Skip to main content

Advertisement

Log in

Tailored Doxycycline Hyclate Loaded In Situ Gel for the Treatment of Periodontitis: Optimization, In Vitro Characterization, and Antimicrobial Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Currently, periodontitis is treated by oral dosage forms (antibiotics) which shows systemic side effects and failed to reach the therapeutic concentration (above minimum inhibitory concentration, MIC) in the periodontal pocket. The present study aimed to overcome the above issues, by designing tailored doxycycline hyclate laden in situ gel by Poloxamer 407, chitosan, and polyethylene glycol 600. The in situ gel-forming system has attracted attention owing to its ability of sustained drug release above MIC, easy administration (syringeability), and high drug retention (localization) in the periodontal cavity. The Box-Behnken design (BBD) was used to tailor and optimize the concentration of Poloxamer 407 (X1 = 14.3%), chitosan (X2 = 0.58%), and polyethylene glycol 600 (X3 = 1.14%) to achieve sufficient syringeability (149 N), t90% (1105 min), and viscosity at non-physiological condition (512 cps) and physiological condition (5415 cps). The optimized in situ gel was clear and isotonic (RBCs test). The gelation temperature of the optimized in situ was 34 ± 1°C with sufficient mucoadhesive strength (26 ± 2 dyn/cm2), gel strength (29 ± 2 sec), and texture profile for periodontal application. The in vitro drug release studies showed sustain release from optimized in situ gel (24h) in comparison to marketed gel (7h). The antimicrobial activity (cup plate technique) of the in situ gel was equivalent to the marketed doxycycline gel, which suggests that the doxycycline hyclate retained its antimicrobial efficacy when formulated as in situ gelling system. In conclusion, BBD was effectively utilized to optimize in situ gel with minimum level of polymers to achieve the required characteristics of the in situ gel for sustaining drug delivery to treat periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The raw data are available on request to the corresponding author.

References

  1. Seymour G, Gemmell E, Reinhardt RA, Eastcott J, Taubman M. Immunopathogenesis of chronic inflammatory periodontal disease: cellular and molecular mechanisms. J Periodontal Res. 1993;28(7):478–86.

    Article  CAS  PubMed  Google Scholar 

  2. Meyer MS, Joshipura K, Giovannucci E, Michaud DS. A review of the relationship between tooth loss, periodontal disease, and cancer. Cancer Causes Control. 2008;19(9):895–907.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs DR Jr, Papapanou PN, et al. Relationship between periodontal disease, tooth loss, and carotid artery plaque: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Stroke. 2003;34(9):2120–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Loesche W. The antimicrobial treatment of periodontal disease: changing the treatment paradigm. Crit Rev Oral Biol Med. 1999;10(3):245–75.

    Article  CAS  PubMed  Google Scholar 

  5. Slots J. Selection of antimicrobial agents in periodontal therapy. J Periodontal Res. 2002;37(5):389–98.

    Article  PubMed  Google Scholar 

  6. Greenstein G. Periodontal response to mechanical non-surgical therapy: a review. J Periodontol. 1992;63(2):118–30.

    Article  CAS  PubMed  Google Scholar 

  7. Bidault P, Chandad F, Grenier D. Systemic antibiotic therapy in the treatment of periodontitis. J Can Dent Assoc. 2007;73(6):15–20.

    Google Scholar 

  8. Gordon JM, Walker CB. Current status of systemic antibiotic usage in destructive periodontal disease. J Periodontol. 1993;64:760–71.

    Article  CAS  PubMed  Google Scholar 

  9. Slots J, Rams TE. Antibiotics in periodontal therapy: advantages and disadvantages. J Clin Periodontol. 1990;17:479–93.

    Article  CAS  PubMed  Google Scholar 

  10. Goodson J, Offenbacher S, Farr D, Hogan P. Periodontal disease treatment by local drug delivery. J Periodontol. 1985;56(5):265–72.

    Article  CAS  PubMed  Google Scholar 

  11. Greenstein G, Polson A. The role of local drug delivery in the management of periodontal diseases: a comprehensive review. J Periodontol. 1998;69(5):507–20.

    Article  CAS  PubMed  Google Scholar 

  12. Greenstein G. Local drug delivery in the treatment of periodontal diseases: assessing the clinical significance of the results. J Periodontol. 2006;77(4):565–78.

    Article  CAS  PubMed  Google Scholar 

  13. Desai AR, Maulvi FA, Desai DM, Shukla MR, Ranch KM, Vyas BA, et al. Multiple drug delivery from the drug-implants-laden silicone contact lens: addressing the issue of burst drug release. Mater Sci Eng C. 2020;112:110885.

