Skip to main content

Advertisement

Log in

Development of Novel Ionic Liquid-Based Microemulsion Formulation for Dermal Delivery of 5-Fluorouracil

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present study was aimed at synthesizing an imidazole-based ionic liquid 1-butyl-3-methylimidazolium bromide (BMIMBr) and subsequent development of a novel ionic liquid-in-oil (IL/o) microemulsion (ME) system for dermal delivery of a poorly permeating drug 5-fluorouracil (5-FU). A significant enhancement in the solubility of 5-FU was observed in BMIMBr. IL/o MEs of 5-FU were prepared using isopropyl myristate, Tween 80/Span 20, and BMIMBr. Results of ex vivo skin permeation studies through mice skin indicated that the selected IL/o ME exhibited 4-fold enhancement in percent drug permeation as compared to aqueous solution, 2.3-fold as compared to hydrophilic ointment, and 1.6-fold greater permeation than water in oil (w/o) ME. The results of in vivo studies against dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mice skin carcinogenesis demonstrated that the IL/o ME could effectively treat skin cancer in 4 weeks. In addition, the side effects such as erythema and irritation associated with the conventional formulations were not observed. Histopathological studies showed that the use of IL/o ME caused no anatomic and pathological changes in the skin structure of mice. These studies suggest that the use of IL-based ME system can efficiently enhance the solubility and permeability of 5-FU and hence its therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Sun P, Daniel W, Armstrong W. Ionic liquids in analytical chemistry. Anal Chim Acta. 2010;661(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou F, Liang Y, Liu W. Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev. 2009;38:2590–9.

    Article  CAS  PubMed  Google Scholar 

  3. Berthod A, Ruiz-Angel MJ, Carda-Broch S. Ionic liquids in separation techniques. J Chromatogr A. 2008;1184:6–18.

    Article  CAS  PubMed  Google Scholar 

  4. Roy SR, Chakraborti AK. Supramolecular assemblies in ionic liquid catalysis for aza-Michael reaction. Org Lett. 2010;12:3866–9.

    Article  CAS  PubMed  Google Scholar 

  5. Stoimenovski J, MacFarlane DR, Bica K, Rogers RD. Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm Res. 2010;27:521–6.

    Article  CAS  PubMed  Google Scholar 

  6. Pernak J, Sobaszkiewicz K, Mirska I. Anti-microbial activities of ionic liquids. Green Chem. 2003;5:52–6.

    Article  CAS  Google Scholar 

  7. Jaitely V, Karatas A, Florence AT. Water-immiscible room temperature ionic liquids (RTILs) as drug reservoirs for controlled release. Int J Pharm. 2008;354:168–73.

    Article  CAS  PubMed  Google Scholar 

  8. Mizuuchi H, Jaitely V, Murdan S, Florence A. Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents. Eur J Pharm Sci. 2008;33:326–31.

    Article  CAS  PubMed  Google Scholar 

  9. Viau L, Tourné-Péteilh C, Devoisselle J-M, Vioux A. Ionogels as drug delivery system: one-step sol–gel synthesis using imidazolium ibuprofenate ionic liquid. Chem Commun. 2010;46:228–30.

    Article  CAS  Google Scholar 

  10. Shah DO, Bagwe RP, Kanicky JR, Palla BJ, Patanjali PK. Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst. 2001;18:77–140.

    PubMed  Google Scholar 

  11. Tenjarla S. Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst. 1999;16:461–521.

    Article  CAS  PubMed  Google Scholar 

  12. Mandal S, Ghosh S, Banerjee C, Kuchlyan J, Banik D, Sarkar N. A novel ionic liquid-in-oil microemulsion composed of biologically acceptable components: an excitation wavelength dependent fluorescence resonance energy transfer study. J Phys Chem B. 2013;117(11):3221–31.

    Article  CAS  PubMed  Google Scholar 

  13. Eastoe J, Gold S, Rogers SE, Paul A, Welton T, Heenan RK, et al. Ionic liquid-in-oil microemulsions. J Am Chem Soc. 2005;127(20):7302–3.

    Article  CAS  PubMed  Google Scholar 

  14. Cao J, Qu H, Cheng Y. The use of novel ionic liquid-in-water microemulsion without the addition of organic solvents in a capillary electrophoretic system. Electrophoresis. 2010;31(20):3492–8.

