Skip to main content
Log in

The Influence of Drugs Solubilities and Chitosan-TPP Formulation Parameters on the Mean Hydrodynamic Diameters and Drugs Entrapment Efficiencies into Chitosan-TPP Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Chitosan is a natural, biocompatible polymer. The aim of this work was to study the influence of drug solubility in 2% v/v acetic acid, formulation parameters, on mean hydrodynamic (MHD) diameters and drug entrapment efficiencies (% EE) into chitosan-TPP nanoparticles (NPs). Drugs of different aqueous solubilities with nearly similar molecular weights were chosen and admixed at several concentrations in 2% acetic acid at different chitosan concentrations and at fixed chitosan to TPP concentrations/volumes ratios. The NPs were freeze-dried, and the supernatants were utilized to determine % EE. Theophylline- and antipyrine-loaded NPs showed the best short-term physical stability in terms of MHD diameters. Antipyrine-loaded NPs possessed the larger MHD diameters, while vitamin C–loaded NPs showed the smallest ones. The relationships between the ratio of drug concentration relative to their solubilities in acetic acid were almost linear for antipyrine and vitamin C–loaded NPs when plotted against and the MHD diameters of NPs, and linear for antipyrine- and theophylline-loaded NPs when plotted against % EE with antipyrine NPs possessing the highest % EE. However, vitamin C– and propylthiouracil-loaded NPs exhibited curvilinear patterns with comparatively lower % EE. The concentration of chitosan, drug solubility in dispersion medium, and the ratio of the concentration of admixed drug relative to its solubility in dispersion medium were found critical in determining % EE and MHD diameters of NPs. It was evident that drugs with extremely low or high solubilities in dispersion medium resulted in low % EE when admixed at both low and high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hirano S. Chitin and chitosan as novel biotechnological materials. Polym Int. 1999;48(8):732–4.

    Article  CAS  Google Scholar 

  2. Mei D, Mao S, Sun W, Wang Y, Kissel T. Effect of chitosan structure properties and molecular weight on the intranasal absorption of tetramethylpyrazine phosphate in rats. Eur J Pharm Biopharm. 2008;70(3):874–81.

    Article  CAS  Google Scholar 

  3. S Duttagupta D, M Jadhav V, J Kadam V. Chitosan: a propitious biopolymer for drug delivery. Curr Drug Deliv. 2015;12(4):369–81.

  4. Yang H-C, Hon M-H. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem J. 2009;92(1):87–91.

    Article  CAS  Google Scholar 

  5. Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR. Parameters influencing the size of chitosan-TPP nano-and microparticles. Sci Rep. 2018;8(1):1–11.

    Article  Google Scholar 

  6. Blanco M, Alonso M. Development and characterization of protein-loaded poly (lactide-co-glycolide) nanospheres. Eur J Pharm Biopharm. 1997;43(3):287–94.

    Article  CAS  Google Scholar 

  7. Bozkir A, Saka OM. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Delivery. 2004;11(2):107–12.

    Article  CAS  Google Scholar 

  8. Scholes P, Coombes A, Illum L, Daviz S, Vert M, Davies M. The preparation of sub-200 nm poly (lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Release. 1993;25(1–2):145–53.

    Article  CAS  Google Scholar 

  9. Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res. 1994;11(3):402–6.

    Article  CAS  Google Scholar 

  10. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41(11):4306–34.

    Article  CAS  Google Scholar 

  11. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. 2008.

  12. Ma Y, Cai F, Li Y, Chen J, Han F, Lin W. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioactive Materials. 2020;5(3):732–43.

    Article  Google Scholar 

  13. Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol Sci Appl. 2015;8:67.

    Article  CAS  Google Scholar 

  14. Xue M, Hu S, Lu Y, Zhang Y, Jiang X, An S, et al. Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor. Int J Pharm. 2015;495(2):771–82.

    Article  CAS  Google Scholar 

  15. Alqahtani FY, Aleanizy FS, El Tahir E, Alquadeib BT, Alsarra IA, Alanazi JS, et al. Preparation, characterization, and antibacterial activity of diclofenac-loaded chitosan nanoparticles. Saudi Pharm J. 2019;27(1):82–7.

    Article  Google Scholar 

  16. Sharma R. Preparation, characterization and optimization of carvedilol loaded chitosan nanoparticles by applying Taguchi orthogonal array design. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2017;11(01).

  17. Kalam MA, Khan AA, Khan S, Almalik A, Alshamsan A. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design. Int J Biol Macromol. 2016;87:329–40.

    Article  Google Scholar 

  18. Sobhani Z, Samani SM, Montaseri H, Khezri E. Nanoparticles of chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Adv Pharm Bull. 2017;7(3):427.

    Article  CAS  Google Scholar 

  19. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–32.

    Article  CAS  Google Scholar 

  20. Higuchi T, Connors KA. Phase solubility techniques. Advanced Analytical Chemistry of Instrumentation. 1965;4:117–212.

    CAS  Google Scholar 

  21. Sharma M, Sharma R, Jain DK, Saraf A. Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: optimization and pharmacokinetic study. Int J Biol Macromol. 2019;135:246–60. https://doi.org/10.1016/j.ijbiomac.2019.05.162.

    Article  CAS  PubMed  Google Scholar 

  22. Deng Q-y, Zhou C-r, Luo B-h. Preparation and characterization of chitosan nanoparticles containing lysozyme. Pharm Biol. 2006;44(5):336–42. https://doi.org/10.1080/13880200600746246.

    Article  CAS  Google Scholar 

  23. Abdel-Hafez SM, Hathout RM, Sammour OA. Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. Int J Biol Macromol. 2014;64:334–40.