    Article  CAS  Google Scholar 

  14. A. Desai, M. Shukla, F. Maulvi, K. Ranch, Ophthalmic and otic drug administration: novel approaches and challenges, Novel Drug Delivery Technologies, Springer2019, pp. 335-381.

  15. Maulvi FA, Parmar RJ, Desai AR, Desai DM, Shukla MR, Ranch KM, et al. Tailored gatifloxacin Pluronic® F-68-loaded contact lens: addressing the issue of transmittance and swelling. Int J Pharm. 2020;119279.

  16. Mei L, Huang X, Xie Y, Chen J, Huang Y, Wang B, et al. An injectable in situ gel with cubic and hexagonal nanostructures for local treatment of chronic periodontitis. Drug Deliv. 2017;24(1):1148–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. HB N, Bakliwal S, Pawar S. In-situ gel: new trends in controlled and sustained drug delivery system. Int J Pharmtech Res. 2010;2(2):1398–408.

    Google Scholar 

  18. Kumbhar AB, Rakde AK, Chaudhari P. In situ gel forming injectable drug delivery system. Int J Pharm Sci Res. 2013;4(2):597.

    CAS  Google Scholar 

  19. Maulvi FA, Patel PJ, Soni PD, Desai AR, Desai DT, Shukla MR, et al. Novel poly (vinylpyrrolidone)-coated silicone contact lenses to improve tear volume during lens wear: in vitro and in vivo studies. ACS Omega. 2020;5(29):18148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chand P, Gnanarajan G, Kothiyal P. In situ gel: a review. Indian J Pharm Biol Sci. 2016;4(2):11–9.

    Article  CAS  Google Scholar 

  21. Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26.

    Article  CAS  PubMed  Google Scholar 

  22. Mohanty D, Bakshi V, Simharaju N, Haque MA, Sahoo CK. A review on in-situ gel: a novel drug delivery system. Int J Pharm Sci Rev Res. 2018;50:175–81.

    CAS  Google Scholar 

  23. F.A. Maulvi, K.M. Ranch, A.R. Desai, D.T. Desai, M.R. Shukla, Ophthalmic preparations, Remington, Elsevier, pp. 565-575.

  24. Jiang Q, Zhang P, Li J. Elucidation of colloid performances of thermosensitive in situ-forming ophthalmic gel formed by poloxamer407 for loading drugs. J Pharm Sci. 2020;109:1703–13.

    Article  CAS  PubMed  Google Scholar 

  25. Van Hemelryck S, Dewulf J, Niekus H, van Heerden M, Ingelse B, Holm R, et al. In vitro evaluation of poloxamer in situ forming gels for bedaquiline fumarate salt and pharmacokinetics following intramuscular injection in rats. Int J Pharm: X. 2019;1:100016.

    CAS  Google Scholar 

  26. Fathalla ZM, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharm Biopharm. 2017;114:119–34.

    Article  CAS  Google Scholar 

  27. Barse R, Kokare C, Tagalpallewar A. Influence of hydroxypropylmethylcellulose and poloxamer composite on developed ophthalmic in situ gel: ex vivo and in vivo characterization. J Drug Deliv Sci Technol. 2016;33:66–74.

    Article  CAS  Google Scholar 

  28. Liu Y, Yang F, Feng L, Yang L, Chen L, Wei G, et al. In vivo retention of poloxamer-based in situ hydrogels for vaginal application in mouse and rat models. Acta Pharm Sin B. 2017;7(4):502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Escobar-Chávez J, López-Cervantes M, Naik A, Kalia Y, Quintanar-Guerrero D, Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9(3):339–58.

    PubMed  Google Scholar 

  30. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28.

    Article  CAS  PubMed  Google Scholar 

  31. Berger J, Reist M, Mayer JM, Felt O, Peppas N, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34.

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Gao Q, Lu X, Zhou H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm Sci. 2016;11(6):673–83.

    Article  Google Scholar 

  33. Ferreira SC, Bruns R, Ferreira H, Matos G, David J, Brandao G, et al. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  34. Bodugoz-Senturk H, Oral E, Choi J, Macias C, Muratoglu OK. Molecular weight effect on theta-gel formation in poly (vinyl alcohol)–poly (ethylene glycol) mixtures. J Appl Polym Sci. 2012;125(4):2890–5.

    Article  CAS  Google Scholar 

  35. Maulvi FA, Bodaa AM, Desai AR, Choksi HH, Ranch KM, Shah DO. Application of Box-Behnken design in optimization of ibuprofen ternary solid dispersion. Journal of Pharmacy Applied Sciences. 2015;2(2):1–11.

