Skip to main content

Advertisement

Log in

Correlation Between Rheological Properties, In Vitro Release, and Percutaneous Permeation of Tetrahydropalmatine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present work was to investigate the influence of formulation factors including different grades of Carbopol® matrices and penetration enhancers on the percutaneous permeation of tetrahydropalmatine (THP), rheological properties, and in vitro release; and the correlation behind rheological properties, in vitro release, and percutaneous permeation. Transdermal penetration of THP through excised rabbit skin and in vitro release of THP across transparent Cellophane® were performed by vertical Franz diffusion cell. Rheological analyses were proceeded in terms of “steady flow tests”, “oscillation stress sweep”, and “creep recovery”. The result of percutaneous penetration of THP indicated that, the emulgel prepared with Carbopol® 971P (Cp 971P) as the matrix and N-methyl-2-pyrrolidone (NMP) as the penetration enhancer had the highest cumulative permeation amount (118.19 μg/cm2). All the experimental data showed a good fit to the Casson model in viscosimetric studies no matter what the types of matrices or the kinds of penetration enhancers were. The release profile fitted the zero-order release kinetics model with Cp 971P as the matrix without any penetration enhancers. However, when adding penetration enhancers, in vitro release of THP presented anomalous (non-Fickian) release kinetics. Clarifying the relationship behind percutaneous permeation of THP, rheological properties, and in vitro release will provide us with profound insights and facilitate the design of specific emulgel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pharmacopoeia commission of RPC. Chinese Pharmacopoeia (Part I, 2010 edition). Beijing: China Medical Science Press; 2010. p. 130.

    Google Scholar 

  2. Hsu B, Kin KC. Pharmacological study of tetrahydropalmatine and its analogs, a new type of central depressants. Arch Int Pharmacodyn Ther. 1962;139:318–27.

    PubMed  CAS  Google Scholar 

  3. Liu GQ, Algeri S, Garattini S. D-L-Tetrahydropalmatine as monoamine depletor. Arch Int Pharmacodyn Ther. 1982;258(1):39–50.

    PubMed  CAS  Google Scholar 

  4. Chang CK, Lin MT. DL-Tetrahydropalmatine may act through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats. Neurosci Lett. 2001;307(3):163–6.

    Article  PubMed  CAS  Google Scholar 

  5. Hsieh MT, Peng WH, Hsieh CC. Effects of DL-tetrahydropalmatine on motor activity and the brain monoamine concentration in rats. Chin J Physiol. 1994;37(2):79–82.

    PubMed  CAS  Google Scholar 

  6. Jin GZ, Xu SX, Yu LP. Different effects of enantiomers of tetrahydropalmatine on dopaminergic system. Sci Sin B. 1986;29(10):1054–64.

    PubMed  CAS  Google Scholar 

  7. Valenta C, Auner BG. The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm. 2004;58(2):279–89.

    Article  PubMed  CAS  Google Scholar 

  8. Goodrich BF. Polymers for pharmaceutical applications, I. General Overview, (Literatura te'cnica); 1997.

  9. Tamburic S, Craig DQ. An investigation into the rheological, dielectric and mucoadhesive properties of poly (acrylic acid) gel systems. J Control Rel. 1995;32:59–68.

    Article  Google Scholar 

  10. Chu S, Yu DM, Amidon GL, Weiner ND, Goldberg AH. Viscoelastic properties of polyacrilic acid gels in mixed solvents. Pharm Res. 1992;9(12):1659–63.

    Article  PubMed  CAS  Google Scholar 

  11. Tamburic S, Craig DQ. Rheological evaluation of polyacrylic acid hydrogels. Pharm Sci. 1995;1:107–9.

    CAS  Google Scholar 

  12. Blanco-Fuente H, Anguiamo-Igea S, Otero-Espinar FJ, Blanco-Méndez J. In-vitro bioadhesion of carbopol hydrogels. Int J Pharm. 1996;142:169–74.

    Article  CAS  Google Scholar 

  13. Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF. Rheological, adhesive and release characterisation of semisolid Carbopol/Tetraglycol systems. Int J Pharm. 2006;307:129–40.

    Article  PubMed  CAS  Google Scholar 

  14. Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF. Rheological evaluation of silicon/carbopol hydrophilic gel systems as a vehicle for delivery of water insoluble drugs. AAPS J. 2008;10(1):84–91.