    Article  CAS  Google Scholar 

  24. Yalkowsky S, Dannenfelser R, Aquasol database of aqueous solubility, Version 5. Tuscon, Arizona: University of Arizona, College of Pharmacy. Aquasol database of aqueous solubility. Tuscon, Arizona: University of Arizona, College of Pharmacy; 1992. p. 1992.

    Google Scholar 

  25. He Y, Jain P, Yalkowsky SH. Handbook of aqueous solubility data. CRC press:. 2010.

  26. Paruta AN, Sheth BB. Solubility of the xanthines, antipyrine, and several derivatives in syrup vehicles. J Pharm Sci. 1966;55(9):896–901. https://doi.org/10.1002/jps.2600550905.

    Article  CAS  PubMed  Google Scholar 

  27. Paruta AN, Irani SA. Dielectric solubility profiles in dioxane–water mixtures for several antipyretic drugs: effect of substituents. J Pharm Sci. 1965;54(9):1334–8. https://doi.org/10.1002/jps.2600540922.

    Article  CAS  PubMed  Google Scholar 

  28. Remington JPGAR. Remington’s pharmaceutical sciences. Easton, Pa.: Mack Pub.; 1985.

  29. Kroschwitz JIH-GM. Kirk-Othmer encyclopedia of chemical technology. New York: John Wiley; 1991.

  30. Al Shaal L, Mishra PR, Muller RH, Keck CM. Nanosuspensions of hesperetin: preparation and characterization. Pharmazie. 2014;69(3):173–82.

    CAS  PubMed  Google Scholar 

  31. Bhumkar DR, Pokharkar VB. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech. 2006;7(2):E50. https://doi.org/10.1208/pt070250.

    Article  PubMed  Google Scholar 

  32. Bratkowska D, Marcé RM, Cormack PAG, Sherrington D, Borrull, Fontanals N, editors. Bratkowska, D. and Marcé, R.M. and Cormack, P.A.G. and Sherrington, D.C. and Borrull, F. and Fontanals, N. (2010) Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex2017.

  33. Stevenson IH. Factors influencing antipyrine elimination. Br J Clin Pharmacol. 1977;4(3):261–5. https://doi.org/10.1111/j.1365-2125.1977.tb00710.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ofir E, Oren Y, Adin A. Electroflocculation: the effect of zeta-potential on particle size. Desalination. 2007;204(1–3):33–8.

    Article  CAS  Google Scholar 

  35. Sun D, Kang S, Liu C, Lu Q, Cui L, Hu B. Effect of zeta potential and particle size on the stability of SiO2 nanospheres as carrier for ultrasound imaging contrast agents. Int J Electrochem Sci. 2016;11(10):8520–9.

    Article  CAS  Google Scholar 

  36. Brgles M, Jurašin D, Sikirić MD, Frkanec R, Tomašić J. Entrapment of ovalbumin into liposomes—factors affecting entrapment efficiency, liposome size, and zeta potential. J Liposome Res. 2008;18(3):235–48.

    Article  CAS  Google Scholar 

  37. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res. 2013;12(2):265–73.

    Google Scholar 

  38. Lee KH, Khan FN, Cosby L, Yang G, Winter JO. Polymer concentration maximizes encapsulation efficiency in electrohydrodynamic mixing nanoprecipitation. Frontiers in Nanotechnology. 2021:92.

  39. Subedi G, Shrestha AK, Shakya S. Study of effect of different factors in formulation of micro and nanospheres with solvent evaporation technique. Open Pharmaceutical Sciences Journal. 2016;3(1).

  40. Srikar G, Rani AP. Study on influence of polymer and surfactant on in vitro performance of biodegradable aqueous-core nanocapsules of tenofovirdisoproxil fumarate by response surface methodology. Brazilian Journal of Pharmaceutical Sciences. 2019;55.

  41. Dustgania A, Vasheghani FE, Imani M. Preparation of chitosan nanoparticles loaded by dexamethasone sodium phosphate. Iranian Journal of Pharmaceutical Sciences. 2008;4(2):111–4.

    Google Scholar 

  42. Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [(14)C]-doxorubicin. Nanotechnol Sci Appl. 2015;8:67–80. https://doi.org/10.2147/NSA.S91785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250(1):215–26. https://doi.org/10.1016/s0378-5173(02)00548-3.

    Article  CAS  PubMed  Google Scholar 

  44. Wang X, Ma J, Wang Y, He B. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials. 2001;22(16):2247–55. https://doi.org/10.1016/s0142-9612(00)00413-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received support (fund 114/2022) from the Jordan University of Science and Technology (JUST).

Author information

Authors and Affiliations

Authors

Contributions

Wasfy M. Obeidat: conceptualization of the idea, study design, acquisition, analysis, and interpretation of the data, drafting the manuscript, critical revision of manuscript, and the corresponding author.

Shadi F. Gharaibeh: helped in preparation of the original draft, analysis, and interpretation of the data, and provided some explanations of reviewer’s comments.

Abdolelah Jaradat: helped in revision of the original manuscript, analysis, and interpretation of the data, and provided some explanations of reviewer’s comments.

Corresponding author

Correspondence to Wasfy M. Obeidat.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28687 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeidat, W.M., Gharaibeh, S.F. & Jaradat, A. The Influence of Drugs Solubilities and Chitosan-TPP Formulation Parameters on the Mean Hydrodynamic Diameters and Drugs Entrapment Efficiencies into Chitosan-TPP Nanoparticles. AAPS PharmSciTech 23, 262 (2022). https://doi.org/10.1208/s12249-022-02420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02420-8

Keywords

Navigation