    Article  CAS  PubMed  Google Scholar 

  15. Pavlidis IV, Tzafestas K, Stamatis H. Water-in-ionic liquid microemulsion-based organogels as novel matrices for enzyme immobilization. Biotechnol J. 2010;5(8):805–12.

    Article  CAS  PubMed  Google Scholar 

  16. Moniruzzaman M, Noriho K, Masahiro G. Ionic liquid based microemulsion with pharmaceutically accepted components: formulation and potential applications. J Colloid Interface Sci. 2010;352:136–42.

    Article  CAS  PubMed  Google Scholar 

  17. Moniruzzaman M, Tahara Y, Tamura M, Kamiya N, Goto M. Ionic liquid assisted transdermal delivery of sparingly soluble drugs. Chem Commun. 2010;47:1452–4.

    Article  Google Scholar 

  18. Kumar N, Goindi S, Kumar S, Jana AK. The effect of N-alkyl substituents on the usability of imidazolium cation-based ionic liquids in microemulsion systems: a technical note. AAPS PharmSciTech. 2013. In press. DOI:10.1208/s12249-013-9939-z.

  19. Heng CL, Yu LX, Lee HL, Yang CY, Lue CS, Chou CH. Biowaiver extension potential to BCS class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22(4):297–304.

    Article  Google Scholar 

  20. Kurwa HA, Yong-Gee SA, Seed PT, Markey AC, Barlow RJ. A randomized paired comparison of photodynamic therapy and topical 5-fluorouracil in the treatment of actinic keratoses. J Am Acad Dermatol. 1999;41:414–8.

    Article  CAS  PubMed  Google Scholar 

  21. Epstein E. Does intermittent "pulse" topical 5-fluorouracil therapy allow destruction of actinic keratoses without significant inflammation? J Am Acad Dermatol. 1998;38:77–80.

    Article  CAS  PubMed  Google Scholar 

  22. Avdeef A. Solubility of sparingly-soluble ionizable drugs. Adv Drug Deliv Rev. 2007;59:568–90.23.

    Article  CAS  PubMed  Google Scholar 

  23. Shishu K, Maheshwari M. Development and evaluation of novel microemulsion based oral formulations of 5-fluorouracil using non-everted rat intestine sac model. Drug Dev Ind Pharm. 2012;38(3):294–300.

    Article  CAS  PubMed  Google Scholar 

  24. Tchakalova V, Testard F, Wong K, Parker A, Benczedi D, Zemb T. Solubilization and interfacial curvature in microemulsions: II. Surfactant efficiency and PIT. Colloids Surf A Physicochem Eng Asp. 2008;331:40–7.

    Article  CAS  Google Scholar 

  25. Wankhade V, Pande S, Tapar K, Bobade N. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for Gliclazide. Der Pharmacia Lett. 2010;2(4):132–43.

    CAS  Google Scholar 

  26. Alani R, Tucker I, Davies N, Rades T. Characterizing colloidal structures of pseudoternary phase diagrams formed by oil/water/amphiphile systems. Drug Dev Ind Pharm. 2001;27:31–8.

    Article  Google Scholar 

  27. Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Controlled Release. 2004;98:427–36.

    Article  CAS  Google Scholar 

  28. Oyewumi M, Yokel R, Jay M, Coakley T, Mumper R. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Controlled Release. 2004;95:613–26.

    Article  CAS  Google Scholar 

  29. Welin-Berger K, Neelissen B, Bergenstahl B. The effect of rheological behaviour of a topical anaesthetic formulation on the release and permeation rates of the active compound. Eur J Pharm Sci. 2001;13:309–18.

    Article  CAS  PubMed  Google Scholar 

  30. Shafiq S, Shakeel F, Talegaonkar S, Ahmad F, Khar R, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66:227–43.

    Article  CAS  PubMed  Google Scholar 

  31. Bolzinger MA, Briancon S, Pelletier J, Fessi H, Chevalier Y. Percutaneous release of caffeine from microemulsion, emulsion and gel dosage forms. Eur J Pharm Biopharm. 2008;68:446–51.

    Article  CAS  PubMed  Google Scholar 

  32. Venter J, Muller D, du Plessis J, Goosen C. A comparative study of an in situ adapted diffusion cell and an in vitro Franz diffusion cell method for transdermal absorption of doxylamine. Eur J Pharm Sci. 2001;13:169–77.