    Google Scholar 

  36. Maulvi FA, Thakkar VT, Soni TG, Gandhi TR. Optimization of aceclofenac solid dispersion using Box-Behnken design: in-vitro and in-vivo evaluation. Curr Drug Deliv. 2014;11(3):380–91.

    Article  CAS  PubMed  Google Scholar 

  37. Maulvi FA, Parmar RJ, Shukla MR, Desai AR, Desai DT, Ranch KM, et al. Plackett-Burman design for screening of critical variables and their effects on the optical transparency and swelling of gatifloxacin-Pluronic-loaded contact lens. Int J Pharm. 2019;566:513–9.

    Article  CAS  PubMed  Google Scholar 

  38. Dabhi MR, Nagori SA, Gohel MC, Parikh RK, Sheth NR. Formulation development of smart gel periodontal drug delivery system for local delivery of chemotherapeutic agents with application of experimental design. Drug Deliv. 2010;17(7):520–31.

    Article  CAS  PubMed  Google Scholar 

  39. Garala K, Joshi P, Shah M, Ramkishan A, Patel J. Formulation and evaluation of periodontal in situ gel. Int J Pharm Investig. 2013;3(1):29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bansal M, Mittal N, Yadav SK, Khan G, Gupta P, Mishra B, et al. Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: preparation, in-vitro characterization and antimicrobial study. J Oral Biol Craniofac Res. 2018;8(2):126–33.

    Article  PubMed  Google Scholar 

  41. Wei P, Deng S, Li L, Xu L, Song Y. Progress of in situ gel for sustained-release drug delivery system. Chinese Journal of Pharmaceuticals. 2007;38(12):890.

    CAS  Google Scholar 

  42. Sarada K, Firoz S, Padmini K. In-situ gelling system: a review. Int J Curr Pharma Rev Res. 2014;15(5):76–90.

    Google Scholar 

  43. Edsman K, Carlfors J, Petersson R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur J Pharm Sci. 1998;6(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  44. Gaikwad VL, Yadav VD, Dhavale RP, Choudhari PB, Jadhav SD. Effect of carbopol 934 and 940 on fluconazole release from topical gel formulation: a factorial approach. Curr Pharm Res. 2012;2(2):487–93.

    Article  Google Scholar 

  45. Pandey SS, Maulvi FA, Patel PS, Shukla MR, Shah KM, Gupta AR, et al. Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: in vitro and in vivo studies. Colloids Surf B: Biointerfaces. 2020;186:110681.

    Article  CAS  PubMed  Google Scholar 

  46. Pandey S, Swamy SV, Gupta A, Koli A, Patel S, Maulvi F, et al. Multiple response optimisation of processing and formulation parameters of pH sensitive sustained release pellets of capecitabine for targeting colon. J Microencapsul. 2018;35(3):259–71.

    Article  CAS  PubMed  Google Scholar 

  47. Chogale MM, Ghodake VN, Patravale VB. Performance parameters and characterizations of nanocrystals: a brief review. Pharmaceutics. 2016;8(3):26.

    Article  PubMed Central  CAS  Google Scholar 

  48. Ramesh PJ, Basavaiah K, Tharpa K, Vinay KB, Revanasiddappa HD. Development and validation of RP-HPLC method for the determination of doxycycline hyclate in spiked human urine and pharmaceuticals. J Pre-Clin Clin Res. 2010;4(2):101–7.

    Google Scholar 

  49. Maulvi FA, Pillai LV, Patel KP, Desai AR, Shukla MR, Desai DT, et al. Lidocaine tripotassium phosphate complex laden microemulsion for prolonged local anaesthesia: in vitro and in vivo studies. Colloids Surf B: Biointerfaces. 2020;185:110632.

    Article  CAS  PubMed  Google Scholar 

  50. Barakat SS, Nasr M, Ahmed RF, Badawy SS, Mansour S. Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Sci Rep. 2017;7(1):1–13.

    Article  CAS  Google Scholar 

  51. Singh RM, Kumar A, Pathak K. Thermally triggered mucoadhesive in situ gel of loratadine: β-cyclodextrin complex for nasal delivery. AAPS PharmSciTech. 2013;14(1):412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shelke S, Shahi S, Jalalpure S, Dhamecha D, Shengule S. Formulation and evaluation of thermoreversible mucoadhesive in-situ gel for intranasal delivery of naratriptan hydrochloride. J Drug Deliv Sci Technol. 2015;29:238–44.

