Skip to main content

Advertisement

Log in

Development of Interleukin-2 Loaded Chitosan-Based Nanogels Using Artificial Neural Networks and Investigating the Effects on Wound Healing in Rats

  • Research Article
  • Theme: Recent Trends in the Development of Chitosan-Based Drug Delivery Systems
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The aim of this study was to develop and characterize rh- IL-2 loaded chitosan-based nanogels for the healing of wound incision in rats. Nanogels were prepared using chitosan and bovine serum albumin (BSA) by ionic gelation method and high temperature application, respectively. Particle size, zeta potential, and polydispersity index were measured for characterization of nanogels. The morphology of nanogels was examined by using SEM and AFM. The IL-2 loading capacity of nanogels was determined using ELISA method. In vitro release of IL-2 from nanogels was performed using Franz diffusion cells. Artificial neural network (ANN) models were developed using selected input parameters (stirring rate, chitosan%, BSA%, TPP%) where particle size was an output parameter for IL-2 free nanogels. Wound healing effect of IL-2 loaded chitosan-TPP nanogel was evaluated by determining the malondialdehyde (MDA) and glutathione (GSH) levels of wound tissues in rats. The particle size of IL-2 loaded chitosan-TPP nanogels was found to be larger than that of IL-2 loaded BSA-based chitosan nanogels. Drug loading capacity of nanogels was found 100% ± 0.010 for both nanogels. IL-2 was released slowly after the initial burst effect. According to SEM and AFM imaging, BSA-chitosan nanogel particles were of nanometer size and presented a swelling tendency, and chitosan-TPP nanogel particles were found to be spherical and homogenously dispersed. IL-2 loaded chitosan-TPP nanogel was found suitable for improving wound healing because it decreased the MDA levels and increased the GSH levels wound tissues comparing to control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Vinogradov SV. Colloidal microgels in drug delivery applications. Curr Pharm Des. 2006;12:4703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60:1638–49.

    Article  CAS  PubMed  Google Scholar 

  3. Kabanov AV, Vinogradov SV. Nanogels as pharmaceuticals carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl. 2009;48:5418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu S, Hu J, Pan X, Yao P, Jiang M. Stable and pH-sensitive nanogels by self-assembly of chitosan and ovalbumin. Langmuir. 2006;22:2754–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Leon T, Carvalho ELS, Seijo B, Ortega-Vinuesa JL, Bartos-Gonzalez D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behaviour. J Colloid Interface Sci. 2005;283:344–51.

    Article  CAS  PubMed  Google Scholar 

  6. Debache K, Kropf C, Schütz CA, Harwood LJ, Kauper P, Monney T, et al. Vaccination of mice with chitosan nanogel-associated recombinant NcNDI against challenge infection with Neospora caninum tachyzoites. Parasite Immunol. 2011;33:81–94.

    Article  CAS  PubMed  Google Scholar 

  7. Schmitt F, Lagopoulos L, Käuper P, Rossi N, Busso N, Barge J, et al. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Release. 2010;144:242–50.

    Article  CAS  PubMed  Google Scholar 

  8. Feng C, Guohui S, Zhiguo W, Xiaojie C, Hyunjin P, Dongsu C, et al. Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. Eur J Pharm Biopharm. 2014;87:197–207.

    Article  CAS  PubMed  Google Scholar 

  9. Duan C, Zhang D, Wang F, Zheng D, Jia L, Feng F, et al. Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm. 2011;409:252–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kim IS, Jeong YI, Kim SH. Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer. Int J Pharm. 2000;205:109–16.

    Article  CAS  PubMed  Google Scholar 

  11. Carvalho V, Castanheira P, Madureira P, Ferreira SA, Conta C, Teixeira JP, et al. Self-assembled dextrin nanogel as protein carrier: controlled release and biological activity of IL-10. Biotechnol Bioeng. 2011;108:1977–86.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta M, Gupta AK. Hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid as an efficient gene delivery carrier. J Control Release. 2004;99:157–66.

    Article  CAS  PubMed  Google Scholar 

  13. Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, et al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release. 1998;54:313–20.

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi H, Katakura O, Morimoto N, Akiyoshi K, Kasugai SJ. Effects of cholesterol-bearing pullulan (CHP)-nanogels in combination with prostaglandin E1 on wound healing. Biomed Mater Res B Appl Biomater. 2009;9:55–60.

    Article  Google Scholar 

  15. Ferreira SA, Coutinho PJ, Gama FM. Synthesis and characterization of self-assembled nanogels made of pullulan. Materials. 2011;4:601–20.

    Article  CAS  Google Scholar 

  16. Lee H, Mok H, Lee S, Oh YK, Park TG. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release. 2007;119:245–52.

    Article  CAS  PubMed  Google Scholar 

  17. Dickersen EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF. Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BioMed Cent Cancer. 2010. doi:10.1186/1471-2407-10-10.