    Article  PubMed  CAS  Google Scholar 

  15. French DL, Haglund BO, Himmelstein KJ, Mauger JW. Controlled release of substituted benzoic and naphthoic acids using Carbopol gel: measurement of drug concentration profiles and correlation to release rate kinetics. Pharm Res. 1995;12:1513–20.

    Article  PubMed  CAS  Google Scholar 

  16. Flory PJ. The principles of polymer chemistry. In: Flory PJ, editor. Swelling of network Structures. Ithaca, New York: Cornell University Press; 1953. p. 584–5.

    Google Scholar 

  17. Guidance for Industry: SUPAC-SS Nonsterile Dosage Forms, CMC 7; CDER, Food and Drug Administration. Rockville, MD, May 1997.

  18. Proniuk S, Dixon SE, Blanchard J. Investigation of the utility of an in vitro release test for optimizing semisolid dosage forms. Pharm Dev Technol. 2001;6(3):469–76.

    Article  PubMed  CAS  Google Scholar 

  19. Van Buskirk GA, Shah VP, Adair D, Arbit HM, Dighe SV, Fawzi M, et al. Workshop III Report: scaleup of liquid and semisolid disperse systems. AAPS/FDA Committee. FDA J Pharm Sci Technol. 1995;49(3):145–9.

    Google Scholar 

  20. Flynn GL, Shah VP, Tenjarla SN, Corbo M, DeMagistris D, Feldman TG, et al. Assessment of value and applications of in vitro testing of topical dermatological drug products. Pharm Res. 1999;16(9):1325–30.

    Article  PubMed  CAS  Google Scholar 

  21. Jones DS, Woolfson AD, Brown AF, Coulter WA, McClelland C, Irwin CR. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Control Rel. 2000;67(2–3):357–68.

    Article  CAS  Google Scholar 

  22. Bentley MVLB, Kedor ERM, Vianna RF, Collett JH. The influence of lecithin and urea on the in vitro permeation of hydrocortisone acetate through skin from hairless mouse. Int J Pharm. 1997;146(4):255–62.

    Article  CAS  Google Scholar 

  23. Instistute of Laboratory Animal Resoures Commission on Life Sciences National Research Council. Guide for the care and use of laboratory animals. animal environment, housing, and management. Washington D.C: National Academy Press; 1996. p. 21–55.

    Google Scholar 

  24. Fang L, Kobayashi Y, Numajiri S, Kobayashi D, Sugibayashi K, Morimoto Y. The enhancing effect of a triethanolamine-ethanol-isopropyl myristate mixed system on the skin permeation of acidic drugs. Biol Pharm Bull. 2002;25:1339–44.

    Article  PubMed  CAS  Google Scholar 

  25. Hadgraft J. Modulation of the barrier function of the skin. Ski Pharmacol Appl Ski Physiol. 2001;14:72–81.

    Article  CAS  Google Scholar 

  26. Barry BW. Mode of action of penetration enhancers in human skin. J Control Rel. 1987;6:85–97.

    Article  CAS  Google Scholar 

  27. Ritschel WA, Hussain AS. Influence of selected solvents on penetration of griseofulvin in rat skin, in vitro. Pharm Ind. 1988;50:483–6.

    CAS  Google Scholar 

  28. Bialik W, Walters KA, Brain KR, et al. Some factors affecting the in vitro penetration of ibuprofen through human skin. Int J Pharm. 1993;92:219–23.

    Article  CAS  Google Scholar 

  29. Ganem-Quintanar A, Lafforgue C, Falson-Rieg F, et al. Evaluation of the transepidermal permeation of diethylene glycol monoethyl ether and skinwater loss. Int J Pharm. 1997;147:165–71.

    Article  CAS  Google Scholar 

  30. Copoví A, Díez-Sales O, Herráez-Domínguez JV, Herráez Domínguez M. Enhancing effect of alpha-hydroxyacids on‘in vitro’ permeation across the human skin of compounds with different lipophilicity. Int J Pharm. 2006;314:31–6.

    Article  PubMed  Google Scholar 

  31. Tung MA, Paulson AT. Rheological concepts for probing ingredient interactions in food system. In: Gaonkar AG, editor. Ingredient interactions: Effect on food quality. New York: Marcel Dekker; 1995. p. 45–84.

