Skip to main content
Log in

Production of Isotonic, Sterile, and Kinetically Stable Lipid-Core Nanocapsules for Injectable Administration

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Lipid-core nanocapsules (LNC) were designed and prepared as a colloidal system for drug targeting to improve the stability of drugs and allow their controlled release. For parenteral administration, it is necessary to ensure formulation sterility. However, sterilization of nanotechnological devices using an appropriate technique that keeps the supramolecular structure intact remains a challenge. This work aimed to evaluate the effect of autoclaving on the physicochemical characteristics of LNC. Formulations were prepared by the self-assembling method, followed by isotonization and sterilization at varying times and temperatures. The isotonicity was confirmed by determining the freezing temperature, which was −0.51°C. The formulation was broadly characterized, and the diameter of the particles was determined utilizing complementary methods. To evaluate the chemical stability of poly(ε-caprolactone), its molecular weight was determined by size exclusion chromatography. The physicochemical characteristics (average diameter, viscosity, and physical stability) of the formulation were similar before and after adding glycerol and conducting the sterilization at the highest temperature (134°C) and the shorter exposure time (10 min). After autoclaving, the sterility test was performed and showed no detectable microbial growth. Multiple light scattering demonstrated that the formulations were kinetically stable, and the mean diameter was constant for 6 months, corroborating this result. The polymer was chemically stable in the sterilized formulation. Isotonic and sterile LNC aqueous suspensions were produced using glycerol and autoclaving. Briefly, the results open an opportunity to produce an isotonic and sterile LNC aqueous dispersion applicable as nanomedicine for intravenous administration in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verdun C, Couvreur P, Vranckx H, Lenaerts V, Roland M. Development of a nanoparticle controlled-release formulation for human use. J Control Release. 1986;3(1–4):206–10.

    Google Scholar 

  2. Konan YN, Gurny R, Allémann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm. 2002;233(1–2):239–52.

    Article  CAS  PubMed  Google Scholar 

  3. Al Khouri Fallouh N, Roblot-Treupel L, Fessi H, Ph DJ, Puisieux F. Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm. 1986;28(2–3):125–32.

    Article  CAS  Google Scholar 

  4. Rollot J, Couvreur P, Roblot-Treupel L, Puisieux F. Physicochemical and morphological characterization of polyisobutylcyanoacrylate nanocapsules. J Pharm Sci. 1986;75(4):361–4.

    Article  CAS  PubMed  Google Scholar 

  5. Sommerfeld P, Schroeder U, Sabel BA. Sterilization of unloaded polybutylcyanoacrylate nanoparticles. Int J Pharm. 1998;164(1–2):113–8.

    Article  CAS  Google Scholar 

  6. Memisoglu-Bilensoy E, Hincal AA. Sterile, injectable cyclodextrin nanoparticles: effects of gamma irradiation and autoclaving. Int J Pharm. 2006;311(1–2):203–8.

    Article  CAS  PubMed  Google Scholar 

  7. Montanari E, Rugeriis MC, Meo C, Censi R, Coviello T, Alhaique F, et al. One-step formation and sterilization of gellan and hyaluronan nanohydrogels using autoclave. J Mater Sci Mater Med. 2015;26(1):1–6.

    Article  CAS  Google Scholar 

  8. Ma WC, Zhang Q, Li H, Larregieu CA, Zhang N, Chu T, et al. Development of intravenous lipid emulsion of α-asarone with significantly improved safety and enhanced efficacy. Int J Pharm. 2013;450:21–30.

    Article  CAS  PubMed  Google Scholar 

  9. Deng J, Cai W, Jin F. A novel oil-in-water emulsion as a potential adjuvant for influenza vaccine: development, characterization, stability and in vivo evaluation. Int J Pharm. 2014;468:187–95.

    Article  CAS  PubMed  Google Scholar 

  10. Masson V, Maurin F, Fessi H, Devissaguet JP. Influence of sterilization processes on poly(ε-caprolactone) nanospheres. Biomaterials. 1997;18(4):327–35.

    Article  CAS  PubMed  Google Scholar 

  11. Jäger E, Venturini CG, Poletto FS, Colomé LM, Pohlmann JPU, Bernardi A, et al. Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J Biomed Nanotechnol. 2009;5(1):130–40.

    Article  PubMed  Google Scholar 

  12. Fiel LA, Rebêlo LM, Santiago TM, Adorne MD, Guterres SS, Sousa JS, et al. Diverse deformation properties of polymeric nanocapsules and lipid-core nanocapsules. Soft Matter. 2011;7:7240–7.

