Skip to main content
Log in

Preparation and Characterization of Copolymer Micelles for the Solubilization and In Vitro Release of Luteolin and Luteoloside

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Luteolin (LUT) and luteoloside (LUS) belong to flavonoids with high anticancer potential and were loaded into biodegradable diblock copolymer micelles of methoxy polyethylene glycol-polycaprolactone (mPEG5K-PCL10K), methoxy polyethylene glycol-polylactide-co-glycolide (mPEG5K-PLGA10K), and methoxy polyethylene glycol-polylactide (mPEG5K-PDLLA10K) by a self-assembly method, creating water-soluble LUT and LUS copolymer micelles, respectively. The solubilization formulations of the copolymer micelles were optimized with response surface methodology (RSM). The obtained drug micelles are torispherical under transmission electron microscope (TEM) with an average diameter of about 70 nm. The mPEG5K-PLGA10K exhibited higher loading capacity for LUS which was 4.33%, and LUT- (or LUS)-loaded mPEG5K-PCL10K exhibited a better stability and encapsulation efficiency which was 65.1 and 55.8%, respectively. The in vitro drug release study showed above 47% of LUT was released from micelles at pH 7.4 PBS; however, no more than 35% of LUT was released at pH 6.4 PBS within 24 h. Meanwhile, no more than 30% of LUS was released from micelles whether at pH 6.4 or 7.4 PBS solution within 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Pandurangan AK, Dharmalingam P, AnandaSadagopan SK, Ganapasam S. Effect of luteolin on the levels of glycoproteins during azoxymethane-induced colon carcinogenesis in mice. Asian Pac J Cancer Prev. 2012;13:1569–73.

    Article  PubMed  Google Scholar 

  2. Park SH, Park HS, Lee JH, Chi GY, Kim GY, Moon SK, et al. Induction of endoplasmic reticulum stress-mediated apoptosis and non-canonical autophagy by luteolin in NCI-H460 lung carcinoma cells. Food Chem Toxicol. 2013;56:100–9.

    Article  CAS  PubMed  Google Scholar 

  3. Jeon Y, Suh YJ. Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol Rep. 2013;29:819–25.

    CAS  PubMed  Google Scholar 

  4. Zhang Q, Wan L, Guo Y, Cheng N, Cheng W, Sun Q, et al. Radiosensitization effect of luteolin on human gastric cancer SGC-7901 cells. J Biol Regul Homeost Agents. 2009;23:71–8.

    CAS  PubMed  Google Scholar 

  5. Hu C, Kitts DD. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol Cell Biochem. 2004;265:107–13.

    Article  CAS  PubMed  Google Scholar 

  6. Veda H, Yamazaki C, Yamazaki M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull. 2002;25:1197–202.

    Article  Google Scholar 

  7. Liu R, Gao M, Qiang G, Zhang T, Lan X, Ying J, et al. The anti-amnesic effects of luteolin against amyloid β25–35 peptide-induced toxicity in mice involve the protection of neurovascular unit. Neuroscience. 2009;162:1232–43.

    Article  CAS  PubMed  Google Scholar 

  8. Baskar AA, Ignacimuthu S, Michae GP, Numair KS. Cancer chemopreventive potential of luteolin-7-O-glucoside isolated from Ophiorrhiza mungos Linn. Nutr Cancer. 2011;63:130–8.

    CAS  PubMed  Google Scholar 

  9. Tian Y, Sun L, Liu X, Li B, Wang Q, Dong J. Anti-HBV active flavone glucosides from Euphorbia humifusa Willd. Fitoterapia. 2010;81:799–802.

    Article  CAS  PubMed  Google Scholar 

  10. Rump AFE, Schqssler M, Acar D, Cordes A, Theisohn M, Rosen R, et al. Functional and antiischemic effects of luteolin-7-glucoside in isolated rabbit hearts. Gen Pharmacol. 1994;25:1137–42.

    Article  CAS  PubMed  Google Scholar 

  11. Shimoia K, Okadaa H, Furugoria M, Godaa T, Takasea S, Suzukib M, et al. Intestinal absorption of luteolin and luteolin-7-O-β-glucoside in rats and humans. FEBS Lett. 1998;438:220–4.

    Article  Google Scholar 

  12. Kaminaga Y, Nagatsu A, Akiyama T, Sugimoto N, Yamazaki T, Maitani T, et al. Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett. 2003;555:311–6.

    Article  CAS  PubMed  Google Scholar 

  13. Chen ZJ, Tu MJ, Sun SY, Kong SS, Wang YQ, Ye JF, et al. The exposure of luteolin is much lower than that of apigenin in oral administration of Flos Chrysanthemi extract to rats. Drug Metab Pharmacokinet. 2012;27:162–8.

    Article  CAS  PubMed  Google Scholar 

  14. Laskar P, Saha B, Ghosh SK, Dey J. PEG based random copolymer micelles as drug carriers: the effect of hydrophobe content on drug solubilization and cytotoxicity. RSC Adv. 2015;5:16265–76.