    Google Scholar 

  32. Pongsawatmanit R, Ikeda S, Miyawaki O. Effect of sucrose on physical properties of alginate dispersed aqueous systems. Food Sci Technol Res. 1999;5:183–7.

    Article  CAS  Google Scholar 

  33. Lopes da Silva JA, Rao MA. Rheological behavior of food gel system. In: Rao MA, editor. Rheology of fluid and semisolid foods. Gaithersburg, Maryland: Aspen Publication, Inc; 1999. p. 219–318.

    Google Scholar 

  34. Blanshard JM. The glass transition, its nature and sigifiance in food processing. In: Beckett ST, editor. physico-chemical aspects of food processing. Glasgow: Blackile and Academic Professional; 1995. p. 17–48.

    Google Scholar 

  35. Rao MA, Rizvi SSH. Rheological properties of fluid foods. In: Rao MA, Rizvi SSH, editors. Engineering properties of foods. NewYork: Marcel Dekker, Inc; 1995. p. 1–54.

    Google Scholar 

  36. Corbo M, Schultz TW, Wong GK, Van Buskirk GA. Development and validation of in vitro release testing methods for semisolid formulations. Pharm Technol. 1993;17(9):112–28.

    Google Scholar 

  37. Kundu SC, Cameron AD, Meltzer NM, Quick TW. Development and validation of method for determination of in vitro release of retinoic acid from creams. Drug Dev Ind Pharm. 1993;19:425–38.

    Article  CAS  Google Scholar 

  38. Sanghvi PP, Collins CC. Comparison of diffusion studies of hydrocortisone between the franz cell and the enhancer cell. Drug Dev Ind Pharm. 1993;19(13):1573–85.

    Article  CAS  Google Scholar 

  39. Ritger PL, Peppas NA. A simple equation for description of solute release. II. Fickian and anomalous release from swellable device. J Control Rel. 1987;5(1):37–42.

    Article  CAS  Google Scholar 

  40. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  41. Lo YM, Robbins KL, Argin-Soysal S, Sadar LN. Viscoelastic effects on the diffusion properties of curdlan gels. J Food Sci. 2003;68(6):2057–65.

    Article  CAS  Google Scholar 

  42. Francois NJ, Rojas AM, Daraio ME. Rheological and drug-release behaviour of a scleroglucan gel matrix at different drug loadings. Polym Int. 2005;54(12):161–9.

    Article  Google Scholar 

  43. Macheras P, Dokoumetzidis A. On the heterogeneity of drug dissolution and release. Pharm Res. 2000;17(2):108–12.

    Article  PubMed  CAS  Google Scholar 

  44. Kaneko Y, Sakai K, Okano T. Temperature-responsive hydrogels as intelligent materials. In: Okano T, editor. Biorelated polymers and gels: controlled release and applications. San Diego: Biomedical Engineering Academic Press; 1998.

    Google Scholar 

  45. Perioli L, Ambrogi V, Rubini D, Giovagnoli S, Ricci M, Blasi P, et al. Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J Control Rel. 2004;95(3):521–33.

    Article  CAS  Google Scholar 

  46. Zuleger S, Lippold BC. Polymer particle erosion controlling drug release. I. Factors influencing drug release and characterization of the release mechanism. Int J Pharm. 2001;217(1–2):139–52.

    Article  PubMed  CAS  Google Scholar 

  47. Berens AR, Hopfenberg HB. Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer. 1978;19(5):489–96.

    Article  CAS  Google Scholar 

  48. Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169–72.

    Article  CAS  Google Scholar 

  49. Hansson P, Lindman B. Surfactant-polymer interactions. Curr Opin Colloid Interf Sci. 1996;1:604–13.

    Article  CAS  Google Scholar 

  50. Hassan PA, Manohar C. Diffusion of probe particles in surfactant gels: dynamic light scattering study. J Phys Chem B. 1998;102:7120–5.

    Article  CAS  Google Scholar 

Download references

Declaration of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Fang.

Additional information

Chunmei Li, Chao Liu, Jie Liu, and Liang Fang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Liu, C., Liu, J. et al. Correlation Between Rheological Properties, In Vitro Release, and Percutaneous Permeation of Tetrahydropalmatine. AAPS PharmSciTech 12, 1002–1010 (2011). https://doi.org/10.1208/s12249-011-9664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9664-4

KEY WORDS

Navigation