    Article  CAS  Google Scholar 

  13. Oliveira CP, Venturini CG, Donida B, Poletto FS, Guterres SS, Pohlmann AR. An algorithm to determine the mechanism of drug distribution in lipid-core nanocapsule formulations. Soft Matter. 2013;9:1141–50.

    Article  CAS  Google Scholar 

  14. Fontana MC, Coradini K, Guterres SS, Pohlmann AR, Beck RCR. Nanoencapsulation as a way to control the release and to increase the photostability of clobetasol propionate: influence of the nanostructured system. J Biomed Nanotechnol. 2009;5(3):254–63.

    Article  CAS  PubMed  Google Scholar 

  15. Paese K, Jäger A, Poletto FS, Pinto EF, Rossi-Bergmann B, Pohlmann AR, et al. Semisolid formulation containing a nanoencapsulated sunscreen: effectiveness, in vitro photostability and immune response. J Biomed Nanotechnol. 2009;5(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  16. Fontana MC, Coradini K, Pohlmann AR, Guterres SS, Beck RCR. Nanocapsules prepared from amorphous polyesters: effect on the physicochemical characteristics, drug release, and photostability. J Nanosci Nanotechnol. 2010;10(5):3091–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bernardi A, Braganhol E, Jäger E, Figueiró F, Edelweiss AI, Pohlmann AR, et al. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett. 2009;281(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  18. Frozza RL, Bernardi A, Paese K, Hoppe JB, Silva T, Battastini AMO, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol. 2010;6(6):694–703.

    Article  CAS  PubMed  Google Scholar 

  19. Bernardi A, Frozza RL, Hoppe JB, Battastini AMO, Pohlmann AR, Guterres SS. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models. Int J Nanomedicine. 2012;7:4927–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Figueiró F, Bernardi A, Frozza RL, Terroso T, Zanotto-Filho A, Jandrey EHF, et al. Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J Biomed Nanotechnol. 2013;9(3):516–26.

    Article  PubMed  Google Scholar 

  21. Zanotto-Filho A, Coradini K, Braganhol E, Schröder R, Oliveira CM, Simões-Pires A, et al. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm. 2013;83(2):156–67.

    Article  CAS  PubMed  Google Scholar 

  22. Dimer FA, Ortiz M, Pase CS, Roversi K, Friedrich RB, Pohlmann AR, et al. Nanoencapsulation of olanzapine increases its efficacy in antipsychotic treatment and reduces adverse effects. J Biomed Nanotechnol. 2014;10(6):1137–45.

    Article  CAS  PubMed  Google Scholar 

  23. Venturini CG, Jäger E, Oliveira CP, Bernardi A, Battastini AMO, Guterres SS, et al. Formulation of lipid core nanocapsules. Colloids Surf A Physicochem Eng Asp. 2011;375(1–3):200–8.

    Article  CAS  Google Scholar 

  24. Jornada DS, Fiel LA, Bueno K, Gerent JF, Petzhold CL, Beck RCR, et al. Lipid-core nanocapsules: mechanism of self-assembly, control of size and loading capacity. Soft Matter. 2012;8:6646–55.

    Article  CAS  Google Scholar 

  25. Patel TN, Patel MM. In vitro cytotoxicity assessment of imiquimod loaded solid lipid nanoparticles based gel formulation using basal cell carcinoma cell line: part-II. JBPRAU. 2013;2(3):47–51.

    CAS  Google Scholar 

  26. Recommendation Sterility Testing PI 012–3. In: Pharmaceutical inspection convention. 2011. http://www.picscheme.org/. Accessed 05 Ago 2011.

  27. United States Pharmacopeial Convention. The United States pharmacopeia 37. National formulary 32: the official compendia of standards. 37th ed. Rockville: U. S. Pharmacopeial; 2014.

    Google Scholar 

  28. Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poletto FS, Fiel LA, Lopes MV, Schaab G, Gomes AMO, Guterres SS, et al. Fluorescent-labeled poly(ε-caprolactone) lipid-core nanocapsules: synthesis, physicochemical properties and macrophage uptake. J Colloid Sci Biotechnol. 2012;1(1):89–98.

    Article  CAS  Google Scholar 

  30. Zambrano-Zaragoza ML, Mercado-Silva E, Gutiérrez-Cortez E, Castaño-Tostado E, Quintanar-Guerrero D. Optimization of nanocapsules preparation by the emulsion–diffusion method for food applications. LWT Food Sci Technol. 2011;44(6):1362–68.

    Article  CAS  Google Scholar 

  31. Bender EA, Adorne MD, Colomé LM, Abdalla DSP, Guterres SS, Pohlmann AR. Hemocompatibility of poly(ε-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm. 2012;426(1–2):271–9.