    Article  CAS  Google Scholar 

  15. Nasongkla N, Shuai XT, Ai H, Weinberg BD, Pink J, Boothman DA, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem. 2004;43:6323–7.

    Article  CAS  Google Scholar 

  16. Gou ML, Men K, Shi HS, Xiang ML, Zhang J, Song J, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3:1558–67.

    Article  CAS  PubMed  Google Scholar 

  17. Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release. 2010;143:136–42.

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32:8281–90.

    Article  CAS  PubMed  Google Scholar 

  19. Majumdar D, Jung KH, Zhang HZ, Nannapaneni S, Wang X, Amin ARMR, et al. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev Res. 2014;7:65–73.

    Article  CAS  Google Scholar 

  20. Qiu JF, Gao X, Wang BL, Wei XW, Gou ML, Men K, et al. Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin. Int J Nanomedicine. 2013;8:3061–9.

    PubMed  PubMed Central  Google Scholar 

  21. Zhou Q, Guo X, Chen T, Zhang Z, Shao SJ, Luo C, et al. Target-specific cellular uptake of folate-decorated biodegradable polymer micelles. J Phys Chem B. 2011;115:12662–70.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao LY, Shi YK, Zou SH, Sun M, Li LB, Zhai GX. Formulation and in vitro evaluation of quercetin loaded polymeric micelles composed of pluronic P123 D-a-tocopheryl polyethylene glycol succinate. J Biomed Nanotechnol. 2011;7:358–65.

    Article  CAS  PubMed  Google Scholar 

  23. Wu W, Cui GH. Application of central composite design and response surface methodology in pharmacy. Foreign Med Sci Sect Pharm. 2000;27:292–8.

    Google Scholar 

  24. Murugesan K, Dhamija A, Nam IH, Kim YM, Chang YS. Decolourization of reactive black 5 by laccase: optimization by response surface methodology. Dyes Pigments. 2007;75:176–84.

    Article  CAS  Google Scholar 

  25. Myers RH, Montgomery DC. In: Myers RH, editor. Response surface methodology: process and product in optimization using designed experiments. 2nd ed. New York: John Wily and Sons, Inc.; 2002.

    Google Scholar 

  26. Peng B, Zi J, Yan W. Measurement and correlation of solubilities of luteolinin organic solvents at different temperatures. J Chem Eng Data. 2006;51:2038–40.

    Article  CAS  Google Scholar 

  27. Oh JK, Siegwart DJ, Lee H, Sherwood G, Peteanu L, Hollinger JO, et al. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc. 2007;129:5939–45.

    Article  CAS  PubMed  Google Scholar 

  28. Topel O, Cakır BA, Budama L, Hoda N. Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq. 2013;177:40–3.

    Article  CAS  Google Scholar 

  29. Xu GY, Luan YX, Liu J, Yu L. Study on surfactant/macromolecule interaction by static fluorescence technology. Acta Phys -Chim Sin. 2005;21:577–82.

    CAS  Google Scholar 

  30. Allen C, Maysinger D, Eoisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B: Biointerfaces. 1999;16:3–27.

    Article  CAS  Google Scholar 

  31. Lavasanifar A, Samuel J, Kwon GS. Poly (ethylene oxide)-block-poly(L-aminoacid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.

    Article  CAS  PubMed  Google Scholar 

  32. Zeng X, Guo L, Ma LF. Preparation and characterization of glycyrrhetinic acid-modified poly(ethylene glycol)-poly(β-benzyl-L-asparate) nanoparticles as liver-targeted delivery system. Colloid Polym Sci. 2015;293:319–28.

    Article  CAS  Google Scholar 

  33. Riley T, Govender T, Stolnik S, Xiong CD, Garnett MC, Lllum L, et al. Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids Surf B: Biointerfaces. 1999;16:147–59.

    Article  CAS  Google Scholar 

  34. Mielczarek C. Acid–base properties of selected flavonoid glycosides. Eur J Pharm Sci. 2005;25:273–9.

    Article  CAS  PubMed  Google Scholar 

  35. Favaro G, Clementi A, Romani V. Acidichromism and ionochromism of luteolin and apigenin, the main components of the naturally occurring yellow weld: a spectrophotometric and fluorimetric study. J Fluoresc. 2007;17:707–14.

    Article  CAS  PubMed  Google Scholar 

  36. Amat A, Angelis FD, Sgamellotti A, Fantacci S. Acid-base chemistry of luteolin and its methy-ether derivatives: ADFT and ab initio investigation. Chem Phys Lett. 2008;462:313–7.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by the Support Plan of Science and Technology Innovation team in Universities and Colleges in Henan Province of China (No. 14IRTSTHN030), Key Project of Science and Technology Research in Education Department of Henan Province in China (No. 14A150011), and Key Technology Research Program of Henan Province in China (No. 152102210257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, W., Wang, Y., Li, H. et al. Preparation and Characterization of Copolymer Micelles for the Solubilization and In Vitro Release of Luteolin and Luteoloside. AAPS PharmSciTech 18, 2095–2101 (2017). https://doi.org/10.1208/s12249-016-0692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0692-y

Key words

Navigation