    Article  CAS  PubMed  Google Scholar 

  33. Braun E, Wagner A, Furnschlief E, Katinger H, Vorauer-Uhl K. Experimental design for in vitro skin penetration study of liposomal superoxide dismutase. J Pharm Biomed Anal. 2006;40:1187–97.

    Article  CAS  PubMed  Google Scholar 

  34. Aggarwal N, Goindi S, Mehta SD. Preparation and evaluation of dermal delivery system of griseofulvin containing vitamin E-TPGS as penetration enhancer. AAPS PharmSciTech. 2012;13:67–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Basti′c M, Bastl′c L, Jovanovi′c JJ, Spiteller G. Hydrocarbons and other weakly polar unsaponifiables in some vegetable oils. J Am Oil Chem Soc. 2007;55(12):886–91.

    Article  Google Scholar 

  36. Warisnoicharoen W, Lansley A, Lawrence M. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int J Pharm. 2000;198(1):7–27.

    Article  CAS  PubMed  Google Scholar 

  37. Shah D, Khandavilli S, Panchagnula R. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers. Methods Find Exp Clin Pharmacol. 2008;30(7):499–512.

    Article  CAS  PubMed  Google Scholar 

  38. Moniruzzaman M, Tumara M, Tahara Y, Kamiya N, Goto M. Ionic liquid-in-oil microemulsion as apotential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation. Int J Pharm. 2010;400(1–2):243–50.

    Article  CAS  PubMed  Google Scholar 

  39. Moniruzzaman M, Tahara Y, Tamura M, Kamiya N, Goto M. Ionic liquid assisted transdermal delivery of sparingly soluble drugs. Chem Commun. 2010;47(9):1452–4.

    Article  Google Scholar 

  40. Baboota S, Alam M, Sharma S, Sahni JK, Kumar A, Ali J. Nanocarrier-based hydrogel of betamethasone dipropionate and salicylic acid for treatment of psoriasis. Int J Pharm Investig. 2011;1(13):139–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Controlled Release. 2009;136:88–98.

    Article  CAS  Google Scholar 

  42. Dreher F, Walde P, Walther P, Wehrli E. Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Controlled Release. 1997;45:131–40.

    Article  CAS  Google Scholar 

  43. Suh H, Jun HW. Effectiveness and mode of action of isopropyl myristate as a permeation enhancer for naproxen through shed snake skin. J Pharm Pharmacol. 1996;48:812–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54:77–98.

    Article  Google Scholar 

  45. Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. Int J Pharm. 2003;254:99–107.

    Article  CAS  PubMed  Google Scholar 

  46. Buyuktimkin N, Buyuktimkin S, Rytting JH. Chemical means of transdermal drug permeation enhancement. In: Ghosh T, Yum S, Pfister W, editors. Transdermal drug permeation enhancement. Buffalo Grove, IL, USA: Interpharm Press; 1997. p. 357–475.

    Google Scholar 

  47. Asbill CS, Michniak BB. Percutaneous penetration enhancers: local versus transdermal activity. Pharm Sci Technol Today. 2000;3(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  48. Helman MD, Lukacsko AB, Thomas A, Zusi FC, inventors; Bristol-Myers Squibb Co., assignee. Method for enhancing transdermal penetration and compositions useful therein. USA patent US 5,164,406. 1992.

  49. Sinha VR, Kaur MP. Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm. 2000;26:1131–40.

    Article  CAS  PubMed  Google Scholar 

  50. Ahad A, Aqil M, Kohli K, Chaudhary H, Sultana Y, Mujeeb M, et al. Chemical penetration enhancers: a patent review. Expert Opin Ther Pat. 2009;19:969–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the kind help provided by Biochem Pharmaceutical Industries, Mumbai, in the form of free gift sample of 5-flurouracil.

Declaration of Interest

The authors report no declaration of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishu Goindi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goindi, S., Arora, P., Kumar, N. et al. Development of Novel Ionic Liquid-Based Microemulsion Formulation for Dermal Delivery of 5-Fluorouracil. AAPS PharmSciTech 15, 810–821 (2014). https://doi.org/10.1208/s12249-014-0103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0103-1

Key words

Navigation