    Article  CAS  PubMed  Google Scholar 

  32. El-Gendy N, Gorman EM, Munson EJ, Berkland C. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci. 2009;98(8):2731–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mengual O, Meunier G, Cayré I, Puech K, Snabre P. TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta. 1999;50(2):445–56.

    Article  CAS  PubMed  Google Scholar 

  34. Chen DR, Bei JZ, Wang SG. Polycaprolactone microparticles and their biodegradation. Polym Degrad Stab. 2000;67:455–9.

    Article  CAS  Google Scholar 

  35. Pohlmann AR, Soares LU, Cruz L, Silveira NP, Guterres SS. Alkaline hydrolysis as a tool to determine the association form of indomethacin in nanocapsules prepared with poly(ε-caprolactone). Curr Drug Deliv. 2004;1(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  36. Kaasalainen M, Mäkiläa E, Riikonen J, Kovalainen M, Järvinen K, Herzig K, et al. Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. Int J Pharm. 2012;431(1–2):230–6.

    Article  CAS  PubMed  Google Scholar 

  37. Briscoe B, Luckham P, Zhu S. The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions. Polymer. 2000;41(10):3851–60.

    Article  CAS  Google Scholar 

  38. Chimankar OP, Shriwas R, Tabhane VA. Intermolecular hydrogen bonding formation in aqueous D-mannitol. Arch Appl Sci Res. 2010;2(6):285–9.

    CAS  Google Scholar 

  39. Celia C, Trapasso E, Cosco D, Paolino D, Fresta M. Turbiscan Lab® expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf B: Biointerfaces. 2009;72(1):155–60.

    Article  CAS  PubMed  Google Scholar 

  40. Silindir M, Özer Y. Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. J Pharm Sci. 2009;34:43–53.

    Google Scholar 

  41. Fiel LA, Adorne MD, Guterres SS, Netz PA, Pohlmann AR. Variable temperature multiple light scattering analysis to determine the enthalpic term of a reversible agglomeration in submicrometric colloidal formulations: a quick quantitative comparison of the relative physical stability. Colloids Surf A Physicochem Eng Asp. 2013;431:93–104.

    Article  CAS  Google Scholar 

  42. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hollister KR, Ladd D, McIntire GL, Na GC, Rajagopalan N, Yuan BO. Use of purified surface modifiers to prevent particle aggregation during sterilization. US Patent 5352459 A, Out 1994.

  44. Na GC, Rajagopalan N. Use of non-ionic cloud point modifiers to minimize nanoparticle aggregation during sterilization. US Patent 5346702 A, Set 1994.

  45. Na GC, Yuan BO, Stevens HJ, Weekley BS, Rajagopalan N. Cloud point of nonionic surfactants: modulation with pharmaceutical excipients. Pharm Res. 1999;16(4):562–8.

    Article  CAS  PubMed  Google Scholar 

  46. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–69.

    Article  CAS  PubMed  Google Scholar 

  47. Bulcão RP, Freitas FA, Venturini CG, Dallegrave E, Durante J, Göethel G, et al. Acute and subchronic toxicity evaluation of poly(ɛ-caprolactone) lipid-core nanocapsules in rats. Toxicol Sci. 2013;132(1):162–76.

    Article  PubMed  Google Scholar 

  48. Jumaa M, Muller BW. In vitro investigation of the effect of various isotonic substances in parenteral emulsions on human erythrocytes. Eur J Pharm Sci. 1999;9(2):207–12.

    Article  CAS  PubMed  Google Scholar 

  49. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules and nanoemulsions, as ocular drug carrier. J Pharm Sci. 1996;85(5):530–6.

    Article  CAS  PubMed  Google Scholar 

  50. Athanasiou KA, Niederauer GG, Agrawal M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Brazilian agencies: CNPq/Brazil, CAPES, and FAPERGS. Karina Paese thanks CNPq/Brazil for your fellowships. Still, the authors thank Dr. Neila Silvia Pereira dos Santos Richards (Universidade Federal de Santa Maria) by the Digital Electronic Cryoscope MK 540L analysis and Dr. Andrea Troller Pinto (Universidade Federal do Rio Grande do Sul) by Digital Electronic Cryoscope PZL 7000, PZL, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Paese.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paese, K., Ortiz, M., Frank, L.A. et al. Production of Isotonic, Sterile, and Kinetically Stable Lipid-Core Nanocapsules for Injectable Administration. AAPS PharmSciTech 18, 212–223 (2017). https://doi.org/10.1208/s12249-016-0493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0493-3

KEY WORDS

Navigation