    Google Scholar 

  18. Kim C, Lee Y, Lee SH, Kim JS, Jeong JH, Park TG. Self-crosslinked polyethylenimine nanogels for enhanced intracellular delivery of siRNA. Macromol Res. 2011;19:166–71.

    Article  CAS  Google Scholar 

  19. Lemieux P, Vinogradov SV, Gebhart CL, Guérin N, Paradis G, Nguyen HK, et al. Block and graft copolymers and Nanogel™ copolymer networks for DNA delivery into cell. J Drug Target. 2000;8:91–105.

    Article  CAS  PubMed  Google Scholar 

  20. Vinogradov SV, Batrakova EV, Kabanov AV. Poly(ethylene glycol)–polyethylene imine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf B: Biointerfaces. 1999;16:291–304.

    Article  CAS  Google Scholar 

  21. Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem. 2004;15:50–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimizu T, Kishida T, Hasegawa U, Ueda Y, Imanishi J, Yamagishi H, et al. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem Biophys Res Commun. 2008;367:330–5.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobson EL, Pilaro F, Smith KA. Rational interleukin 2 therapy for HIV positive individuals: daily low doses enhance immune function without toxicity. Proc Natl Acad Sci U S A. 1996;93:10405–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baiocchi RA, Caligiuri MA. Low dose interleukin 2 prevents the development Epstein-Barr virus (EBV) associated lymphoproliferative disease in scid/scid mice reconstituted i.p. with EBV-seropositive human peripheral blood lymphocytes. Proc Natl Acad Sci U S A. 1994;91:5577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robb RJ, Kutny RM, Panico M, Morris HR, Chowdhry V. Amino acid sequence and post-translational modification of human interleukin 2. Proc Natl Acad Sci U S A. 1984;81:6486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pahwa R, Chatila T, Pahwa S, Paradise C, Day NK, Geha R, et al. Recombinant interleukin 2 therapy in severe combined immunodeficiency disease. Proc Natl Acad Sci U S A. 1989;86:5069–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Artillo S, Pastore G, Alberti A, Miella M, Santantonio T, Fattovich G, et al. Double-blind, randomized controlled trial of interleukin-2 treatment of chronic hepatitis B. J Med Virol. 1998;54:167–72.

    Article  CAS  PubMed  Google Scholar 

  28. Besien KV, Mehra R, Wadehra N, Stock W, Khouri I, Giralt S, et al. Phase II study of autologous transplantation with interleukin-2-incubated peripheral blood stem cells and posttransplantation interleukin-2 in relapsed or refractory non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 2004;10:386–94.

    Article  PubMed  Google Scholar 

  29. Rosenberg SA. Interleukin 2 for patients with renal cancer. Nat Clin Pract Oncol. 2007;4:497.

  30. Kasahara T, Hooks JJ, Dougherty SF, Oppenheim JJ. Interleukin 2 mediated immune interferon (IFN-gamma) production by human T cells and T cell subsets. J Immunol. 1983;130:1784–9.

    CAS  PubMed  Google Scholar 

  31. Dinarello CA. Biology of interleukin. FASEB J. 1988;2:108–15.

    CAS  PubMed  Google Scholar 

  32. Barbul A, Knud-Jansen J, Wasserkrug HL, Efron G. Interleukin 2 enhances wound healing in rats. J Surg Res. 1986;4:315–9.

    Article  Google Scholar 

  33. DeCunzo LP, Mackenzie JW, Marafino BJ, Devereux DF. The effect of interleukin-2 administration on wound healing in adriamycin-treated rats. J Surg Res. 1990;49:419–27.

    Article  CAS  PubMed  Google Scholar 

  34. Fleury L, Ollivon M, Dubois JL, Puisieux F, Barratt G. Preparation and characterization of dipalmitoylphosphatidylcholine liposomes containing interleukin-2. Braz J Med Biol Res. 1995;28:519–29.

    CAS  PubMed  Google Scholar 

  35. Liu LS, Liu SQ, Ng SY, Froix M, Ohno T, Heller J. Controlled release of interleukin 2 for tumor immunotherapy using alginate/chitosan porous microspheres. J Control Release. 1997;43:65–74.

    Article  CAS  Google Scholar 

  36. Cadeé JA, Groot CJ, Jiskoot W, Otter W, Hennink WE. Release of recombinant human interleukin-2 from dextran-based hydrogels. J Control Release. 2002;78:1–13.

    Article  PubMed  Google Scholar 

  37. Agatonovic-Kustrin S, Beresford R, Pauzi A, Yusof M. ANN modeling of the penetration across a polydimethylsiloxane membrane from theoretically derived molecular descriptors. J Pharm Biomed Anal. 2001;26:241–54.