    Article  CAS  Google Scholar 

  53. Hernandez C, Gawlik N, Goss M, Zhou H, Jeganathan S, Gilbert D, et al. Macroporous acrylamide phantoms improve prediction of in vivo performance of in situ forming implants. J Control Release. 2016;243:225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wei G, Xu H, Ding PT, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release. 2002;83(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  55. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346(1-2):124–32.

    Article  CAS  PubMed  Google Scholar 

  56. Pandey SS, Patel MA, Desai DT, Patel HP, Gupta AR, Joshi SV, et al. Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: optimization, in vitro and in vivo studies. J Drug Deliv Sci Technol. 2020;101731.

  57. Moojen DJF, Everts PA, Schure RM, Overdevest EP, van Zundert A, Knape JT, et al. Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus. J Orthop Res. 2008;26(3):404–10.

    Article  PubMed  Google Scholar 

  58. Pandey A, Jagtap J, Polshettiwar S. Formulation and evaluation of in vitro antimicrobial activity of gel containing essential oils and effect of polymer on their antimicrobial activity. Int J Pharm Pharm Sci. 2011;3(1):234–7.

    CAS  Google Scholar 

  59. Mandal S, Thimmasetty MK, Prabhushankar G, Geetha M. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Investig. 2012;2(2):78–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ur-Rehman T, Tavelin S, Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int J Pharm. 2011;409(1-2):19–29.

    Article  CAS  PubMed  Google Scholar 

  61. Cho H-J, Balakrishnan P, Park E-K, Song K-W, Hong S-S, Jang T-Y, et al. Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J Pharm Sci. 2011;100(2):681–91.

    Article  CAS  PubMed  Google Scholar 

  62. Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RFV. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm. 2010;75(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  63. Kanwal A, Iqbal A, Arshad R, Akhtar S, Razzaq S, Ahmad NM, et al. Formulation and evaluation of novel thiolated intra pocket periodontal composite membrane of doxycycline. AAPS PharmSciTech. 2019;20(8):1–14.

    Article  CAS  Google Scholar 

  64. Jones DS, Woolfson AD, Brown AF, O'Neill MJ. Mucoadhesive, syringeable drug delivery systems for controlled application of metronidazole to the periodontal pocket: in vitro release kinetics, syringeability, mechanical and mucoadhesive properties. J Control Release. 1997;49(1):71–9.

    Article  CAS  Google Scholar 

  65. Galgatte UC, Kumbhar AB, Chaudhari PD. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug Deliv. 2014;21(1):62–73.

    Article  CAS  PubMed  Google Scholar 

  66. Altuntaş E, Yener G. Formulation and evaluation of thermoreversible in situ nasal gels containing mometasone furoate for allergic rhinitis. AAPS PharmSciTech. 2017;18(7):2673–82.

    Article  PubMed  CAS  Google Scholar 

  67. Collado-González M, González Espinosa Y, Goycoolea FM. Interaction between chitosan and mucin: fundamentals and applications. Biomimetics. 2019;4(2):32.

    Article  PubMed Central  CAS  Google Scholar 

  68. Alhalaweh A, Vilinska A, Gavini E, Rassu G, Velaga SP. Surface thermodynamics of mucoadhesive dry powder formulation of zolmitriptan. AAPS PharmSciTech. 2011;12(4):1186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haffajee A, Socransky S, Goodson J. Subgingival temperature (I). Relation to baseline clinical parameters. J Clin Periodontol. 1992;19(6):401–8.

    Article  CAS  PubMed  Google Scholar 

  70. Jones DS, Woolfson AD, Brown AF, Coulter WA, McClelland C, Irwin CR. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Control Release. 2000;67(2-3):357–68.

    Article  CAS  PubMed  Google Scholar 

  71. Nastri L, De Rosa A, De Gregorio V, Grassia V, Donnarumma G. A new controlled-release material containing metronidazole and doxycycline for the treatment of periodontal and peri-implant diseases: formulation and in vitro testing. Int J Dent. 2019;2019:1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Maliba Pharmacy College, Uka Tarsadia University (Gujarat, India), for providing facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furqan A. Maulvi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

((DOCX 2951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranch, K.M., Maulvi, F.A., Koli, A.R. et al. Tailored Doxycycline Hyclate Loaded In Situ Gel for the Treatment of Periodontitis: Optimization, In Vitro Characterization, and Antimicrobial Studies. AAPS PharmSciTech 22, 77 (2021). https://doi.org/10.1208/s12249-021-01950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01950-x

KEY WORDS

Navigation