Google Scholar 

  48. Shukr MH, Ismail S, Ahmed SM. Development and optimization of ezetimibe nanoparticles with improved antihyperlipidemic activity. J Drug Deliv Sci Technol. 2019;49:383–95.

    Article  CAS  Google Scholar 

  49. Keerthi B, Pingali PS, Srinivas P. Formulation and evaluation of capsules of ashwagandha phytosomes. Int J Pharm Sci Rev Res. 2014;29(2):138–42.

    CAS  Google Scholar 

  50. Udapurkar PP, Bhusnure OG, Kamble SR. Diosmin Phytosomes: development, optimization and physicochemical characterization. Indian J Pharm Educ Res. 2018;52(4):S29–36.

    Article  CAS  Google Scholar 

  51. Singh D, Sm Rawat M, Semalty A, Semalty M. Quercetin-phospholipid complex: an amorphous pharmaceutical system in herbal drug delivery. Curr Drug Discov Technol. 2012;9(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  52. Qin X, Yang Y, Fan T-t, Gong T, Zhang X-n, Huang Y. Preparation, characterization and in vivo evaluation of bergenin-phospholipid complex. Acta Pharmacol Sin. 2010;31(1):127–36.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao X, Shi C, Zhou X, Lin T, Gong Y, Yin M, et al. Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: in vitro and in vivo evaluations. Eur J Pharm Sci. 2019;138:104994.

    Article  CAS  PubMed  Google Scholar 

  54. Li L, Liu Y, Xue Y, Zhu J, Wang X, Dong Y. Preparation of a ferulic acid–phospholipid complex to improve solubility, dissolution, and B16F10 cellular melanogenesis inhibition activity. Chem Cent J. 2017;11(1):26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  PubMed  Google Scholar 

  56. Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm. 1998;168(2):221–9.

    Article  CAS  Google Scholar 

  57. Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017;108:36–49.

    Article  CAS  PubMed  Google Scholar 

  58. Hou Z, Li Y, Huang Y, Zhou C, Lin J, Wang Y, et al. Phytosomes loaded with mitomycin C–soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm. 2013;10(1):90–101.

    Article  CAS  PubMed  Google Scholar 

  59. Yu F, Li Y, Chen Q, He Y, Wang H, Yang L, et al. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur J Pharm Biopharm. 2016;103:136–48.

    Article  CAS  PubMed  Google Scholar 

  60. Jena SK, Singh C, Dora CP, Suresh S. Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int J Pharm. 2014;473(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  61. Singh C, Bhatt TD, Gill MS, Suresh S. Novel rifampicin–phospholipid complex for tubercular therapy: synthesis, physicochemical characterization and in-vivo evaluation. Int J Pharm. 2014;460(1–2):220–7.

    Article  CAS  PubMed  Google Scholar 

  62. Semalty A, Semalty M, Singh D, Rawat MSM. Development and characterization of aspirin-phospholipid complex for improved drug delivery. Int J Pharm Sci Nanotechnol. 2010;3(2):940–7.

    CAS  Google Scholar 

  63. Semalty A, Semalty M, Singh D, Rawat MSM. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J Incl Phenom Macrocycl Chem. 2010;67(3–4):253–60.

    Article  CAS  Google Scholar 

  64. H-j X, Z-h Z, Jin X, Hu Q, Chen X-y, Jia X-b. A novel drug–phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo. Int J Nanomedicine. 2013;8:545.

    Google Scholar 

  65. Xie J, Li Y, Song L, Pan Z, Ye S, Hou Z. Design of a novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery systems. Drug Deliv. 2017;24(1):707–19.

    Article  CAS  PubMed  Google Scholar 

  66. Mehta AK, Yadav KS, Sawant KK. Nimodipine loaded PLGA nanoparticles: formulation optimization using factorial design, characterization and in vitro evaluation. Curr Drug Deliv. 2007;4(3):185–93.

    Article  CAS  PubMed  Google Scholar 

  67. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  68. Lai Y-S, Lee W-C, Lin Y-E, Ho C-T, Lu K-H, Lin S-H, et al. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. J Agric Food Chem. 2016;64(10):2062–71.

    Article  CAS  PubMed  Google Scholar 

  69. Björntorp P, Sjöström L. Number and size of adipose tissue fat cells in relation to metabolism in human obesity. Metabolism. 1971;20(7):703–13.

    Article  PubMed  Google Scholar 

  70. Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600–9.

    Article  PubMed  Google Scholar 

  71. Bo MS, Cheah WL, Lwin S, Moe Nwe T, Win TT, Aung M. Understanding the relationship between atherogenic index of plasma and cardiovascular disease risk factors among staff of an University in Malaysia. J Nutr Meta. 2018;2018:1–6.

    Article  Google Scholar 

  72. Sahebkar A. Fat lowers fat: purified phospholipids as emerging therapies for dyslipidemia. Biochim Biophys Acta. 2013;1831(4):887–93.

    Article  CAS  PubMed  Google Scholar 

  73. Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism. 2016;65(8):1109–23.

    Article  CAS  PubMed  Google Scholar 

  74. Silky KD, Malviya S, Talwar V, Katare OP. Potential and promises of phospholipid structured novel formulations for hepatoprotection. Int J Drug Dev Res. 2012;4(1):51–8.

    CAS  Google Scholar 

  75. El-Azab M. Comparative study on therapeutic potential of caffeic acid and silymarin in paracetamol-induced hepatotoxicity: effect on HO-1, oxidative stress, hepatic inflammation and neutrophils infiltration. Al-Azhar J Pharm Sci. 2012;45(1):14–29.

    Article  Google Scholar 

  76. Perrut M, Jung J, Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: part I: Micronization of neat particles. Int J Pharm. 2005;288(1):3–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhada Mangrulkar.

Additional information

Guest Editors: Harsh Chauhan, Abhijit Date and Sonali Dhindwal

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangrulkar, S., Shah, P., Navnage, S. et al. Phytophospholipid Complex of Caffeic Acid: Development, In vitro Characterization, and In Vivo Investigation of Antihyperlipidemic and Hepatoprotective Action in Rats. AAPS PharmSciTech 22, 28 (2021). https://doi.org/10.1208/s12249-020-01887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01887-7

Key Words

Navigation