    Article  CAS  PubMed  Google Scholar 

  38. Degim T, Hadgraft J, Ilbasmis S, Ozkan Y. Prediction of skin penetration using artificial neural network (ANN) modelling. J Pharm Sci. 2003;92:656–64.

    Article  CAS  PubMed  Google Scholar 

  39. Degim IT. Understanding skin penetration: computer aided modeling and data interpretation. Curr Comput Aided Drug Des. 2005;1:11–9.

    Article  CAS  Google Scholar 

  40. Takayama K, Fujikawa M, Obata Y, Morishita M. Neural network based optimization of drug formulations. Adv Drug Deliv Rev. 2003;55:1217–31.

    Article  CAS  PubMed  Google Scholar 

  41. Celebi N, Erden N, Gönül B, Koz M. Effects of epidermal growth factor dosage forms on dermal wound strength. J Pharm Pharmacol. 1994;46:386–7.

    Article  CAS  PubMed  Google Scholar 

  42. Değim Z, Celebi N, Sayan H, Babul A, Erdoğan D, Take G. An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids. 2002;22:187–98.

    Article  PubMed  Google Scholar 

  43. Casini A, Ferrali M, Pompella A. Lipid peroxidation and cellular damage in extrahepatic tissues of bromobebzene-intoxicated mice. Am J Pathol. 1986;123:520–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Özer Ç, Gönül B, Celebi N, Yetkin G, Elmas Ç, Erdoğan D. Effect of oral TGF-A formulations on ASA induced duodenal ulcer and the role of lipid peroxidation in the healing process. Turk J Biochem. 2012;37:294–302.

    Article  Google Scholar 

  45. Chen Y, Mohanraj VJ, Wang F, Benson HA. Designing chitosan–dextran sulfate nanoparticles using charge ratios. AAPS Pharm Sci Tech. 2007;8:E98.

    Article  Google Scholar 

  46. Peng H, Zhiming L, Hengyao H, Daxiang C. Synthesis and characterization of bovine serum albumin-conjugated copper sulfide nanocomposites. J Nanomater. 2010. doi:10.1155/2010/641545,6.

    Google Scholar 

  47. Yang L, Xie Z, Li Z. Studies on acrylate copolymer soap-free waterborne coatings crosslinked by metal ions. J Appl Polym Sci. 1999;74:91–6.

    Article  CAS  Google Scholar 

  48. Rahimi M, Yousef M, Cheng Y, Meletis EI, Eberhart RC, Nguyen K. Formulation and characterization of a covalently coated magnetic nanogel. J Nanosci Nanotechnol. 2009;9:4128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shu XZ, Zhu KJ. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm. 2000;201:51–8.

    Article  CAS  PubMed  Google Scholar 

  50. Oh NM, Oh KT, Baik HJ, Lee BR, Lee AH, Youn YS, et al. A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: in vitro evaluation. Colloids Surf B: Biointerfaces. 2010;78:120–6.

    Article  CAS  PubMed  Google Scholar 

  51. Hu J, Yu S, Yao P. Stable amphoteric nanogels made of ovalbumin and ovotransferrin via self-assembly. Langmuir. 2007;23:6358–64.

    Article  CAS  PubMed  Google Scholar 

  52. Nasti A, Zaki NM, Leonardis P, Ungphaiboon S, Sansongsak P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systemic optimisation of the preparative process and preliminary biological evaluation. Pharm Res. 2009;26:1918–30.

    Article  CAS  PubMed  Google Scholar 

  53. Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces. 2007;59:24–34.

    Article  CAS  PubMed  Google Scholar 

  54. Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72:101–63.

    CAS  PubMed  Google Scholar 

  55. Kılıç C, Güleç Peker EG, Acartürk F, Kılıçaslan SM, Çoşkun Cevher Ş. Investigation of the effects of local glutathione and chitosan administration on incisional oral mucosal wound healing in rabbits. Colloids Surf B: Biointerfaces. 2013;112:499–507.

    Article  PubMed  Google Scholar 

  56. Alemdaroğlu C, Değim Z, Celebi N, Zor F, Öztürk S, Erdoğan D. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns. 2006;32:319–27.

    Article  PubMed  Google Scholar 

  57. Bartone FF, Adickes ED. Chitosan effects on wound healing in urogenital tissue: preliminary report. Urology. 1988;140:1134–7.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Foundation (Project Number: 02/2009-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevin Çelebi.

Ethics declarations

Conflict of Interest

The authors report no declaration of interest.

Additional information

Guest Editors: Claudio Salomon, Francisco Goycoolea, and Bruno Moerschbacher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, C., Çelebi, N., Değim, İ.T. et al. Development of Interleukin-2 Loaded Chitosan-Based Nanogels Using Artificial Neural Networks and Investigating the Effects on Wound Healing in Rats. AAPS PharmSciTech 18, 1019–1030 (2017). https://doi.org/10.1208/s12249-016-0662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0662-4

KEY WORDS

Navigation